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Observers are able to extract summary statistics from
groups of faces, such as their mean emotion or identity.
This can be done for faces presented simultaneously and
also from sequences of faces presented at a fixed
location. Equivalent noise analysis, which estimates an
observer’s internal noise (the uncertainty in judging a
single element) and effective sample size (ESS; the
effective number of elements being used to judge the
average), reveals what limits an observer’s averaging
performance. It has recently been shown that observers
have lower ESSs and higher internal noise for judging the
mean gaze direction of a group of spatially distributed
faces compared to the mean head direction of the same
faces. In this study, we use the equivalent noise
technique to compare limits on these two cues to social
attention under two presentation conditions: spatially
distributed and sequentially presented. We find that the
differences in ESS are replicated in spatial arrays but
disappear when both cue types are averaged over time,
suggesting that limited peripheral gaze perception
prevents accurate averaging performance. Correlation
analysis across participants revealed generic limits for
internal noise that may act across stimulus and
presentation types, but no clear shared limits for ESS.
This result supports the idea of some shared neural
mechanisms b in early stages of visual processing.

Introduction

Observers’ ability to extract summary statistics
from groups of objects is well established. The
perceived mean of low-level properties such as
orientation (Dakin, 2001; Dakin & Watt, 1997;

Solomon, 2010), size (Ariely, 2001; Chong & Treis-
man, 2005b) and motion (Dakin, Mareschal, & Bex,
2005) can be reliably estimated from groups (ensemble
stimuli). Recently it has been demonstrated that these
summary statistics can be estimated over complex,
‘‘higher level’’ properties such as facial emotion,
identity, and gaze direction (Florey, Clifford, Dakin,
& Mareschal, 2016; Haberman & Whitney, 2009;
Sweeny & Whitney, 2014). Although most research
has focused on averaging across spatially distributed
arrays of items, observers can also average over
temporal sequences (Albrecht, Scholl, & Chun, 2012;
Gorea, Belkoura, & Solomon, 2014; Haberman, Harp,
& Whitney, 2009; Piazza, Sweeny, Wessel, Silver, &
Whitney, 2013). We have previously shown that
observers’ averaging of gaze direction over space is
limited compared to averaging of head direction
(Florey et al., 2016). This sets an important limit on
our ability to process crowds of faces, because it has
been shown that humans are more sensitive to the
direction of attention of a group of faces than they are
to an individual face (Gallup et al., 2012). The
question remains, however, whether there is a differ-
ence in how well people average information in
different domains. Specifically, are the limits on
averaging stimuli over space the same as those for
averaging in time (e.g., when stimuli are presented
sequentially), and does this depend on the type of
stimulus used?

Perceptual averaging

Although observers are able to estimate average
properties from ensembles, they do not behave as
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though they are using all of the elements available.
Dakin (2001) have demonstrated that when averaging
the orientation of ensembles of Gabor patches,
participants performed as if they were using only a
subset of the total items in the array.1 Similar results
have been found for averaging of other low-level
properties such as motion (Dakin et al., 2005) and size
(Solomon, Morgan, & Chubb, 2011). Recently, Man-
ning, Dakin, Tibber, and Pellicano (2014) found that
when asked to determine the direction of motion of an
array of 100 moving dots, children sometimes perform
as if they are basing their judgment on only a single
sample (dot).

This same subsampling effect has been found for face
stimuli (Florey et al., 2016). When briefly presented
with arrays of either faces with different gaze deviations
or heads rotated in different directions, observers were
able to judge the average of the set, although their
estimate was based on their (effective) use of a subset of
items. They were particularly limited when averaging
the direction of gaze from a group, in some cases
effectively basing their responses on a single face. We
created classification images by correlating observers’
responses with the distribution of locations and gaze or
head offsets presented, which maps the stimulus
locations that contributed to observers’ judgements.
This revealed that participants were biased toward
using elements in the center of the array, an effect that
was more pronounced for gaze direction than head
direction.

There is conflicting evidence about the extent to
which face-averaging tasks can be achieved in the
periphery. Peripheral vision is limited by both reduced
spatial resolution (Duncan & Boynton, 2003; Rova-
mo, Virsu, Laurinen, & Hyvärinen, 1982) and
crowding, where elements presented in the visual
periphery cannot be distinguished individually but
rather appear cluttered (Parkes, Lund, Angelucci,
Solomon, & Morgan, 2001). These limitations should
increase the noise with which peripheral elements are
processed, as has recently been shown for gaze
direction in the periphery (Florey, Dakin, Clifford, &
Mareschal, 2015; Loomis, Kelly, Pusch, Bailenson, &
Beall, 2008; Palanica & Itier, 2015). This likely
explains the limited contribution of elements falling
near the edge of displays in a previous gaze-averaging
study (Florey et al., 2016). Other studies however,
report good averaging of facial properties when faces
are presented in spatial arrays with elements falling in
the periphery (e.g., Haberman & Whitney, 2009: some
elements .108 peripheral; Sweeny & Whitney, 2014: 38
peripheral); and Wolfe, Kosovicheva, Leib, Wood,
and Whitney (2015) recently found that face expres-
sion was averaged equally well when faces around
fixation were removed as when central faces were
present.

Spatial limits

In tasks that are less limited by peripheral resolution
than gaze perception, spatial integration still suffers
from subsampling, suggesting that there are other limits
on spatial integration. One possible limit is the spread
of an observer’s attention. Chong and Treisman
(2005a) found that a dual task that encouraged a
spread of attention improved participants’ size aver-
aging. Although this seems to suggest that a wider
spread of attention improves performance on an
averaging task, increasing the duration of the stimulus
presentation does not. In another study, Chong and
Treisman (2003) also found that reducing exposure
duration from 1000 ms to 50 ms had little impact on
size averaging. Sweeny and Whitney (2014) found that
reducing the presentation time of a set of four gaze-
direction stimuli from 1000 ms to 200 ms appeared to
actually increase the number of elements being inte-
grated. It seems, then, that there are global limits on
integration within spatial ensembles (e.g., distribution
of spatial attention and presentation time) that are
distinct from limits on the processing of the individual
elements within spatially distributed arrays (e.g.,
limited peripheral perception).

Earlier averaging studies indicate that peripheral
presentation consistently leads to elevation of internal
noise and does not affect sampling. For example, there
is no net effect of overall region size (for fixed-size
elements) on either orientation averaging (Dakin, 2001)
or motion averaging (Dakin et al., 2005), even when
large stimuli push elements far into the periphery. More
directed psychophysics and modeling indicate that
motion processing is limited by local noise in the
periphery (Mareschal, Bex, & Dakin, 2008). More
generally, peripheral vision is limited by crowding
(Levi, 2008, review)—not, for example, acuity—and
this includes processing of faces (Martelli, Majaj, &
Pelli, 2005). It is known that crowding of orientation
averaging only elevates internal or local noise, while
attentional diversion only reduces sampling (Dakin,
Bex, Cass, & Watt, 2009). Thus, there is a consistent
and considerable body of evidence indicating that
visual averaging of peripheral stimuli (whether crowded
or uncrowded) is limited by internal noise but operates
with similar sampling efficiency.

Temporal limits

Similarly, averaging of visual cues over time is not
perfectly efficient. Gorea et al. (2014) report that when
judging the average size of a temporal sequence of
circles, participants performed as if they were using up
to four out of eight elements. In most sequential
averaging tasks, stimuli appear at fixation (e.g.,
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Albrecht et al., 2012; Corbett & Oriet, 2011; Haber-
man et al., 2009; Leib et al., 2014; though Haberman
et al. do include a sequential task with peripheral
stimuli), reducing the limiting effects of either the
perception of any one element in the array (e.g., due to
eccentricity) or the spatial distribution of attention.
However, there are unique factors that influence
sequential averaging, notably biases toward favoring
particular temporal positions within the sequence.
Researchers have used regression analysis to show
that observers are biased by primacy (increasing the
weighting of items appearing early in the sequence)
and recency (increasing the weighting of later items;
Gorea et al., 2014; Hubert-Wallander & Boynton,
2015). Hubert-Wallander and Boynton (2015) exam-
ined these effects using different types of stimuli and
found stimulus-specific differences in the bias, with
face expression and size averaging producing recency
effects but position averaging producing primacy
effects.

There is some debate as to the reason for these
biases. Primacy could result from serial dependencies, a
perceptual effect where each element in a sequence is
biased to appear more like the item preceding it
(Fischer &Whitney, 2014). If each element is influenced
by the previous one in the set, responses will be biased
toward the early elements, leading to a primacy effect.
Alternatively, primacy may result from observers
adopting a strategy of ignoring later samples, poten-
tially because they have a limited capacity for
integration. An efficient strategy would be to stop
adding more information to the average computation
when the resource cost of including it outweighs the
potential improvement in accuracy; such behavior has
been observed in both human and nonhuman primate
observers (Drugowitsch, Moreno-Bote, Churchland,
Shadlen, & Pouget, 2012).

One possible explanation for recency is a limit of
attention or memory resources, resulting in early
information being ignored or forgotten. Another is
adaptive gain control (Cheadle et al., 2014), where
elements that are consistent with the expected mean of
the sequence thus far are upweighted and those that are
inconsistent are downweighted. This type of strategy
has been shown to produce recency in both simulated
and human data.

Mechanism of averaging

How is averaging performed? The neural mechanism
is not well defined. It is clear that we can perform less-
than-perfect averaging, but beyond that our under-
standing is limited. Allen, Hess, Mansouri, and Dakin
(2003) have shown that orientation averaging does not
automatically pool estimates from luminance and

contrast-defined elements, suggesting distinct averaging
mechanisms for both. Haberman, Brady, and Alvarez
(2015) provided evidence against a single generic
mechanism for averaging of any type of stimulus. In
their study, individuals’ performance on low-level
averaging tasks (size, color, orientation) did not
correlate with their performance on averaging high-
level face stimuli. However, they do report correlations
within groups of similar stimulus type (high/low),
suggesting some commonality within stimulus type.
Contrasting evidence for domain-agnostic averaging
comes from Florey et al. (2016), who found that
observers were equally good at integrating information
within a stimulus group (faces) as between stimulus
groups (faces and 3-D cones). Whether the same
mechanisms are employed in spatial and temporal
averaging is less well understood. There are necessarily
differences in early visual processing for these two types
of stimuli, but it seems plausible that the higher level
mechanism that integrates multiple elements into a
single summary statistic may operate across stimulus
types.

Noise paradigms

One method for examining performance on aver-
aging tasks is using an equivalent noise (EQN)
procedure that estimates two limits on observers’
performance: internal noise and effective sample size.
This is based on the assumption that when observers
average, they first estimate the feature of interest for
individual items in the set (e.g., the orientation of each
Gabor in an array) before averaging a sample of these
estimates. Internal noise refers to the observers’
uncertainty about a single feature. Effective sample
size tells us how many samples an ideal observer
would need to average (given the internal noise on
each sample) to achieve the observer’s level of
performance. For a stimulus containing n elements, a
perfect observer would have no internal noise and an
effective sample size of n, perfectly averaging the
features of all the items into an accurate representa-
tion of the mean. In reality, observers display some
amount of uncertainty associated with processing of
individual items and their averaging strategy effec-
tively subsamples the pattern. Observers behave as
though they are using only a subset of the ensemble to
estimate its average. To estimate internal noise and
effective sample size, EQN experiments measure
observers’ averaging in the presence of different levels
of variability of the feature of interest. When the
variance is low (e.g., Gabors with similar orientation),
performance is limited by the internal noise; if
observers accurately perceive the orientation of one
element, they will give a correct response. When
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variance is high (e.g., Gabors with widely differing
orientations), the precision of any one estimate
becomes less important, because the variance in the
feature will swamp the influence of internal noise on
individual elements. In this situation, the number of
elements averaged will determine the precision of the
observer’s response. Modeling performance as vari-
ance in the stimulus, using an ideal observer, allows
recovery of both internal noise and effective sample
size.

Using the EQN method, previous research into
spatial averaging has found that observers effectively
use only

ffiffiffi

n
p

elements for orientation averaging (Dakin,
2001), or even fewer in the case of children averaging
motion direction (Manning et al., 2014) or adults
averaging gaze and head direction (Florey et al., 2016).
Similarly, Gorea et al. (2014) found that observers
sample only a subset of elements from a set of circles in
a sequential size-averaging task.

Solomon and colleagues have employed a model
related to EQN for integration of orientation and size
stimuli (Gorea et al., 2014; Solomon, 2010; Solomon
et al., 2011). The key difference in their ‘‘Noisy,
inefficient but otherwise ideal observer’’ model of cue
integration is that they separate the internal-noise
term into two separate sources of noise: one that acts
before the entire summary is integrated, either on
individual stimuli or on ‘‘local pools’’ of subsets of
stimuli (early noise), and one that acts at the level of
the ensemble code, before a decision is made. The
EQN analysis used in this study makes no assump-
tions about the source of internal noise; internal noise
could be the result of uncertainty in processing the
low-level properties of the face stimuli (e.g., in area
V1) or at a higher level where gaze- or head-direction
processing occurs (reportedly areas in STS; Calder et
al., 2007; Perrett et al., 1985).

The current study

We have previously suggested that head direction
may be a useful cue in acquiring a gist percept of a
group of faces (a crowd), and that a serial average of
the gaze direction of individuals may provide a more
precise, albeit slower, average. Here we measure
observers’ ability to average head direction and gaze
direction both in temporal sequences and across spatial
arrays, using EQN analysis. The presentation duration
and size of the spatial and temporal arrays are matched
to allow a comparison with an equal amount of
processing time available for each. This means that
observers can make multiple saccades in the spatial
condition, creating more naturalistic viewing condi-
tions for crowd perception (Florey et al., 2016). Under
both of these spatial and temporal conditions, we

would expect that gaze-direction averaging should be
similar to head-direction averaging, because the ob-
servers will be able to fixate the faces separately,
eliminating the limits on peripheral processing of gaze
direction. Alternatively, observers may not employ an
efficient saccade pattern when presented with spatial
arrays of gaze stimuli (i.e., they do not saccade to a new
face each time or saccade between faces without
processing each foveally), and as a result, they may not
improve relative to brief presentations (e.g., 300 ms
used by Florey et al., 2016).

We compare performance across two types of
presentation condition (in space and in time) to
determine if individuals who are good averagers (i.e.,
have low internal noise and high effective sample sizes)
in one domain are also good in the other domain. We
use a correlation analysis to examine how each EQN
parameter correlates across stimulus type and presen-
tation condition.

If averaging gaze direction and head direction share
a source of local noise—for example, neural noise in
primary visual cortex (area V1)—this would be
reflected in a correlation in the internal noise between
the two presentation conditions for each stimulus type
(e.g., Figure 1a). Similarly, if there is a shared source
of noise between processing spatial arrays and
sequences of faces, then observers’ internal noise
should correlate between presentation conditions for
each stimulus type (e.g., Figure 1c). Alternatively, if
there are independent sources of noise which affect
only one presentation condition, such as limited
peripheral perception of eccentric faces in the spatial
arrays, then we would not expect presentation
conditions to correlate.

These same correlations can be carried out on the
results for effective sample size to see if there are shared
global limits for the stimulus types. For example, if
effective sample size correlated between head and gaze
cues for temporal sequences (e.g., Figure 1b), this
would suggest that there exists a shared limit on the
number of elements that can be integrated over time,
perhaps due to constraints on short-term memory. If
effective sample size correlates between presentation
conditions (e.g., Figure 1d), this would suggest a
generic global integration limit set by the individual
rather than the stimulus properties.

Methods

Participants

Ten observers (seven women, three men) partici-
pated in the experiment, including one author (JF).
All observers had normal or corrected-to-normal
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vision and gave informed consent according to the
Declaration of Helsinki. All methods were approved
by the ethics board at Queen Mary University of
London.

EQN method

The two EQN parameters are estimated by measur-
ing observer noise (specifically, observers’ uncertainty
on their estimate of the mean) as a function of changing
external noise. The relationship between these data is
described in Equation 1; observer noise is the sum of
the internal and external sources of noise, divided by
the number of samples used:

r2
obs ¼

r2
int þ r2

ext

nsamp
; ð1Þ

where robs is the observer’s discrimination threshold,
rint the internal noise, rext the added external noise, and
nsamp the effective number of samples used to estimate
the mean.

In our experiment we quantified observer noise by
estimating observers’ threshold for discriminating
whether a group of faces is looking on average to the
left or right of direct. Thresholds were determined
using a method of constant stimuli. Observers are
presented with ensembles whose mean offset is either
to the left or right of direct gaze and are required to
indicate (reporting ‘‘left’’ or ‘‘right’’) the mean
direction of gaze (or head direction) of the ensemble.

By measuring performance repeatedly for a fixed
number of offsets, we can fit a psychometric function
to each observer’s performance (proportion of trials
identified as rightward) and estimate each observer’s
discrimination threshold for different levels of exter-
nal noise. The standard deviation of the normal
distribution from which the gaze head direction of
each face is drawn corresponds to the external noise.
At low external-noise levels (narrow standard devia-
tion), the faces will all be looking in approximately the
same direction, so observers are limited by how well
they can estimate the direction of any individual face
(internal noise). When the external noise is high the
faces will be looking in dissimilar directions and the
external noise will exceed the internal noise, so
observers will now be limited by the number of
samples they are able to average (Figure 2a). By
measuring discrimination thresholds at a range of
external-noise levels, we are able to fit a function to
the data using Equation 1 to obtain estimates for each
observer’s internal noise and effective sample size, for
each stimulus type and presentation condition (e.g.,
Figure 3).

Stimuli

Sets of eight gaze or head directions were generated
for the spatial and sequential averaging conditions. The
individual gaze-direction stimuli were generated by first
randomly choosing a facial identity from a set of four

Figure 1. Hypothetical results to illustrate what different correlations reveal about shared limits. (A) If there are correlations

between the internal-noise estimates for the two presentation conditions, this indicates a shared local limit on averaging. (B) As in

(A) but for a shared global limit. (C–D) As for (A–B) but for limits shared between stimulus types rather than presentation

conditions.
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synthetic faces (two female, two male) created using
FaceGen software (Singular Inversions, Toronto, CA).
The eyes were replaced with grayscale eye stimuli
created in MATLAB (MathWorks, Natick, MA) to
allow for precise manipulation of gaze offset. To create
the individual head-direction stimuli, the same four
synthetic faces were loaded into Poser (Smith Micro,
Aliso Viejo, CA), a 3-D model-manipulation tool, and
dark glasses were added to remove any cues from the
gaze direction (Figure 2). Using Poser, we exported
1,800 frames of an animation of each head rotating
between 908 leftward and 908 rightward, producing
stimuli with steps of 0.18 of head direction. All faces
were then scaled so that they would subtend 48 3 48 of
visual angle during the experiment.

Individual face stimuli were combined to form
spatial and sequential ensembles. For both the gaze-
and head-direction stimuli, the offset of each face was
drawn from a normal distribution. The mean of this
distribution was determined by the offset value from
the method of constant stimuli for the given trial, and

Figure 2. Examples of the stimuli presented in the four conditions. (A) Two normal distributions from which the direction of each

gaze- or head-direction stimulus could be drawn. Below are examples of corresponding head- and gaze-direction stimuli that would

be generated from these distributions, one with low external noise (all faces looking in the same direction) and one with high

external noise (all faces looking in different directions). (B) A schematic depiction of a sequential head direction. Faces are presented

in a sequence with 200-ms blank intervals between, followed by a noise mask and then a 3-D pointer to indicate the average

direction.

Figure 3. (A) The proportion of times the participant responded

‘‘rightward’’ to a given mean offset is plotted (blue circles)

against the mean offset of the ensemble. A cumulative Gaussian

function is fitted to these data (black line); its slope is the

observer’s discrimination threshold (which quantifies uncer-

tainty about the ensemble mean). (B) An EQN plot. The

thresholds (x) are plotted against the corresponding external-

noise level. The black line is the fit from the model described in

the text. The inset shows estimated internal noise (/sigma) and

effective sample size (N).
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the standard deviation was determined by the external-
noise level being tested. In the spatial condition, faces
were presented simultaneously with each face randomly
positioned within a 12.58 radius from the center of the
screen, such that no faces were overlapping (e.g., Figure
2a). For the sequential stimuli, faces were presented
serially for 200 ms each, separated by 200 ms of a gray
screen (e.g., Figure 2b). A small jitter (randomly chosen
up to 18 in all directions) was applied to the position of
each face in the sequence to avoid any apparent motion
effects. A lighter background gray color was used for
the head-direction stimuli, so that the edges of the faces
were clearly defined.

Stimuli were presented on an Electron Blue CRT
monitor (screen size: 30 3 40 cm) with a spatial
resolution of 1,600 3 1,200 pixels operating at a frame
rate of 85 Hz.

Procedure

Four sets of EQN parameter pairs were obtained
for each of the four combinations of stimulus type and
presentation condition (Spatial Gaze, Spatial Head,
Sequential Gaze, and Sequential Head). For each
EQN function, thresholds were obtained at six levels
of external noise. The standard deviations of the
normal distributions were 0.58, 28, 48, 88, 168, and 248
degrees for gaze direction and 0.58, 28, 48, 88, 168, and
328 for head direction. We set the highest noise level
for the gaze-direction stimuli to 248, to avoid
generating stimuli that exceeded the physical limits of
human gaze (i.e., gaze offsets .608). Two blocks of 80
trials were collected for each external-noise level.
Blocks included 10 repeats of the eight mean offsets in
a random order, producing a total of 160 trials. The
mean offset values presented within any block
depended on the external-noise level of the block (to
ensure even sampling of the psychometric function
across conditions). For the gaze stimuli, noise levels
below 58 standard deviation used offsets of�158,�68,
�38,�18, 18, 38, 68, and 158 from zero; and those above
58 used offsets of�208,�108,�58,�18, 18, 58, 108, and
208. For the head stimuli, three offset ranges were
used: below 58 standard deviation:�68,�28,�18,�0.58,
0.58, 18, 28, and 68; for 88 standard deviation: �158,
�68, �38, �18, 18, 38, 68, and 158; and for standard
deviations above 88: �308, �108, �58, �18, 18, 58, 108,
and 308. Blocks for a single condition were collected in
approximately hour-long sessions with a randomized
order of external-noise levels.

Experimental control and stimulus presentation were
controlled in MATLAB using Psychtoolbox (Brainard,
1997). In the spatial blocks the eight faces were
presented simultaneously for 1600 ms. In the sequential
blocks each face was presented for 200 ms separated by

200 ms of a blank screen followed by a 1000-ms noise
mask. In both presentation conditions, the stimulus
was followed by a 3-D response pointer which could be
rotated with the mouse. The pointer consisted of a 3-D
sphere with a red-and-white target drawn on the center.
Moving the mouse rotated the sphere about its vertical
axis to point in the direction the mouse was moved
toward. The perceived gaze direction was taken as the
orientation offset of this sphere when the observer
clicked. The observer rotated the pointer and clicked to
indicate when it was pointing in the mean gaze or head
direction of the set of faces. No feedback was given,
and the next trial commenced 200 ms following the
response.

Threshold and EQN fitting

Observers’ responses were converted to 1 (positive)
or �1 (negative) to indicate an overall leftward or
rightward response, respectively. Data from two
separate runs for each participant were combined,
giving 20 repeats at eight different offset levels. A
cumulative Gaussian function was fitted to the
proportion of times the participant responded right-
ward for each mean offset direction (Figure 3a) using a
maximum-likelihood method. The standard deviation
of this cumulative Gaussian function was taken as the
discrimination threshold for the participant at a set
level of external noise.

Discrimination thresholds quantify observer noise
and (for a single participant and single stimulus/
presentation combination) are plotted against the
external-noise levels (Figure 3b). The EQN function
(Equation 1) was then fitted to these threshold values
(solid line, Figure 3b), yielding estimates of internal
noise and effective sample size.

Results

The results for the EQN analysis are summarized in
Figure 4a. A 2 3 2 (gaze/head, spatial/sequential)
repeated-measures ANOVA was conducted for each of
the two EQN parameters (internal noise and sampling
efficiency). For internal noise, there was a main effect
of stimulus type, F(1, 9) ¼ 22.1, p¼ 0.001. Pairwise
comparisons revealed that gaze-direction averaging was
associated with significantly more internal noise than
head-direction averaging (p¼ 0.001). There was no
main effect of presentation condition, F(1, 9)¼1.49, p¼
0.25, nor a significant interaction, F(1, 9) ¼ 2.19, p¼
0.17. The ANOVA for effective sample size revealed no
significant main effect for stimulus type, F(1, 9)¼0.588,
p¼ 0.46, or presentation condition, F(1, 9) ¼ 2.58, p ¼
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0.12. There was, however, a significant interaction, F(1,
9)¼ 20.4, p¼ 0.001. Paired-sample t tests show that for
the spatial presentation, gaze direction was associated
with a significantly lower effective sample size (M¼2.5)
than for head direction (M¼ 3.8), t(9)¼ 2.9, p¼ 0.018.
For the sequential presentation, there was no signifi-
cant difference between the two stimulus types, t(9)¼
1.6, p¼ 0.138.

Taken together, these results show that observers are
more uncertain about the direction of individual
elements in gaze stimuli compared to head stimuli of
the same size and presentation duration. The results for
effective sample size suggest that observers can use
fewer elements to average groups of spatially distrib-
uted gaze-direction stimuli than each of the other three
combinations.

Figure 4. (A–B) Two plots showing the mean EQN parameters (internal noise and effective sample size) for the two stimulus types (x-

axis) for each of the presentation conditions (red and blue lines). Error bars show 61 standard error of the mean. (C–D) Scatterplots

for the relationship between the two presentation conditions for each stimulus type (yellow¼ gaze, purple¼ head). Data from each

individual are represented by the individual points, and a best-fit correlation line is drawn through the data. Figure legend shows

the correlation coefficient r and significance p of the correlation. (E–F) As in (C–D) but for the relationship between the two stimulus

types for each presentation condition.
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Pearson’s product–moment correlation analyses
were performed for each EQN parameter, for the two
stimulus types and the two presentation conditions
(Figure 4C–F). For internal noise, a significant positive
correlation (r¼ 0.82, p¼ 0.003) was found between the
two presentation conditions for gaze stimuli but not for
head direction. Across both presentation conditions, a
significant positive correlation was found between the
two stimulus types (spatial: r¼ 0.73, p¼ 0.003;
sequential: r ¼ 0.88, p ¼ 0.003). For effective sample
size, no significant correlations were found, though
there was a borderline significant (p ¼ 0.067) relation-
ship between the two stimulus types in the sequential
condition.

These results suggest that observers who have high
internal noise for gaze stimuli will also have high
internal noise for head stimuli for either presentation
condition. Similarly, observers who have high internal
noise for spatially distributed gaze stimuli also have
high internal noise for sequentially presented gaze
stimuli. The borderline significant correlation may
suggest that observers who have high effective sample
size for gaze will also have high effective sample size
for heads, but only when both are presented sequen-
tially.

Discussion

Using an EQN procedure we have compared
averaging of head and gaze direction, for stimuli
matched in size and presentation duration over both
space and time. From these data, we estimated
observers’ internal noise (their uncertainty in esti-
mating the direction of a single face from the array)
and effective sample size (the number of samples they
are able to effectively average) for ensembles of eight
face stimuli. We report that head direction is averaged
with a greater effective sample size than gaze direction
in the spatial condition but not in the sequential
condition. In both presentation conditions, gaze-
direction judgements were associated with more
internal noise than head direction. Correlation anal-
ysis revealed a relationship between observers’ inter-
nal noise for the two stimulus types, and between the
two presentation conditions for gaze stimuli. A
possible relationship was also found between the
effective sample sizes of the two stimulus types when
sequentially presented, though this was only border-
line significant.

The results for the internal-noise estimates are
consistent with our previous results for gaze-direction
averaging (Florey et al., 2016). This difference cannot
be attributed to the peripheral presentation of the faces,
since we report similar results using both spatial and

sequential presentations, with the latter presenting all
faces at the fovea. Although previous results have
suggested similar precision in estimating gaze and head
direction (Loomis et al., 2008), we find that for an
averaging task, head-direction elements are processed
with less uncertainty. This may be because attention is
necessarily spread over either space or time, and gaze
direction requires more focused attention to process
with a high level of precision. Consistent with our
previous findings, this suggests that in judging the
direction of a crowd’s attention, head direction is used
for rapidly summarizing the direction of attention, and
gaze can then be used to judge the interest of any
individual within the crowd.

It is somewhat surprising that there was a signifi-
cant difference in effective sample size between the
two stimulus types for the spatial presentation.
Although we had previously found this difference for
briefly presented stimuli (300 ms), we expected that
difference to disappear (or be largely reduced) here.
This is because (a) observers would be able to make
multiple saccades in the 1.6 s that the stimuli were
presented for and (b) the stimuli were now larger, so
that the limitations on peripherally processing gaze
stimuli would be reduced. A possible explanation for
our result is that observers may not accurately make
saccades across the groups of faces (e.g., rather than
foveate a single face, they saccade between two faces).
This would mean that their average would still be
limited by the fact that some faces fall in their
periphery and so are not used in the average
computation. As mentioned earlier, pervious research
has shown that perceptual limitations as a result of
eccentricity (acuity and crowding) have only affected
internal noise and not sampling efficiency; however, it
may be that the severity of the reduction of gaze
perception in the periphery does cause the observed
reduction in sampling. This difference between the two
types of cue (head/gaze) is not present in the
sequential presentation condition, suggesting that this
is due not to the specific stimulus per se (i.e., that
observers are poor at integrating gaze-direction
signals) but rather to the spatial distribution of the
elements in an array. This has important implications
for averaging research that compares different types of
stimuli, since the distribution of the elements as well as
their peripheral visibility must be carefully controlled
to avoid effects simply being the result of limited
peripheral processing.

It is important to note a few caveats to these results.
We report differences in effective sample size between
spatial and temporal stimuli for gaze cues but not for
head cues. Gorea et al. (2014) found that spatial and
temporal effective sample sizes were not different, so
our results for gaze direction are at odds with this
result. This is most likely due to the type of stimuli
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used. Both this study and a previous study investi-
gating gaze averaging (Florey et al., 2016) show that
averaging of gaze over space is very poor, and
although Sweeny and Whitney (2014) have found
evidence of better gaze averaging, this may be a result
of their use of stimuli that actually vary in head
direction rather than gaze offset. In the present study,
the presentation size and time were increased to try to
improve the peripheral perception of gaze, but this did
not produce the expected improvement in averaging
performance. Gaze cues must always be contained
within a surrounding face, so there will always be a
limit on how large peripherally presented gaze cues
can be, suggesting that gaze direction is not what
people use when rapidly judging the average direction
of a crowd’s attention.

Although our stimuli are matched in presentation
time and size, other possible factors may play a role in
averaging. For example, our stimuli were spatially
separated (maintaining a fixed density), but it is not
clear how to equate a spatial separation with a temporal
one, since a number of other factors will covary with
this. For example, changing the temporal density by
presenting more faces within a fixed time will decrease
processing time of any individual face and increase the
effects of backward masking (of one face on the
previous one).

The correlation results for internal noise provide an
interesting insight into what limits individuals in their
averaging performance. We find that internal noise is
highly correlated across the two types of stimuli when
they are presented in a similar manner. This suggests
that there is a source of noise that may be generic to
these two different stimulus types. This source of noise
most likely arises at an early level, potentially as a
result of a common mechanism. In the case of head and
gaze direction, both cues may at some stage be encoded
as some positional offset—for gaze, of the iris within
the sclera, and for heads, of the features (e.g., nose and
glasses) within the face. If this shared mechanism is
noisy, then this is a likely candidate for the shared
source of internal noise.

The pattern of correlations between presentation
conditions provides a less clear picture. Internal noise
for gaze stimuli correlates between the two conditions
but not for head direction. This result suggests that
processing of a single gaze direction is independent of
manner of presentation, but the same does not hold for
processing of head direction. The difference observed
for head direction could be explained by the fact that in
the spatial condition, observers are required to spread
their attention across multiple samples simultaneously,
which may come at some cost to the precision with
which each element is represented individually. The
result for gaze is inconsistent with this interpretation;
however, given the previously discussed limitations

associated with spatial gaze stimuli and the low
effective sample sizes observed here, it is possible that
observers do not attempt to spread their attention in
this condition and so do not suffer the costs to
precision that they do when processing the spatially
distributed heads.

The finding that effective sample size does not
correlate between the two stimulus types in the spatial
condition is potentially at odds with findings of
Haberman et al. (2015), who report that individuals’
averaging performance was correlated between two
different face-based tasks (face emotion and identity).
It may be that their correlation arose from a shared
source of internal noise as opposed to similar
sampling efficiency between tasks. Observers may
have the same limits on their sampling efficiency
between the two stimulus types, but because they are
also limited by their peripheral perception of gaze, this
correlation does not become apparent. The fact that
the two stimulus types were weakly significantly
correlated for sequential averaging but not for spatial
averaging provides some support for this interpreta-
tion.

Our finding that there is no relationship in sampling
efficiency between the two presentation conditions
suggests that there is no generic limit on the integration
of multiple samples independent of the way they are
presented. Most likely, independent limits—such as
spread of attention and sampling strategy in spatial
ensembles, and short-term memory and temporal
biases in sequential ensembles—have a greater influ-
ence on sampling efficiency (and performance) than
any generic limit imposed by a single averaging
mechanism.

Conclusions

In summary, we find that observers average head
direction equally well over space and time. Gaze
direction is also averaged well over time, though it is
associated with higher internal noise. Averaging gaze
over space was found to be severely limited compared
to all other conditions, likely due to limitations in
processing peripheral gaze stimuli. Gaze and head
averaging have been shown to share a source of internal
noise, likely occurring at the level of early visual
processing. Global limits on averaging computations
do not seem to be shared across presentation condi-
tions, though there is some tentative evidence to
suggest that there are shared global limits for temporal
averaging.

Clearly there are many limits that must be consid-
ered with averaging; here we address some of the issues
for simultaneously presented stimuli and suggest that
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care must be taken to ensure that any differences in
peripheral perception are controlled for, even when
using long presentation durations. In addition, when
considering individual differences in averaging ability,
it is important to consider whether performance is
being limited by internal noise or sampling efficiency,
as the two can vary independently.

Keywords: summary statistics, ensemble coding, gaze,
social cues, averaging, equivalent noise, crowd attention
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Footnote

1 Note that estimates of effective sampling are based
on noise paradigms which (a) quantify the effect of
adding uncertainty on the attribute of interest on
averaging and then (b) estimate the sample size that an
ideal averaging system would require to achieve such a
performance. While this sets a minimum sampling rate
(i.e., we can use it to say the observer is averaging at
least X samples), the exact number of samples may
depend on the (likely nonideal) averaging strategy
being used (so that other sources of noise may be
limiting performance). We are thus careful to refer to
effective sample size.
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