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A recent study has suggested that statistical
representations of ensemble objects may provide
contextual stability to facilitate perception. The present
study investigated whether facilitating such perception
occurs in the extraction of variability information and
how the stability of context mean values influences
variability perception. We designed two tasks in which
participants directly judged the variability of stimuli. In
Experiment 1, we manipulated both the stability of the
mean values and the exposure time to observe the time
course of stability facilitation. In Experiment 2, we
decomposed the stability of the context mean values
into between-trials and within-trial levels to further
investigate the mechanism of such facilitation. The
results revealed that stable mean contexts do facilitate
variability perception. In particular, unstable long-term
mean context causes loss of sensitivity to variability
whereas response bias is determined by the interaction
between long-term and transient mean stability.

Introduction

We frequently use the concepts of mean and standard
deviation (SD) to describe data sets because they

effectively capture the degree of central tendency and
dispersion. Similarly, our perception system is able to
extract central tendency and variability information from
an overwhelming amount of sensory input to form
ensemble statistics (for a review, see Alvarez, 2011). This
capability has been tested using different types of stimuli
in multiple sensory modalities (recent examples:
Schweickert, Han, Yamaguchi, & Fortin, 2014; Sweeny
&Whitney, 2014), and the results suggest that it may be a
common mechanism in human perception.

Variability: The understudied ensemble
statistics

Variability perception is vitally important in terms of
survival. For example, camouflage, which is highly
survival-related in both natural and artificial environ-
ments, relies on the basic principle of manipulating
irrelevant variation to mask the detection of relevant
variation (Morgan, Mareschal, Chubb, & Solomon,
2012). Consequently, understanding variability per-
ception—and especially understanding the encoding
mechanisms behind it—is the key to deciphering the
hidden information under camouflage. Variability
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perception is also important in more general decision-
making scenarios. Because the central tendency fea-
tures (such as mean value and mode) do not cover the
degree of dispersion in the data set, tasks that require
evaluation of dispersion—such as comparing the
homogeneity of different sets—depend on the percep-
tion of variability (Tong, Tang, Chen, & Fu, 2015).

However, most current studies of ensemble statistics
have focused on the representation of the average
properties of the stimulus set whereas perception of
variability has been less investigated. Recent studies
have shown that matching the variability of the prime
and the target might facilitate the processing of the
target even if variability is task-irrelevant, which
suggests that humans might automatically extract
variability information from a stimulus set (Michael, de
Gardelle, & Summerfield, 2014). The variety of the
stimulus types used in variability studies has increased
(e.g., texture in Dakin, Mareschal, & Bex, 2005;
biological motion in Sweeny, Haroz, & Whitney, 2013),
but the volume of variability studies is dwarfed by the
number of active investigations of mean representations.

Most previous studies regarding variability percep-
tion have adopted tasks that do not require participants
to directly respond to variability information. Thus, the
characteristics of variability perception must be in-
ferred from its effects on performance that are based on
other features (Marchant, Simons, & de Fockert, 2013;
Michael et al., 2014). To better understand variability
processing, we must design and perform experiments
that require participants to directly access variability
information.

Facilitation effect of statistical stability

Numerous studies have investigated the contents of
and mechanisms involved in ensemble statistics; how-
ever, less is known about their functional roles. One
recent study has suggested that ensemble statistics may
serve to build perceptual stability and facilitate ongoing
perception (Corbett & Melcher, 2014b). Because of our
limited visual attention, we only process a small portion
of a visual scene in detail, and the majority remains a
rough image. However, the statistical characteristics of
this coarse image are crucial for us to recognize the
background as a frame of reference to maintain visual
stability when we switch our focus. For example, both
target discrimination speed and scene-scanning fluency
were enhanced in contexts with stable global mean
values (Corbett & Melcher, 2014b). Within the facilita-
tion effect, ensemble statistics may be extracted using
nonselective visual processing and may serve to guide
selective visual processing, such as object recognition
and visual search (Wolfe, Võ, Evans, & Greene, 2011). It
has been suggested that such guidance may function by

predicting the target location based on scene context and
by freeing attentional resources to more effectively find
targets (Corbett & Melcher, 2014b).

Aims of the present study

Our growing understanding of the processing
mechanism behind ensemble statistics derives primarily
from mean representation studies, such as parallel
versus sampling dialogue (Ariely, 2008; Chong, Joo,
Emmmanouil, & Treisman, 2008; Myczek & Simons,
2008). In contrast, little is known about the mechanism
of variability processing and its relationship with mean
representation. Two important questions in this regard
concern how humans encode variability and whether
variability and mean information are processed via
shared or separate mechanisms. The ‘‘priming by
variance’’ phenomenon (Michael et al., 2014) reveals
the impact of variability processing on mean represen-
tation and may be one consequence of a shared
mechanism of mean and variability processing. If so,
we might expect that processing mean representation
would also influence variability perception.

To address these issues, we aimed to directly evaluate
participants’ responses to variability information and
determine how variability processing interacts with
mean processing. Corbett and Melcher (2014b) led us
to investigate this issue via the contextual stability
facilitation effect; in their study, backgrounds with
stable mean values (a global feature) facilitated the
visual search for a singleton among the tilted Gabor
patches (a local feature). Because the stability of mean
values might facilitate the processing of a local feature,
it naturally follows to ask whether the stability of mean
values might also facilitate the processing of another
global feature, i.e., variability. Answering this question
is important because little is known about the interplay
between different global characteristics.

In our study, two experiments manipulated the
stability of contextual mean values in variability
comparison tasks using simultaneous and successive
display paradigms. In Experiment 1, the stimulus
exposure time was manipulated to determine the time
course of the stability facilitation effect. In Experiment
2, the context mean stability was further divided into
between-trials and within-trial levels to identify its
effect on variability perception.

Experiment 1

In Experiment 1, the participants were asked to
compare the variability of two images that were
presented simultaneously. The stability of the mean
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values was manipulated to investigate the stability
facilitation effect. The exposure time of the images was
also manipulated to obtain both the time course of
variability perception and the stability facilitation effect.

Our first hypothesis was that human participants
might quickly extract variability information (Michael
et al., 2014), which would be reflected in an above-
chance accuracy within a brief exposure duration. The
second hypothesis was that a stable context of mean
values would provide a processing advantage in the
variability judgment task. Dissociation of performance
in the stable and unstable blocks may be observed
based on the proposed stability facilitation.

Methods

Participants

A total of 15 naı̈ve participants (nine females ranging
in age from 20 to 26 years with a mean of 23.4 years
and SD of 1.9 years) were recruited from nearby
universities. All the participants had normal or
corrected-to-normal vision. All the participants re-
ceived monetary rewards for completing the experi-
ment.

Apparatus

The stimulus was presented using a Philips 109B6 17-
in. CRT display (Philips, Amsterdam, Netherlands)
with a resolution of 1024 3 768 and a 100-Hz refresh
rate. The experimental procedure was controlled using
the E-Prime 2.0 software package (Psychology Soft-
ware Tools, Pittsburgh, PA), and the responses were
collected using a standard keyboard. The viewing
distance was approximately 60 cm.

Stimuli

We used 10 3 10 gridded square images as ‘‘set
stimuli’’ in our experiments as shown in Figure 1. Each
of the 100 elements consisted of a small square
uniformly filled with one gray scale value. There were
no gaps between the adjacent squares. The 100 gray
scale values within one image were randomly sampled
from a Gaussian distribution with controlled mean and
standard deviation values.

Two images were presented in every trial. In any
single trial of both stable and unstable blocks, the two
images were always identical in their mean gray scale
values but different in their standard deviation values.
In the stable block, the mean value of each trial was
fixed to 0.5 (on a scale of 0 to 1, which is used hereafter)
whereas in the unstable block the mean values of the
trials were randomly set to 0.3, 0.4, 0.6, or 0.7 with an
equal number of trials set at each mean value.

In every trial, one image may have SDs of 0.04, 0.05,
and 0.06 whereas the other image had this SD
multiplied by a gain ratio of 1.2 or 1.4. The gain ratios
were determined by pilot trials to retain a moderate and
flexible task difficulty. All the control variables were
equally distributed within the blocks and randomly
ordered.

The two images were horizontally aligned in the
center of the display. Each image had a viewing angle
of approximately 3.768, and the gap between two
images was 2.658. The stimuli images were generated
using Matlab R2012a (MathWorks, Natick, MA) with
the gray scale values sampled from Gaussian distribu-
tions. The gray scale values were truncated to range
from 0.2 to 0.8 in order to reduce extreme values. The
random sampling was iterated until the error between
the actual values and the preset values was less than
5%. The actual luminance of the stimuli in our display
setup ranged from 3.95 to 43.85 cd/m2. By default, E-
Prime applies a linearization function to make the gray
scale values linearly related to the actual luminance. To
confirm this relationship in the actual setup, we
measured the gray scale–luminance transformation
within the stimuli gray scale range and applied a linear
regression. The results (R2¼ 0.9844) suggested that the
transformation was close to linear in our display setup.

A mask was employed to prevent further visual
processing of the stimuli images (Rolls, Tovée, &
Panzeri, 1999). The same mask, a 200 3 200 square
Gaussian noise patch with a mean value of 0.5 and SD
of 0.23, was used throughout the experiment. The mask
was displayed in the same location and in the same size
as the stimuli images.

Design

We employed a 2 3 2 within-participant design. The
independent variables were exposure time (10, 30, 50,
100, 150, 200, 300, and 1000 ms) and mean value
stability (stable and unstable).

Procedure

The entire experiment included two blocks, one
stable and the other unstable. The order of the blocks
was balanced among the participants.

In a single trial (as illustrated in Figure 2, left panel),
an initial fixation was presented for a random duration
from 200 to 500 ms. The stimuli were presented for
brief exposure durations, which were set to one of eight
values (10, 30, 50, 100, 150, 200, 300, or 1000 ms).
These eight points covered the time span within which
task accuracy moves from minimum to maximum with
an emphasis on the increasing phase. Pilot tests
suggested that the accuracy would reach a ceiling after
1000 ms; therefore, longer durations were not tested.
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The different durations were randomized within blocks.
The stimuli were immediately followed by a 100-ms
white noise mask.

The participants were asked to judge which of the
two images exhibited higher gray scale variability and
to press the corresponding key on the keyboard (‘‘F’’
for left and ‘‘J’’ for right) as soon as they made their
choice. We allowed a maximum reaction time of 2000
ms for this task. Once the subject responded, an 800-ms
blank screen buffer appeared before the next trial. The
participants’ responses were recorded for data analysis.
Each block consisted of 192 trials (4 mean values 3 3
SD values3 2 gain ratios3 8 durations), and the entire
experiment took approximately 30 min to complete.

Before the experiment, all participants underwent a
practice session in which they received instructions and
familiarized themselves with the experimental opera-
tions. The procedure of the practice trials was the same
as in the formal experiment although the exposure time
in the practice was unlimited and the correct answers
were displayed simultaneously with the stimuli. In
learning the relationship between the correct answers
and the given stimuli, participants implicitly formed the
concept of gray scale variability in their minds.

Results and discussion

The accuracy for both the stable and unstable
conditions is plotted versus the exposure time in Figure
3. To better concentrate on the increasing phase, the
exposure time was transformed into a base 10
logarithmic scale.

Accuracy increased with exposure time within the
selected time range for both the stable and unstable
conditions. The participants’ performances were con-
sistent with chance for the extremely short exposures of
10 and 30 ms. However, with exposure times of 50 ms,

the participants were able to discriminate variability in
the two images with an accuracy rate that was
significantly greater than chance: stable, t(14)¼ 5.53, p
, 0.001; unstable, t(14) ¼ 3.18, p ¼ 0.006. The longer
exposure times enhanced participants’ performances,
which achieved high accuracy levels (greater than 0.9)
within 1000 ms.

A clear stable mean context advantage can be
observed in Figure 3, which indicates that the accuracy
of the stable blocks exceeded that of the unstable
blocks. Such benefits began at 50 ms and vanished
when the performance reached its maximum at 1000
ms. As Figure 3 shows, stability facilitation was more
prominent in the exposure range of 100–300 ms.

The above observations were confirmed by a
repeated-measures ANOVA on accuracy with the
exposure time and mean context stability as two
factors. The main effects of the exposure time, F(7, 98)
¼ 70.52, p , 0.001, g2p¼ 0.83, and mean context
stability, F(1, 14) ¼ 12.97, p¼ 0.003, g2p ¼ 0.48, were
significant. The interaction of the two factors was
insignificant, F(7, 98) ¼ 1.75, p ¼ 0.107, g2p¼ 0.11.

To better observe the stability effect, we fit the data
with four-parameter sigmoid curves using the equation
shown below, in which x is the log exposure time, y is
the accuracy, a represents the midpoint between the top
and bottom, b represents the slope of the rising phase,
and ‘‘top’’ and ‘‘bottom’’ indicate the upper and lower
boundaries of the accuracy, respectively. We chose
sigmoid curves because they have frequently been used
to model responses in cumulative processes (e.g.,
McKone, Martini, & Nakayama, 2001). The curves fit
reasonably well, with R2 values of 0.71 for the stable
condition and 0.68 for the unstable condition.

y ¼ bottomþ ðtop� bottomÞ
ð1þ 10ðloga�xÞ3 bÞ

Figure 1. Sample stimuli used in Experiment 1. The two images have similar mean values but different standard deviation values (in

this sample, the standard deviation of the right image is greater).
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We estimated the exposure time required to achieve
80% accuracy for each individual, and the t test of the
estimates revealed a significant difference between the
stable and unstable conditions (86 vs. 123 ms), t(14) ¼
3.59, p¼0.003. The stable condition had a steeper slope
than the unstable condition (best fit b, 1.79 vs. 1.23),
thereby suggesting that the unstable mean context
slowed the growth rate of accuracy with increased
processing time.

The results of Experiment 1 verified the hypothesis
that the participants were able to quickly extract
variability information. The immediate masking ruled
out the likelihood of further processing after the stimulus
display, thereby indicating that variability information
was processed within a brief time, which provided
evidence for the claim that ensemble variability was
automatically perceived (Michael et al., 2014).

Our second hypothesis was supported by the
finding that variability judgment was indeed facili-
tated by a stable mean context as reflected in the
enhanced accuracy for stable blocks. Although the
mean values were task-irrelevant, the participants
performed better in stable mean contexts. This
observation may be attributed to the cognitive
resources saved by the repeated context (Chun &
Jiang, 1998). Our results confirmed that stability
facilitation could be achieved by repeated ensemble
statistics (in this study, the context mean value), thus
supporting the proposed functional role of ensemble
statistics in building visual stability (Corbett &
Melcher, 2014b). More importantly, Experiment 1
required the participants to detect the difference in a
global feature (variability) rather than in local
features, which were used in previous studies,
suggesting that the facilitation of stable mean context
is comprehensive, i.e., it covers both the local and
global features in a stimuli set. Additionally, the time
course of the effect suggested that the mean value
stability facilitation might occur as early as 50 ms

after stimulus display and continue to affect visual
processing during the 50–300 ms period.

Increased variability may result in both decreased
homogeneity near the mean and increased extreme
values. Observers may use either or both of these cues
to encode the variability of a stimuli set. However, in
certain feature domains, outliers may be automatically
excluded from the computations of ensemble statistics
(Haberman & Whitney, 2010). To evaluate the
encoding strategies that observers may use in our task,
we performed a series of analyses of the extreme values.

First, we calculated the proportion of extreme values
that differs from the mean by more than 2 SD for two
sets with higher and lower variability. Out of a total of
384 image pairs, the mean numbers of extreme values
of the two images were small (4.45 and 4.35 out of 100
squares) and not significantly different from one
another, t(383) ¼ 0.95, p ¼ 0.34.

We also calculated the kurtosis and skewness of the
gray scale values of each image, which partially
reflected the severity of extreme values. A higher
kurtosis indicates that more of the variability is due to

Figure 2. Schematic diagrams of the two experiments. In Experiment 1, the participants were asked to judge which of the two images

had a higher gray scale variability. In Experiment 2, the participants were asked to judge whether the second image had a higher or

lower gray scale variability than the first one.

Figure 3. Accuracy as a function of exposure time in Experiment

1 (n¼ 15). Error bars represent the standard error of the mean

values. The dotted line represents the chance level.
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several extreme differences from the mean values, and
the kurtosis can increase while the standard deviation
remains the same if more of the variation is caused by
extreme values. There was no significant difference in
the kurtosis between the paired images with higher and
lower variabilities in each trial (2.97 vs. 2.93), t(383)¼
1.39, p ¼ 0.17.

A positive skewness means that the extreme values
greater than the mean are farther from the mean than
extreme values less than the mean and vice versa. There
was no significant skewness difference between the
paired images with higher versus lower variability in
each trial, t(383) ¼ 0.78, p ¼ 0.44. The skewness was
small (0.019 vs. 0.006) and not different from 0, t(383)¼
1.53, 0.54, p ¼ 0.13, 0.59.

To evaluate the effect of extreme values on accuracy,
we performed regression analyses with the number of
extreme values as independent factors. The results
revealed that the number of extreme values did
contribute to the accuracy, F(1, 382)¼ 4.78, p ¼ 0.03;
however, the contribution was only 1% (R2). Our
regressions on differences in skewness and kurtosis
revealed that these characteristics did not contribute to
accuracy, F(1, 382) ¼ 0.11, 0.54, p¼ 0.75, 0.46.

To summarize, the analyses of extreme values
suggested that the weight of outliers in variability
perception was low in our task. We inferred that
observers encode in a more holistic manner, thus
emphasizing the general homogeneity of the stimuli
near mean values.

Experiment 2

Experiment 1 demonstrated that a stable mean value
context facilitated the task of variability judgment;
however, which characteristics of the variability judg-
ment are affected remains unclear. The manipulation of
mean stability in Experiment 1 was straightforward but
failed to capture the multiple levels on which the stability
effect may occur. For instance, repeated features of
successive stimuli within trials may provide stability in a
transient sense whereas repeated features between trials
may induce a longer-term stability effect across the
entire experiment block. Because there was only one

‘‘general’’ stability manipulated in Experiment 1, it was
impossible to dissect the stability effect in finer detail.

Experiment 2 thus aimed to investigate the above
issues using a successive display paradigm in which
the context mean stability was manipulated by two
independent variables, i.e., within-trial stability and
between-trials stability. In each trial, the participants
were presented with two successive images and asked
to judge whether the second image had higher or
lower variability than the first one. A within-subject
2 3 2 block design was adopted to investigate the
effects of those ‘‘substabilities.’’ We analyzed the
participants’ sensitivity and response bias to the
variability information under the influence of differ-
ent mean contexts.

Methods

Participants

A total of 15 naı̈ve participants (eight females; mean
age¼ 23 years; SD¼ 2 years) were recruited from
nearby universities. All the participants had normal or
corrected-to-normal vision. All the participants re-
ceived monetary rewards for completing the experi-
ment. The participants in Experiment 2 were not
involved in Experiment 1.

Apparatus

Same as Experiment 1.

Stimuli

The general features of the stimuli images were the
same as those in Experiment 1. The stimuli image pairs
were categorized into four types (as shown in Table 1)
according to the 2 (within-trial stable/unstable) 3 2
(between-trials stable/unstable) experimental design.

In the within-trial stable blocks, the two images of
the same trial always had equal mean values whereas in
the within-trial unstable blocks the mean values of the
second images were the mean values of the first image
multiplied by a gain ratio, which might be 0.8, 1, or 1.2.
In the between-trials stable blocks, the mean values of
the first images in each trial were fixed at 0.5 whereas in

Block 1 Block 2 Block 3 Block 4

Between-trials stable unstable stable unstable

Within-trial stable stable unstable unstable

Mean value .5 .3/.4/.6/.7 .5 .3/.4/.6/.7

Mean ratio 1 1 .8/1/1.2 .8/1/1.2

SD value .04/.05/.06 .04/.05/.06 .04/.05/.06 .04/.05/.06

SD ratio .7/.9/1.1/1.3 .7/.9/1.1/1.3 .7/.9/1.1/1.3 .7/.9/1.1/1.3

Table 1. Mean and standard deviation values in the four blocks in Experiment 2.
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the between-trials unstable blocks the mean values of
the first images were varied and took a value of 0.3, 0.4,
0.6, or 0.7.

The standard deviations were controlled as in
Experiment 1. The standard deviation of the first image
could be 0.04, 0.05, or 0.06, and the standard deviation
of the second image was the value of the first multiplied
by a gain ratio, which could be 0.7, 0.9, 1.1, or 1.3. In
this manner, the second images could have lower or
higher standard deviation values. All the control
variables were equally distributed in a random order.

Design

We employed a 2 3 2 within-participant design. The
independent variables were the between-trials mean
stability and the within-trial mean stability.

Procedure

The entire experiment included four blocks (within-
trial stable/unstable by between-trials stable/unstable).
The order of the blocks was balanced among the
participants.

In a single trial (as illustrated in Figure 2, right
panel), after an initial fixation presented for a random
duration of 200 to 500 ms, two successive images were
presented for 200 ms each with an interstimulus
interval (ISI) of 1000 ms of blank screen. In determin-
ing the exposure time, our goal was to allow the
participants sufficient time to process the images. The
results of Experiment 1 demonstrated that the correct
rate of variability judgment within 200 ms was greater
than 80%. Although a longer exposure time might
improve performance further, the improvement was
limited, and it would have taken much more time to
complete the experiment. The 1000-ms ISI was chosen

to clearly separate the two stimuli, which made it less
likely to integrate the two ensembles.

The participants were asked to judge whether the
second image increased or decreased in variability
compared with the first image. They were asked to
press the corresponding key (‘‘F’’ for decrease and ‘‘J’’
for increase) on the keyboard as soon as they made
their choice. A maximum reaction time of 2000 ms was
allowed. After the response, an 800-ms blank screen
buffer would appear before the next trial. No mask was
added because both the exposure time and interim time
in Experiment 2 were long, which reduced the benefit of
precise time control. The participants’ responses and
accuracy were recorded for additional analyses. Each
block consisted of 144 trials (4 mean values 3 3 mean
ratios 3 3 SD values 3 4 SD ratios). The entire
experiment took approximately 45 min to complete.
The settings for the practice sessions were similar to
those in Experiment 1.

Results and discussion

We calculated d0 and c from the response data
(Macmillan & Creelman, 2005). A correct ‘‘decrease’’
response was denoted as a ‘‘hit,’’ and an incorrect
‘‘decrease’’ response was denoted as a ‘‘false alarm.’’ In
the present study, d0 measured the participants’
sensitivity to variability information, and c measured
the shift of the response criterion. A larger d0 indicates
higher sensitivity, and a positive c indicates a bias
toward underestimation.

As shown in the left panel of Figure 4, stable mean
values between trials enabled the participants to
perform with higher sensitivity in stable between-trials
conditions as indicated by a larger d0. The effect of
within-trial mean stability on the variability judgment

Figure 4. d0 and c values of the four stability conditions in Experiment 2 (n¼ 15). The error bars represent the standard error of the

mean. The dotted line in the right panel indicates unbiased c.
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task was less significant. Repeated measures ANOVA
on d0 confirmed the above observations with a
significant main effect of between-trials mean stability
(1.75 vs. 1.51), F(1, 14) ¼ 13.34, p¼ 0.003, g2p ¼ 0.49,
and an insignificant main effect of within-trial mean
stability (1.64 vs. 1.61), F(1, 14)¼ 0.29, p¼ 0.595, g2p¼
0.02. The interaction of the two factors was insignif-
icant, F(1, 14)¼ 0.373, p ¼ 0.551, g2p ¼ 0.03.

Criterion c exhibited a different pattern from that of
d0. The right panel of Figure 4 shows that the two
blocks with stable within-trial contexts had c values
near zero, ts(14)¼�0.044, 0.41, ps¼ 0.965, 0.688, thus
indicating no bias for either response whereas the two
blocks with unstable within-trial mean context were
biased toward the opposite directions as determined by
the stability of the between-trials mean context. For
unstable within-trial mean context, one sample t test
from zero indicated that a stable between-trial context
led the participants to underestimate the variability,
t(14) ¼ 2.62, p ¼ 0.02, whereas an unstable between-
trials context led the participants to overestimate the
variability, t(14)¼�2.15, p¼ 0.049. Repeated measures
ANOVA on c confirmed the above observations with a
significant main effect of between-trials mean stability,
F(1, 14)¼ 8.93, p¼ 0.01, g2p¼ 0.49, and an insignificant
effect of within-trial mean stability, F(1, 14)¼ 0.58, p¼
0.46, g2p¼ 0.04. The interaction of the two factors was
also significant, F(1, 14)¼13.51, p¼0.002, g2p¼0.49. A
simple effect analysis showed that the biases of stable
and unstable between-trials contexts were comparable
for the stable within-trial condition, F(1, 14)¼ 0.26, p¼
0.617, g2p¼ 0.02, but differed from one another for the
unstable within-trial condition, F(1, 14)¼ 39.03, p ,
0.001, g2p ¼ 0.74.

The sensitivity was lower in the context of varying
mean values between trials. This effect may reflect the
additional cognitive load from the continuously chang-
ing mean contexts. Although the mean values were task-
irrelevant in our experiment, their stability nevertheless
captured attentional resources and influenced the
primary task. However, the within-trial stability of mean
values had little influence on participants’ sensitivity in
the variability task. This finding is notable because in
most of the trials from the within-trial unstable blocks
the participants were required to encode the first image
and compare its variability with that of the second
image, which had a different mean value. This varying
transient mean context was expected to result in greater
cognitive load and less sensitivity, but this impairment
did not occur. One possible explanation may be that the
difference between the two images from the same trial
was highly relevant to the task, and participants focused
more attentional resources in this transient context as a
result. Therefore, they might have been aware of the
changing within-trial mean context. Because they
understood that mean values are task-irrelevant, they

might have intentionally resisted the distortion from the
unstable mean context.

Previous studies have suggested that humans tend to
underestimate the variability of the visual environment
(Kareev, Arnon, & Horwitz-Zeliger, 2002). Our results
suggested that underestimation occurred in a ‘‘globally
stable’’ although ‘‘locally unstable’’ scenario: We may
underestimate variability when context mean values
change in a transient manner but when the mean
context remains constant over the long term. However,
we may also overestimate variability when context
mean values change in a ‘‘globally unstable’’ and
‘‘locally unstable’’ scenario. Bauer (2009) has suggested
that observers may overestimate mean size when mean
size varies between trials. These results indicated that
unstable mean context can bias mean perception as well
as variability perception and that the direction of the
bias is determined by the interaction between long-term
stability and transient mean stability.

As in Experiment 1, we conducted control analyses
of extreme values. Of the total of 576 image pairs, the
mean proportions of extreme gray scale values of two
images were small (4.47 vs. 4.38 out of 100 squares) and
not significantly different from one another, t(575)¼
0.95, p ¼ 0.34. There was no significant kurtosis
difference between the paired images with larger and
smaller variability, t(575)¼0.93, p¼0.35. There was no
skewness difference between the images with larger and
smaller variability, t(575)¼0.03, p¼0.98. The skewness
was small (�0.0003 vs. �0.0008) and not significantly
different from 0, t(575) ¼�0.04, �0.07, p ¼ 0.97, 0.94.
Regression analyses with a number of extreme values,
skewness difference, and kurtosis difference as inde-
pendent factors revealed that extreme values did not
contribute to the accuracy, F(1, 574)¼ 0.02, 1.13, 0.02,
p¼ 0.90, 0.29, 0.88.

General discussion

The present study demonstrated that the stability of
contextual mean values influences the perception of
variability by affecting the observer’s sensitivity and
response criterion. The loss of sensitivity is primarily
attributed to an unstable between-trials mean context
whereas the response bias is determined by the
interaction between the within-trial stability and the
between-trials mean stability.

Stable mean context facilitates variability
perception

There are two primary paradigmatic differences
between the present study and Corbett and Melcher
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(2014b), who first introduced the effect of statistical
stability facilitation. The first is the manipulation of
stability. In Corbett and Melcher (2014b), stability was
built and then changed. In our study, we built and
maintained stability in the stable blocks, but stability
was never built in the unstable blocks. The second
difference is the task type. Whereas visual search is by
nature a task based on local features of a stimulus set,
the variability judgment used in our study is by nature a
task based on the global features of a set.

Despite these differences, there is a fundamental
similarity between the two studies. The ‘‘stability
facilitation effect’’ in both studies is conceptually the
same and can be described as ‘‘performance enhance-
ment after being visually presented with stimuli with
identical global features in context,’’ which is why we
could discuss our results on the basis of the stability
effect identified by Corbett and Melcher (2014b).

How do ensemble statistics maintain visual stability
to facilitate ongoing perception? Corbett and Melcher
(2014b) suggested that statistical stability might func-
tion by freeing attentional resources. This claim implied
a potential hypothesis that monitoring unstable statis-
tical representation requires additional attention. The
results of Experiment 1 support this hypothesis by
revealing an advantage of stable over unstable mean
context in processing variability. The early onset of
stability facilitation and the rapid perception of
variability in Experiment 1 also suggest that ensemble
statistics may be extracted automatically. Taken
together, these observations indicate that although
global properties can be automatically extracted,
monitoring changes in such properties requires addi-
tional attention. Recent work has suggested that
distributed attention may be responsible for such a
requirement (Baijal, Nakatani, van Leeuwen, & Srini-
vasan, 2013).

In Experiment 2, we found that the statistical
stability of the context could be categorized on
different levels and that these ‘‘substabilities’’ may
function differently in perceptual decisions. This
finding is consistent with previous research that found
that ensemble statistics were computed and stored on
multiple levels (Corbett & Melcher, 2014a). In our
study, the stability was confined to global features
(context mean values), and we divided this stability into
between-trials and within-trial levels. This division
allowed us to view the functional role of ensemble
statistics not only through a ‘‘local versus global’’
perspective but also in a ‘‘transient versus long-term’’
manner.

Our results suggested that between-trials—but not
within-trial—mean stability modulates sensitivity to
variability. We speculate that the influence on sensi-
tivity may be an implicit process. By contrast, the
participants may have been more prone to perceiving

the within-trial transient context change, which might
lead to intentional neglect. Participants’ concentration
on variability information prevented sensitivity losses;
however, the variability information presented in
different mean values nevertheless affected their crite-
rion of choice. More generally, our results imply that
transient changes in global context features may result
in biased estimates of the attended features whereas
lower-frequency changes can implicitly impair our
perceptual sensitivity.

Peterson and Beach (1967) used the term ‘‘intuitive
statistician’’ to suggest that humans have a natural
sensitivity to statistical parameters. This idea was
revised by Juslin, Winman, and Hansson (2007), who
used the term ‘‘naı̈ve intuitive statistician,’’ positing
that even when our minds are sensitive to the statistical
properties of the given data, we are frequently biased
when making decisions by inference. Our results
suggest that when the statistical context is unstable,
individuals are more prone to making biased judg-
ments, and the bias is due to the weakened sensitivity
and shifted criterion in the noisy environment. There-
fore, the stability of the statistical context affects both
sampling (by modulating sensitivity) and inference (by
biasing criterion) in decision making.

Encoding variability

Observers may use one or more statistical parame-
ters to encode variability. Previous studies have
suggested that candidates may be standard deviation
(Bex & Makous, 2002; Moulden, Kingdom, & Gatley,
1990) or range (Ariely, 2001; Lovie, 1978) of the set.
The outlier analysis in the present study suggest that
the extreme values in the set might not be a critical
feature that observers used—at least in our tasks—to
access variability information. This result may under-
mine the candidacy of range as the parameter for
variability perception because of its high susceptibility
to outliers. The fact that observers use the similarity of
group members near the mean to encode variability
suggests that variability perception may rely on mean
perception.

Notably, another possibility is that humans do not
have fixed statistical parameters for variability percep-
tion. Beach and Scopp (1968) found that participants
might accurately compare the relative variability
between two groups of stimuli but could not accurately
estimate the absolute variability of one stimulus set.
Observers may neither understand nor use statistical
formulas to compute variability but might instead
develop the ability to compare variability as a result of
adaptation (Pollard, 1984). In this manner, the
‘‘formula’’ used by the observers may depend on their
individual experience.
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The relationship between mean and variability
perception

Previous studies have suggested that extraction of
ensemble statistics may be an automatic process
because mean representation has a rapid processing
speed (Chong & Treisman, 2003). Experiment 1
supported this claim from the perspective of variability
perception. The results of Experiment 1 suggested that
the extraction of variability information is rapid:
Participants’ accuracy in discriminating the variability
differences reached a high level (greater than 0.75) in
less than 100 ms, which indicates the rapid encoding of
mean information (Chong & Treisman, 2003).

Is the similarity of the processing speed of mean and
variability information a consequence of the two parts
sharing a common processing mechanism? The Garner
(1974) interference paradigm for facial expression/
identity may provide useful insight on the question of
separate or shared mechanism. Regarding the analysis
in Garner, if the processing of a task-relevant feature is
not influenced by the values of another task-irrelevant
feature, then we can infer that the processing of these
two features is separate. Similarly, if mean and
variability perception are separate, we would expect
that the variability judgment would be unaffected by
the stability of mean context, but our results suggest
that such is not the case. The impairment of the
variability task due to unstable mean contexts indicates
that there is competition between mean and variability
processing, which would be a consequence of the
hypothesized shared mechanism.

Our results echo the findings of the recent work
regarding the ‘‘priming by variance’’ phenomenon, in
which the matching of the prime and target variability
facilitates extraction of the mean representation even
when the variability is task-irrelevant (Michael et al.,
2014). The ‘‘priming by variance’’ phenomenon dem-
onstrated the impact of variability processing on mean
representation whereas our study demonstrated the
impact of mean representation on variability process-
ing. Taken together, these results suggest that the
processing of mean and variability information may
not be totally separate.

However, we have not yet determined the specific
stage(s) at which the two processes compete and
interact with one another. Does the competition occur
at the stage when attention is captured or during
encoding? Our results suggest both albeit with different
weights. With regard to the manner in which attention
is captured, competition may affect explicit and implicit
attention differently, such that unstable transient mean
context (within-trial) may arouse explicit attention to
resist reduced sensitivity to variability whereas the
unstable longer-term context (between-trials) may

impair variability sensitivity by implicitly capturing
attention.

The influence on the encoding stage is more
complicated. Our outlier analysis implies that partici-
pants mainly rely on the dispersion of values near the
mean, suggesting that the extraction of mean value may
play a role in variability processing. However, imaging
studies provide preliminary evidence that the neural
substrates for mean and variability may be different:
the anterior-medial ventral visual cortex might play an
important role in forming averages in humans (Cant &
Xu, 2012) whereas the lateral geniculate nucleus may be
responsible for variability processing in cats (Bonin,
Mante, & Carandini, 2006). We would not recommend
combining human and cat studies to draw any
conclusions; nevertheless, these two studies suggest that
the encoding of mean and variability information may
occur in different areas of the brain and at different
stages of visual processing.

Such attempts to combine human and animal studies
are indicative of the scarcity of imaging studies on
ensemble statistics. We mentioned that Cant and Xu
(2012) used the fMRI adaption paradigm to locate
brain areas that are responsible for mean representa-
tions in humans and found that the anterior–medial
ventral visual cortex might play an important role in
forming averages of stimulus sets. However, there is no
equivalent fMRI study of variability representations.
Brenner, Bialek, and de Ruyter van Steveninck (2000)
demonstrated that changes in the variability informa-
tion of a stimulus ensemble might arouse adaptive
rescaling of the input/output function in the visual
system of the blowfly. Once again, it is impossible to
make a direct analog to the human visual system
although this study provides hints that we might look
into assessing the variability information as an
indicator of the dynamic range of visual input. Michael
et al. (2014) also suggested that the variability of visual
information helps to set the gain of neural processing
during perceptual choice. From this perspective, the
finding that variability modulated the performance for
the mean value extraction task (Marchant et al., 2013)
is easily understood.

Notably, no study to date has prevented such
extraction of summary statistics. Few, if any, studies
have used patients with brain lesions as participants or
used techniques that could alternate the brain function
of healthy participants (e.g., transcranial magnetic
stimulation or transcranial direct current stimulation)
to locate the neural substrate of central tendency and
variability coding. Future studies may take advantage
of such methods to reveal the brain mechanism that
underlies ensemble statistics and the interplay between
mean and variability perception.

Keywords: ensemble statistics, contextual stability,
variability perception
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Wolfe, J. M., Võ, M. L.-H., Evans, K. K., & Greene,
M. R. (2011). Visual search in scenes involves
selective and nonselective pathways. Trends in
Cognitive Sciences, 15(2), 77–84.

Journal of Vision (2015) 15(4):15, 1–12 Tong, Ji, Chen, & Fu 12

Downloaded from jov.arvojournals.org on 08/16/2022


	Introduction
	Experiment 1
	e01
	f01
	f02
	f03
	Experiment 2
	t01
	f04
	General discussion
	Alvarez1
	Ariely1
	Ariely2
	Baijal1
	Bauer1
	Beach1
	Bex1
	Bonin1
	Brenner1
	Cant1
	Chong1
	Chong2
	Chun1
	Corbett1
	Corbett2
	Dakin1
	Garner1
	Haberman1
	Juslin1
	Kareev1
	Lovie1
	Macmillan1
	Marchant1
	McKone1
	Michael1
	Morgan1
	Moulden1
	Myczek1
	Peterson1
	Pollard1
	Rolls1
	Schweickert1
	Sweeny1
	Sweeny2
	Tong1
	Wolfe1

