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The ventral or form vision hierarchy comprises a
sequence of cortical areas in which successively more
complex visual attributes are extracted, beginning with
contour orientations in V1 and culminating in face and
object representations at the highest levels. In addition,
ventral areas exhibit increasing receptive field diameter
by a factor of approximately three from area to area, and
conversely neuron density decreases. We argue here that
this is consistent with configural combination of adjacent
orientations to form curves or angles, followed by
combination of these to form descriptions of object
shapes. Substantial data from psychophysics, functional
magnetic resonance imaging (fMRI), and
neurophysiology support this organization, and
computational models consistent with it have also been
proposed. We further argue that a key to the role of the
ventral stream is dimensionality reduction in object
representations.

Introduction

The ventral, form vision hierarchy comprises a
sequence of approximately five cortical areas in
monkeys: V1, V2, V4, TEO (occipital-temporal cortex),
and TE (temporal cortex) (VanEssen, Anderson, &
Felleman, 1992). In humans, the higher levels of this
pathway also include the fusiform face area (FFA)
(Kanwisher, McDermott, & Chun, 1997) and the
lateral occipital complex (LOC) (Haxby, Gobbini,
Furey, Ishai, & Pietrini, 2001), for a total of
approximately 10 ventral visual areas identified at
present (Wang, Mruczek, Acaro, & Kastner, 2014).
Each of these hierarchical areas provides input directly
to the area above and receives feedback from that area.
In addition to these direct connections, ‘‘skipping
connections’’ also exist, in which an area provides input
to a layer two levels above, such as V1 to V4, V4 to TE,

etc. Skipping connections also incorporate skipping
feedback (Nakamura, Gattass, Desimone, & Unger-
leider, 1993; VanEssen et al., 1992).

This architecture naturally leads to the question:
Why are there multiple cortical areas in the ventral
pathway rather than just one or two? Furthermore,
why are there different modes of connection and
feedback among them? To explore current thinking
about these questions, we shall first review anatomical
data on the ventral pathway and then attempt to link
these to relevant functional data from psychophysics,
functional magnetic resonance imaging, (fMRI), and
neurophysiology.

Anatomy of the ventral pathway

Each retina contains approximately 1.25 million
ganglion cells (Rodieck, 1998), most of which project to
the lateral geniculate and thence to V1. Estimates of the
total number of neurons in V1 fall in the range of 1.43
108 (Leuba & Kraftsik, 1994) up to about 6.75 3 108

(Miller, Balaram, Young, & Kaas, 2014). Thus, there
are between 100 and 500 times as many V1 neurons as
there are ganglion cell axons. This, of course, reflects
the presence of around 12 orientation selective neurons
centered on each ganglion cell input, as well as at least
six different peak spatial frequency channels (Wilson,
McFarlane, & Phillips, 1983), three chromatic oppo-
nent channels, and a range of different disparities and
motion direction selectivities. Multiplying these figures
easily accounts for the factor of 100–500 increase of V1
neurons over retinal ganglion cells: V1 apparently
explicitly represents the biologically most relevant local
image features, such as contours, by using an over-
complete code (Olshausen & Field, 1996). But what
would happen if even a hundredfold neuron increase
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were replicated in V2, then V4, then TEO, then TE?
The result would be quite striking: The ventral visual
pathway would have to contain more than 1016

neurons! However, there are only about 1011 neurons in
the entire neocortex, so this combinatoric explosion
cannot be embodied in the image analysis computa-
tions of the ventral pathway. Parenthetically, if there
were 1016 neurons in TE, then the ‘‘grandmother cell’’
concept would indeed be viable, but it clearly is not.

As a first step toward understanding the transfor-
mations actually present in the ventral pathway, it is
instructive to examine both receptive field size and
cortical neuron density along the pathway. Average
macaque receptive field diameters within 58 of the fovea
are plotted in Figure 1, where data are averages from
several studies (Boussaoud, Desimone, & Ungerleider,
1991; Elston & Rosa, 1998; Kobatake & Tanaka, 1994;
Op de Beeck & Vogels, 2000). See Wilson and
Wilkinson (2014) for a graph with data from the
individual studies. The data are extremely well fit by a
straight line on this semilog plot, and the best fitting
line indicates that receptive field diameter increases by a
factor of 2.75 from area to area. As the 95% confidence
interval for the slope lies between 2.27 and 3.24, it does
not differ significantly from a factor of 3.0. Thus, the
V1 mean diameter of 0.368 increases to a diameter of
218–298 in TE, a factor of 57–81. The diameter increase
of about 3.0 is consistent with receptive fields one area
higher in the hierarchy being constructed from combi-

nations of nearest neighbors in its input area.
Combination of nearest neighbors is dependent on a
retinotopic map, so reduction in retinotopy might
reduce the nearest neighbor constraint in higher areas.
This arrangement is illustrated schematically in the
figure inset in which a hexagonal array three times the
V1 receptive field diameter combines elements to
represent a curved arc. Angles and contour intersec-
tions (e.g., T-junctions) can also be constructed in this
way. All of these configurations have been reported to
occur in V2 (Anzai, Peng, & VanEssen, 2007; Hegdé &
Van Essen, 2003). It is important to note that curves,
angles, etc., cannot be constructed from orientations on
a grid much smaller than 3 3 3 nearest neighbors.

Given that receptive fields cover approximately 9.0
times the area in each successive ventral cortical area, it
is mathematically possible to exactly represent all
spatial information from the input area by subsampling
to 1/9 as many spatial locations with 9.0 times as many
types of receptive field configurations per location.
Thus, with 12 orientations in V1, V2 could represent 12
3 9 ¼ 108 different curves, angles, etc. (108 is the
number of linearly independent configurations; all
other configurations can be described by linear
combinations of these 108 dimensions.) If subsampling
is all that is going on, each area in the ventral pathway
should contain about the same number of neurons.
However, recent data show that this possibility is
dramatically wrong. Measurements of neuron density
per mm3 in several primates across all cortical areas
show that density decreases exponentially along an axis
from posterior medial to anterior lateral cortex, with
the highest density being in V1 (Cahalane, Charvet, &
Finlay, 2012). Orthogonal to this exponential decay
axis, cortical neuron densities are roughly constant.
The best fitting surface to the baboon data is shown in
Figure 2. Along the axis of exponential decrease,
neuron density drops by roughly a factor of 6.0 from
V1 to lateral prefrontal cortex. Most of this density
decrease occurs from V1 roughly along the ventral
visual pathway, so it can be concluded with reasonable
certainty that neuron density is at least a factor of 5.0
times lower in TE than it is in V1. Furthermore, the
surface areas of V4, TEO, and TE are smaller than
those of V1 and V2 (VanEssen et al., 1992), so the
absolute number of neurons in TE must be somewhat
less than one fifth that in V1.

These anatomical observations indicate that the
visual system is progressively reducing the amount of
information encoded at higher levels of the form vision
hierarchy. It is appropriate to think of each output
neuron in an area as representing an independent
dimension along which shape representations may
vary. From this perspective, one major role of
intermediate level form vision is projecting image
information into a very low dimensional subspace

Figure 1. Mean data from four studies on receptive field

diameter in successive cortical areas in the ventral pathway.

Error bars represent the range of means across the four studies.

The red line shows that the data can be fit by constant diameter

increase of 2.753 from area to area. Inset in lower right shows

an example of a curved contour represented by a combination

of adjacent, oriented (orientations in blue) V1 receptive fields

(individual hexagons) in a 3.03 larger diameter V2 receptive

field.

Journal of Vision (2015) 15(7):4, 1–10 Wilson & Wilkinson 2

Downloaded from jov.arvojournals.org on 06/27/2019



relative to representations in V1, analogous to the
compression in jpeg images. Dramatic evidence sup-
porting this interpretation has just been published by
Lehky and colleagues (Lehky, Kiani, Esteky, &
Tanaka, 2014). These authors compared the dimen-
sionality of a large class of visual stimuli to the
estimated dimensionality of their neural representations
in macaque TE. Color images (1253 125 pixels) of 806
common objects (faces, dogs, chairs, flowers, etc.) were
used to stimulate each of 647 macaque TE neurons.
Using principal component analysis, the dimensionality
of the stimulus space was calculated to be approxi-
mately 507. However, the population code among the
647 neurons was dramatically reduced to just 93 6 11
dimensions. This is in striking agreement with the
estimate above of a five-fold reduction based on
neocortical anatomy (Cahalane et al., 2012), and it
supports the hypothesis of dimensionality reduction
playing a major role in the ventral pathway.

Dimensionality reduction generally implies loss of
information, so the natural question is how this can be
accomplished without a major compromise in object
recognition. There are two plausible ways in which
dimensionality reduction can still be effective in
retaining critical information about biologically rele-
vant objects. The first is that significant portions of
many visual patterns are textures: fields of grass, foliage
in a forest, a stucco wall, etc. Extensive research has
shown that humans encode textures using a small
number of statistical variables, such as mean lumi-
nance, contrast, an orientation histogram, and a
mechanism sensitive to the darkest texture elements

(Chubb, Landy, & Econopouly, 2004; Landy, 2014).
This statistical description represents an enormous
dimensionality reduction for large areas of many
images.

A second major aspect of dimensionality reduction
results from the fact that there are many correlations
among image components in natural shapes. The
classic way of effectively using image correlation to
effectively reduce dimensionality is principal compo-
nent analysis (PCA), which can readily be implemented
by neural networks using Hebb synapses (Diamantaras
& Kung, 1996). Indeed, there is recent evidence that
adults implicitly learn both the mean (or prototype)
plus at least several principal components when they
attempt to memorize a group of faces (Gao & Wilson,
2014). Unpublished measurements from our labora-
tory show that 90% of the variance in the geometric
shape of faces in both frontal and partial side view can
be captured by just one fourth of the principal
components. Similar results obtain for other represen-
tations such as independent components. The implica-
tion is that far fewer dimensions are needed for
accurate representation of natural images than are
present in the image data. It has also been demon-
strated that a few principal components can effectively
predict visual object category (face, shoe, chair, etc.)
from the fMRI BOLD signal using cross-validation
(O’Toole, Jiang, Abdi, & Haxby, 2005).

Finally, important evidence has been reported
regarding the number of synapses per cortical neuron
throughout the ventral visual pathway. As neuron
density becomes lower in more anterior lateral areas,
the number of spine synapses onto layer III pyramidal
neurons increases dramatically (Elston, 2002; Elston &
Rosa, 1998). In fact, the increase is approximately
exponential and represents roughly a seven-fold in-
crease from V1 to TE. This represents a comparable
factor to the decrease in neuron density depicted in
Figure 2. Thus, the rule of thumb for the visual system
and most likely the entire brain is that decreasing
neuron density progressing towards prefrontal cortex is
complemented by major increases in neuronal connec-
tivity. In short, neurons in TE are more sparse, but
much larger, and intercommunicate to a much greater
extent.

Neurophysiology and fMRI

Neurophysiology of intermediate ventral pathway
areas was pioneered by Van Essen’s group (Gallant,
Braun, & VanEssen, 1993; Gallant, Connor, Rakshit,
Lewis, & Van Essen, 1996). These seminal studies
showed that many V4 neurons are selectively respon-
sive to concentric, radial, or hyperbolic gratings and are

Figure 2. Best fitting two-dimensional surface describing neuron

density in baboon neocortex, with density represented from

highest to lowest on a red-yellow-green-blue scale. The axis of

maximum density change runs from posterior medial to

anterior lateral cortex and represents an exponential decrease

by a factor of 6.0 across the surface. Posterior-anterior and

lateral-medial axis dimensions are cm. Plotted from equation

provided by Cahalane et al. 2012.
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less responsive to conventional sinusoidal gratings.
This pioneering work was developed enormously by
Pasupathy and Connor in an elegant series of papers
(Pasupathy & Connor, 1999, 2001, 2002). Briefly, they
showed that many V4 neurons were selectively sensitive
to curvature extrema (usually convex) when the
extremum was located at a particular position relative
to the center of a closed curved object. Furthermore,
they showed that the collection of neurons from which
they recorded was capable of producing a population
code for the shape of closed curved contours (Pasu-
pathy & Connor, 2002).

Further support for the processing of curved shapes
in V4 derives from human fMRI (Wilkinson et al.,
2000). A first study compared the BOLD responses in
V4 for conventional sinusoidal gratings to both
concentric and radial gratings of the type first used by
Gallant et al. (1993). Although all three grating types
produced statistically indistinguishable activation in
V1, concentric and radial gratings produced signifi-
cantly stronger BOLD signals than sinusoidal gratings
in V4. In addition, concentric gratings were the only
ones to generate a significant BOLD signal in the
fusiform face area (FFA), leading us to propose that
circular or ellipsoidal shapes extracted in V4 might
provide the basis for representing head shapes in FFA
(Wilkinson et al., 2000). Subsequent electrophysiology
supported this by showing that many neurons in
macaque face patches will respond to circular shapes in
addition to faces (Tsao, Freiwald, Tootell, & Living-
stone, 2006).

Additional evidence for the representation of ellip-
soidal shapes in FFA was provided by an fMRI study
that compared BOLD responses to head shapes,
internal features, and full faces (Nichols, Betts, &
Wilson, 2010). Using multivoxel pattern analysis along
with cross validation, the study showed that all three
stimulus categories could be predicted at levels
significantly above chance. This is consistent with
configural pooling in V4 playing a role in the
representation of head shapes in FFA. Primate
neurophysiology supports this result by showing that
some neurons in monkey face patches are selectively
tuned for head aspect ratio (Freiwald, Tsao, &
Livingstone, 2009).

Psychophysics and neural modeling

Key psychophysical results on intermediate level
form processing have come from two lines of research
in our laboratory, both triggered by primate V4
neurophysiology (Gallant et al., 1993). These are
research on Glass patterns (Glass, 1969) and on radial
frequency (RF) patterns (Wilkinson, Wilson, & Habak,

1998). In both series of experiments a key focus was on
how the visual system detects and discriminates
patterns that are either circular or deviate from
circularity by modest amounts. The focus on circularity
derived from the observation that many natural
biological forms approximate such structure, including
human faces, many fruits, foliage of deciduous trees,
eroded rocks, etc. Research on both types of patterns
has led to similar conclusions, although there are
differences which will require explanation.

Let us first consider Glass patterns, which are
produced by positioning a pair of dots of fixed
separation at a random position within the stimulus.
To define a pattern, each dot pair is oriented on the
tangent to an invisible contour defining the pattern.
For a concentric Glass pattern, these are arcs of circles
centered on the pattern origin (see Figure 3). For a
parallel vertical pattern these would be parallel lines.
Pattern detection thresholds are measured by deter-
mining how many dot pairs (signal) are required among
a group of random pairs to discriminate the pattern
from random noise, in which all dot pairs fall at
random orientations. Two major results emerged from
our studies. First, concentric Glass patterns have the
lowest detection thresholds, whereas parallel patterns
have the highest. Second, the data supported linear
summation of orientation information along the
circular contours of concentric patterns, but no
analogous summation was found for parallel patterns
(Wilson, Wilkinson, & Asaad, 1997). This difference in

Figure 3. Concentric Glass pattern. Each dot is paired with a

second dot that falls along a tangent to the underlying

(invisible) concentric circle pattern.
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summation explained the difference in thresholds. This
work was subsequently extended to radial Glass
patterns as well with similar results (Wilson &
Wilkinson, 1998). It is worth emphasis that the superior
performance for concentric patterns has been corrob-
orated by a number of psychophysical (Kelly, Bischof,
Wong-Wylie, & Spetch, 2001; Kurki & Saarinen, 2004;
Lestou, Lam, Humphreys, Kourtzi, & Humphreys,
2014; Seu & Ferrera, 2001), fMRI (Ostwald, Lam, Li,
& Kourtzi, 2008), and visual evoked potential (Pei,
Pettet, Vildaviski, & Norcia, 2005) studies. Even the use
of oriented Gabor functions instead of dot pairs, which
eliminates all orientation ambiguity at the first stage of
Glass pattern processing, has provided evidence for
superior performance with concentric patterns (Acht-
man, Hess, & Wang, 2003).

A neural model that accounts for the linear
summation of orientation information to produce the
low thresholds for concentric Glass patterns is depicted
in Figure 4 (Wilson et al., 1997). This model employs
processing by oriented V1 receptive fields at 12
different orientations followed by rectification and
subsequent filtering by orthogonal receptive fields. This
filter-rectify-filter process has been shown to effectively
encode contour curvature over a considerable range
(Dobbins, Zucker, & Cynader, 1987; Wilson, 1999).
Specifically, the orthogonal orientation of the second
filter creates an end-stopped mechanism that will not
respond to elongated linear contours, but it responds
excellently to curves with the appropriate tangent
orientation. More complex, multiplicative second stage
units have also been used in this model (Poirier &
Wilson, 2006). As neurophysiological evidence cited
above suggests that local contour curvature is encoded
in V2 (Anzai et al., 2007; Hegdé & Van Essen, 2003), it

was proposed that this second model stage represents
V2 processing. The final stage sums responses of V2
curvature units which are tangent to the pattern center
(with thresholds so that negative responses are not
included) to produce receptive fields that account for
the data on detection of concentric Glass patterns.
From the evidence cited above, this final pooling stage
is consistent with V4 neurophysiology: Because these
model V4 receptive fields are large, they exhibit
substantially increased position invariance in their
responses relative to earlier stages.

Although this is an initial model and hardly a final
one of intermediate level processing in the ventral
pathway, nevertheless it encapsulates much of the
anatomy and physiology enumerated above. First, note
that the receptive field size in V2 of the model must
have approximately three times the diameter of the V1
oriented receptive field to effectively encode curvature
(see inset in Figure 1). Second, the model V4 receptive
fields must be roughly three times larger in diameter
than their V2 inputs to effectively encode concentric
structure: Circles don’t exist at a point. Additionally,
the larger receptive fields in model V2 and V4 can be
effectively subsampled spatially into much smaller
arrays consistent with the changes in neuron density in
Figure 2 above. Finally, these larger receptive fields
engender increased position invariance.

In parallel with this research on Glass patterns, we
also introduced a category of smoothly curved closed
shapes known as radial frequency or RF patterns
(Wilkinson et al., 1998). These are defined in polar
coordinates by a radius R that is a sinusoidal function
of the polar angle h:

RðhÞ ¼ R0 1þ AsinðxhÞ½ �

Figure 4. Neural model of V1, V2, and V4 processing to produce units sensitive to concentric structure in Glass patterns. Excitatory

regions of receptive fields are plotted in white and inhibitory surrounds in gray. For more details, see text.
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where R0 is the mean radius, x is the integer radial
frequency in cycles per 3608, and A is the amplitude of
the deviation from circularity (A ¼ 0 for a circle).
Examples are shown in the accompanying article by
Loffler (2015). Detection and recognition of these
patterns are both in the hyperacuity range (Wilkinson
et al., 1998). Subsequent work has shown that these
patterns are processed globally for radial frequencies
below about six cycles (Loffler, 2008; Loffler, Wilson,
& Wilkinson, 2003). In addition, study of a patient with
V4 damage has documented an enormous deficit in the
ability to discriminate RF patterns from circles in his
damaged V4 quadrant but not in intact quadrants
(Gallant, Shoup, & Mazer, 2000).

Psychophysical data on RF patterns have been
successfully modeled using an embellishment of the
model illustrated in Figure 3 (Poirier & Wilson, 2006;
Wilson & Wilkinson, 2014). In particular, RF masking
studies (Habak, Wilkinson, Zakher, & Wilson, 2004),
RF adaptation (Anderson, Habak, Wilkinson, &
Wilson, 2007), and subthreshold summation between
different RFs (Bell & Badcock, 2009) all support the
presence of higher level channels each tuned to a
different shape in the range RF2–RF6. These channels
can be accommodated using a population code of V4
units sinusoidally weighted and pooled at a higher
cortical level, perhaps TEO or the human lateral
occipital complex (Bell, Wilkinson, Wilson, Loffler, &
Badcock, 2009; Wilson & Wilkinson, 2014).

Recent research suggests that the model in Figure 3
must be modified in order to accurately describe RF
analysis by the visual system (Kempgens, Loffler, &
Orbach, 2013; Schmidtmann, Gordon, Bennett, &
Loffler, 2013). Using a 2D array of oriented Gabors,
the Schmidtmann et al. (2013) study showed that
thresholds for circles up to about RF4 or RF5 were
defined by a constant number of signal elements so long
as all signal elements were confined to a single radius or
annulus. Further experiments showed that neither a
large area Glass pattern detector like Figure 3 nor an
association field model (Field, Hayes, & Hess, 1993) of
local V1 interactions could explain the data. Rather,
there must be multiple versions of the model in Figure
3, each constrained to pool over a narrow annulus. This
advance in understanding the neural representation of
RF patterns can easily be incorporated in the model by
restricting the radial extent of the putative V2 receptive
field to a range about equal to that of the V1 receptive
fields that it pools, and incorporating multiple V4 units
to sum V2 responses over different radii. See Loffler
(2015) for further details. In addition to this, Kempgens
et al. (2013) provided clear evidence that RF patterns of
relatively large amplitude require both convex and
concave curvature detectors for their representation.
The model they presented to explain their data
incorporated both convex and concave detectors based

on modifications of the Poirier and Wilson (2006)
curvature detectors.

Discussion

The ventral pathway incorporates increasing recep-
tive field diameter from area to area in a manner
consistent with nearest neighbor pooling from the input
area. This enables the system to grow from local
orientation in V1 to curvature in V2 and closed curved
shapes in V4. In addition, larger receptive fields permit
spatial subsampling from area to area. However, the
combination of larger receptive fields and subsampling
alone imply that the number of neurons should be
constant from area to area in the ventral pathway. This
follows from the observation that subsampling by a
given factor 1/N2 in space means that N2 more neurons
are required to encode the plethora of more complex
features that are encoded via nearest neighbor pooling.
The evidence that cortical neuron density decreases
about six fold moving from V1 to TE (Cahalane et al.,
2012) indicates that the dimensionality of shape
representation must itself decrease from area to area.
Recent calculations of the dimensionality of object
representations in macaque TE versus the dimension-
ality of the input patterns themselves directly support
the dimensionality reduction conclusion (Lehky et al.,
2014).

Dimensionality reduction implies projection of the
incoming information into a lower dimensional sub-
space, and we suggest two plausible ways in which this
appears to be implemented in the ventral pathway.
First, many areas of typical visual scenes are treated as
textures, and there is psychophysical evidence that
textures are represented by a small number of statistical
properties, such as mean luminance, mean contrast,
orientation distribution, etc. (Landy, 2014). This
texture description represents an enormous dimen-
sionality reduction compared to detailed representation
of the precise location and orientation of each texture
element. Indeed, the recent evidence that Glass pattern
textures are encoded by mechanisms distinct from the
more precise RF pattern mechanisms supports this
distinction (Schmidtmann et al., 2013).

Thus far, dimensionality reduction via statistical
representation of textures has been supported primarily
by psychophysical evidence, so it is obviously desirable
to obtain neurophysiological corroboration and eluci-
dation of this. As a proposed step in this direction,
macaques could be trained to make the same texture
discriminations as humans. A study of fMRI could
then be used to determine which areas are most
effective for this discrimination, and this could be used
to guide single unit electrophysiological recordings in
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alert macaques. The prediction is that there would be a
small number of cell types extracting texture properties.
This approach to texture neurophysiology is analogous
to the study of monkey face patches by Tsao et al.
(2006).

Second, biologically important shapes are not
random but rather show significant correlations among
their parts. Principal component analysis (PCA) is one
plausible way in which the correlation structure of
objects can be used for dimensionality reduction, and
there is now evidence that at least a few principal
components are automatically learned when studying
new faces (Gao & Wilson, 2014). Independent com-
ponent analysis (ICA) can provide similar dimension-
ality reduction benefits (Bartlett, Movellan, &
Sejnowski, 2002; Draper, Back, Bartlett, & Beveridge,
2003). It remains for future research to determine
whether dimensionality reduction via statistical repre-
sentation of textures and PCA or ICA representation of
object correlations by themselves suffice to generate the
dimensionality reduction that is implied by neuron
density reductions. However, biologically based models
of visual pattern recognition have shown that sub-
sampling and dimensionality reduction of this sort can
be quite powerful (Osadchy, LeCun, & Miller, 2007).

It was mentioned at the beginning that V1 contains
an overcomplete representation relative to the retinal
input. Thus, it is natural to question whether this
representation might aid the dimensionality reduction
process in higher areas. It is known that different
subsets of V1 neurons process motion direction,
contour orientation, and disparity, and each of these
projects in parallel to different higher level areas (e.g.,
MT for motion, V4 for orientation and color, etc.).
Thus, we conjecture that dimensionality reduction can
be most effectively accomplished in different ways for
different visual attributes. Obviously, further theoret-
ical and experimental work is required.

One major element missing from this ventral
pathway scenario is any role for the ubiquitous
feedback connections among areas (VanEssen et al.,
1992). One possibility is that low spatial frequency
information moves rapidly up the ventral pathway to
generate a neural ‘‘hypothesis’’ about the object
category: face, quadruped, house, etc. This information
would then be fed back to lower areas to enhance more
detailed processing (Bar, 2007; Bar et al., 2006). The
same circuity could also be used in top-down selective
attention.

A second missing ingredient is a role for the
‘‘skipping connections’’ that bypass an area to connect
with the next higher one (Nakamura et al., 1993). This
would speed processing while leading to diminished
precision. One untested conjecture is that it might be
low frequency information that is rapidly and crudely
conveyed by skipping connections, which is consistent

with ideas of Bar and colleagues above. Indeed, based
on the Nyquist theorem, vastly fewer spatial samples
are required to represent very low spatial frequency
information, so skipping connections may result in part
from fewer processing demands at low spatial fre-
quencies.

Finally, it should be emphasized that most of the
data discussed here relate primarily to foveal vision. As
roughly the central 5.08 of the visual field occupies
about 50% of striate cortex, a focus on central vision
certainly seems appropriate. However, one can ask
whether the same principles operate to reduce dimen-
sionality in the periphery. Although much further work
is needed, it is reasonable to conjecture that the cortical
representation of peripheral vision is even more heavily
focused on representation of regions by texture
statistics. Furthermore, perhaps projection onto very
few principal components, a number just sufficient for
basic categorization, may operate in the peripheral
representation in cortex. These possibilities await
elucidation by future research.

Here we have primarily dealt with the curved
structure inherent in radial frequency patterns, which is
clearly related to V4 physiology (Pasupathy & Connor,
2001, 2002). Quite obviously, many visual shapes
include angular structure, such as most buildings,
jagged rocks, most chairs and tables, etc. A beginning
has been made with the recent introduction of angular
frequency patterns, which are the angular analog of RF
patterns (Wilson & Propp, in press). Much additional
research is clearly required on such angular patterns
and on patterns combining angles with curves. A
promising fMRI approach to this has shown that
responses in intermediate and higher ventral pathway
areas are highly correlated with the angled and curved
structure of the objects themselves (see Andrews,
Watson, Rice, & Hartley, 2015). We believe that the
observations and models for curved shapes presented
here will inform and illuminate these future studies.

Keywords: ventral pathway, V4, form perception
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