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Visualization as a stimulus domain for vision science
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University of British Columbia, Vancouver, Canada

Traditionally, vision science and information/data
visualization have interacted by using knowledge of
human vision to help design effective displays. It is
argued here, however, that this interaction can also go in
the opposite direction: the investigation of successful
visualizations can lead to the discovery of interesting
new issues and phenomena in visual perception. Various
studies are reviewed showing how this has been done
for two areas of visualization, namely, graphical
representations and interaction, which lend themselves
to work on visual processing and the control of visual
operations, respectively. The results of these studies
have provided new insights into aspects of vision such as
grouping, attentional selection and the sequencing of
visual operations. More generally yet, such results
support the view that the perception of visualizations
can be a useful domain for exploring the nature of visual
cognition, inspiring new kinds of questions as well as
casting new light on the limits to which information can
be conveyed visually.

Introduction

One of the more striking characteristics of modern
society is its ever-increasing use of data, in both the
number of sectors involved (e.g., health, industry,
environment) as well as the amount of information
used in each. To enable the resulting large datasets to
be efficiently analyzed, various approaches have been
developed. Among the more prominent is information
(or data) visualization,1 in which information is
displayed in a graphical format that can be interactively
controlled by a human analyst. The use of a
visualization system can enable an analyst to obtain a
quick overview of a dataset, examine individual items,
and discover whatever structure may exist (e.g., trends,
outliers, sudden changes). If the system is designed well,
the analysis of a large dataset can be rapid, accurate,
and precise. Such a system essentially amplifies the
intelligence of the user by “using vision to think,” that
is, remapping problems into a form that enables visual
intelligence to be brought to bear (Card, Mackinlay,
& Shneiderman, 1999). As such, there is considerable
potential for a productive interaction between

the study of visualization and the study of visual
perception.

In the past, this interaction generally took the form
of using knowledge of perception to help design
effective visualizations (e.g., MacEachren, 1995; Spence,
2014; Ware, 2012). However, another approach has
recently emerged that develops connections in the
opposite direction: using experiments on visualizations
to provide new insights into visual perception. This
article describes how this newer approach operates and
what it has accomplished to date, reviewing various
representative studies. The limitations of this approach
are also discussed, as well as possible directions for
future research.

Basics

Visualization

Visualization—in the broad sense considered
here—can be thought of as the transformation of a
dataset into graphical form, so as to best employ the
visual intelligence of a human analyst (cf. Card et al.,
1999). For example, the sales records for a company
over the course of a year could be displayed as a
numerical table or a line graph (Figure 1). Although
both representations display the same information, a
line graph enables the viewer to easily perceive things
such as sales trends and peak sales times. A table can,
of course, enable exact values to be displayed, but
using it to perceive structure in the data would usually
require much more time and effort, especially as the size
of the dataset grows. For many analytic tasks, then, a
representation like a line graph can be far more useful
than simple text, motivating the widespread use of
visualization in analysis.

Central to the process of visualization is a
visualization pipeline that maps the information in an
abstract dataset to a graphical representation on a spatial
medium of some kind, such as a computer display
(Card et al., 1999; Munzner, 2014; Spence, 2014). When
viewed, the graphical representation gives rise to a
visual representation in the analyst (user), which then
serves as the basis for further perceptual and cognitive
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Figure 1. Different representations of an example dataset. (a) Tabular form. (b) Line graph. In general, both trends and outliers are
more easily and quickly seen in line graphs.

processing. In an interactive system the user can control
what is displayed at any moment—for example., drill
down to a particular item in the dataset, zoom out to get
a global view of general trends, or filter out irrelevant
items to find patterns in the remainder. The effectiveness
of a given visualization system for a particular task,
therefore, depends on the extent to which these actions
enable the appropriate mechanisms—both human and
machine—to be brought to bear at the appropriate
time.

Connections from vision science

Historically, the most common way that vision
science interacted with visualization was by using
knowledge of perception to help with design (e.g., Few,
2013; MacEachren, 1995, Montello, 2002; Ware, 2008,
2012; Zacks & Franconeri, 2020). Issues here include the
choice of features such as color, contrast, or orientation
to best encode scalar values (e.g., temperature or
pressure), or to best separate classes of data (e.g.,
cats and dogs) that are presented simultaneously (e.g.,
Brewer, 1999; Roth, 2017; Ware, 2012). Studies also
examined the potential of processes such as texture
perception (Hagh-Shenas, Interrante, & Park, 2006)
and ensemble coding (Cui & Liu, 2021; Szafir, Haroz,
Gleicher, & Franconeri, 2016). Knowledge of peripheral
vision (e.g., the effects of crowding) has likewise been
used to help increase the amount of information that
could be picked up at any instant (Rosenholtz, 2011).

This approach has also been applied to higher level
perceptual and cognitive processes. One example is
the control of visual attention, which—if handled
properly—can help a viewer to focus on the right
information at the right time. A visualization system
that has been designed to work well with attentional
mechanisms could, for instance, use properties that
minimize the chance of attention being inadvertently
drawn away, use the grouping of items to reduce
perceived clutter, and use cueing to actively direct

attention (e.g., Healey & Enns, 2012; Rensink, 2011;
Rosenholtz, Li, & Nakano, 2007; Wickens & McCarley,
2008).

A somewhat different set of connections involves
the methodology for assessing how well a given
visualization works. A “first wave” of experimental
work measured accuracy—and occasionally, time
needed—for various tasks in simple settings (e.g.,
Cleveland & McGill, 1984, Lewandowsky & Spence,
1989). However, it is increasingly being recognized
that more could be done in this regard (Kosara &
Haroz, 2018). Vision science can clearly help with
this work by providing techniques to assess various
aspects of behavior (Elliott, Nothelfer, Xiong, & Szafir,
2021; Rensink & Baldridge, 2010). For instance, just
noticeable differences (JNDs) reflect the variability
of an observer’s percepts about a central tendency.
Applied to the perception of correlation in scatterplots,
for example, JNDs could show which of two designs
has a better “resolution,” that is, better enable the
user to notice differences between the structure of
two datasets. In cartography, the use of JNDs (or
equivalents) has helped to ensure that symbols always
appear distinct (see Griffin, 2017; Griffin & Montello,
2015; MacEachren, 1995), and has helped assess how
well a given map design supports inferences about
spatial structure (Beecham et al., 2017).

Connections to vision science

Although the value of contributions from vision
science to visualization has long been recognized,
awareness has recently emerged of connections in the
opposite direction: from visualization to vision science.
A key component of this “reverse” approach is a view
of visualization systems not as tools for analyzing data,
but as objects of scientific interest in their own right—a
stimulus domain similar to, say, objects or natural
scenes. The goal of such studies is to understand how
a given visualization works—that is, to measure its
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performance under various conditions, and determine
the perceptual mechanisms involved. The generality
of the results obtained this way are usually greater
than those obtained via traditional user studies, where
a particular visualization is assessed only in terms
of its suitability for a particular purpose (Kosara &
Haroz, 2018). And by their very nature, such general
results also have the potential to cast light on important
aspects of our visual intelligence.

It might be argued that studies of this kind are
inherently misguided, in that visualization systems are
pure artifacts—in contrast with scene perception, say,
human vision did not evolve to cope with line graphs
or scatterplots. But just because a system is an artifact
does not mean it is arbitrary. Most visualizations in
popular use are the survivors of a considerable amount
of competition (e.g., see Friendly & Denis, 2005).
Consequently, even though we did not evolve to work
with visualizations, they—or at least, the more effective
ones—essentially evolved to work with us (Rensink,
2017). These survivors are therefore not arbitrary
constructs, but are instead systems that embody
considerable information about how we perceive and
think. If this information can be extracted, it may have
the potential to provide a fast track to understanding
several of our perceptual and cognitive processes, and
perhaps even provide new insights into the nature
of the divide between perception and cognition
themselves.

Approach

The reverse approach to investigating visualizations
considers these as objects of interest in their own
right, and investigates them accordingly. Such
work—done by researchers in both vision science and
visualization—can be seen as a way to go beyond
the “simple world” assumptions of traditional vision
science, allowing us to explore aspects of real-world
situations such as the perception of complex objects
in heterogeneous backgrounds (Szafir, 2017). They
can also inspire new kinds of questions, such as those
about the degree (and nature) of the visual intelligence
we have, and the extent to which our visual system is
hardwired for the natural world.

Studies on visualization use a strategy common to
much of science: focus on aspects of a system that are
complex enough to be interesting, but simple enough to
allow easy experimental manipulation. (A well-known
example of this is the use of fruit flies in biological
research.) In particular, this strategy contains five
elements:

1. Find or create a simple version of a commonly used
visualization. This version has a relatively simple
design involving a minimal number of factors

(in regards to colors, shapes, etc.). It should still,
however, be complex enough to support a basic
functionality.

2. Select one of its functions or tasks. Visualization
systems are often capable of supporting several
functions—for example, a scatterplot can enable
both the estimation of correlation and the
perception of data clusters. In the interests of
simplicity, the experimental task should focus on
just one of these.

3. Measure performance under controlled conditions.
Using one or more forms of measurement,
determine how performance is affected by easily
controllable aspects of the visualization such
as color, size, or timing. Properties of the data
distributions used may also be of interest.

4. Find regularities in this performance. Ideally,
behavior can be described by a relatively simple law.
If not (as is often the case), describe regularities such
as the factors that do or do not affect performance,
and if possible, connect to known perceptual
laws.

5. Find explanations for these regularities. As much
as possible, explain behavior in terms of known
perceptual mechanisms. If this cannot be done, posit
new mechanisms compatible with what is known.
And if this is not possible, at least attempt to draw
some implications for known mechanism.

First-wave work on visualization typically had the
first three of these. Newer work adds the latter two,
enabling us to assess not only how well a visualization
system works, but also why; the result is essentially
a vision science experiment. The five elements need
not be considered in the exact order presented here,
but all should ideally be present to some extent.
The particular issues examined can be driven by
theoretical considerations, by challenges encountered
by visualization researchers, or simply be the result of
curiosity about how a particular visualization system
operates. In any event, the behavioral regularities and
mechanisms uncovered by such experiments—along
with the new kinds of questions inspired by such
investigations—form the essence of how visualization
can contribute to vision science.

To give a sense of how this approach works
and what it can accomplish, various representative
studies are reviewed below. The focus is on the
two main domains of visualization, the creation of
static graphical representations and the control of
interactive operations (Buja, Cook, & Swayne, 1996;
Roth, 2012), both of which have correlates in human
perception. These examples will hopefully make clear
how this approach can be used to investigate our visual
intelligence, as well as the kinds of contributions that
the study of visualization may make towards a better
understanding of vision.
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Graphical representations

Given that the investigation of visualizations can
help us to better understand human vision, what
form might such assistance take? Understanding a
given visualization is more of a challenge than it
might at first seem: relatively little is known about
the perceptual and cognitive mechanisms involved.
First-wave work on visualization systematized the
basic elements of graphical representation, and
compared performance for designs such as scatterplots,
line graphs, and pie charts (e.g., Bertin, 2010/1967;
Cleveland & McGill, 1984, Lewandowsky & Spence,
1989). But although such studies were valuable, they
also had limitations—for example, they did not always
use effective methodologies and rarely connected their
results to perceptual mechanisms (see Kosara, 2016;
Kosara & Haroz, 2018). And although such work
continued well past the initial wave of activity (e.g.,
Boynton, 2000; Doherty, Anderson, Angott, & Klopfer,
2007; Meyer, Taieb, & Flascher, 1997), it did not
flourish as much as one might have hoped. In particular,
it did relatively little to advance our understanding of
visual perception.

The newer approach, in contrast, considers graphical
representations as stimuli amenable to controlled,
systematic experimentation. Minimal versions are
generally used (e.g., with simple lines as axes and no
labels), with well-defined experimental tasks based
directly on the graphical properties present (e.g.,
average size or color). Semantic knowledge need not
be—and usually is not—involved. This strategy not
only decreases the likelihood of extraneous factors
affecting the results, but also improves the likelihood
that these results can be directly linked to perceptual
mechanisms.

There are, of course, reasons why this approach
might not succeed. One is that observers may vary
in their responses to such a degree that well-defined
regularities in perception do not exist, or at least,
cannot be reliably measured. Another is that, even
if such regularities exist, they might not connect to
a well-defined set of mechanisms: performance may
result from several different mechanisms interacting in
complex ways. Finally, the effects of expertise could
muddy the separation between general lower level
perceptual abilities and higher level individual skills.

Such concerns, however, have not alwaysmaterialized.
For example, although effects of expertise do appear
in some tasks—for example, experts can distinguish
between different populations of items in a scatterplot
more effectively than can novices (Lewandowsky &
Spence, 1989)—they are not encountered in others (e.g.,
Harrison, Yang, Franconeri, & Chang, 2014; Meyer
et al., 1997), suggesting that many tasks have a basic
stage carried out by relatively low-level processes that

are not highly dependent on training (e.g., see Rensink,
2017). Moreover, as the following examples show,
interesting and occasionally counterintuitive behavior
can be encountered in many situations, which can yield
insights into visual perception that may not have been
possible—or at least, not uncovered as quickly—by
investigating more traditional concerns of vision
science.

Magnitude in bar charts

Bar charts are a popular way to simultaneously show
magnitude in several categories, such as the amount of
rainfall at various locations. However, relatively little is
known about how they work. Building on the earlier
work of Cleveland and McGill (1984) and Simkin and
Hastie (1987), Talbot, Setlur, and Anand (2014) showed
participants bar charts that were simplified in several
ways (e.g., no scales on the axes; only one type of bar),
and gave them just one task: estimate the difference
in height between the two bars marked by dots.
Performance was then measured as a function of the
configuration of the bars (Figure 2a). Results showed
several interesting patterns. To begin with, perception
of relative height is easier and more accurate when the
target bars are immediately adjacent to each other; this
separation effect is largely independent of the presence
of other bars (distractors) in the vicinity. Talbot et al.
also confirmed that performance is markedly better
when the bottoms of the bars are aligned, indicating
that length per se is not the relevant variable. Rather,
the relevant variable for estimates of individual bars
appears to be the difference in the positions of the tops
of the bars; this likely connects to the use of spatial
relations in position (Nothelfer & Franconeri, 2020).
For judgements of the average length of a set of bars,
the relevant variable does seem to be length, but is the
sum of the lengths (or areas) rather than their average
value (Yuan, Haroz, & Fraonconeri, 2019).

Talbot et al. also found that the presence of
distractors taller than the target bars tends to degrade
the estimation of the magnitude of individual bars,
regardless of the location of the targets. Because the
separation of the targets does not matter, performance
cannot be based on a simple comparison of the tops of
the bars. Estimation also seems to be affected by the
presence of noisy data between the target bars (Zacks,
Levy, Tversky, & Schiano, 1998). This effect—and
perhaps the separation effect as well—may ultimately be
due to the interference caused by grouping or crowding
in peripheral vision (e.g., Keshvari & Rosenholtz, 2016;
Rosenholtz, 2011). This issue worth is exploring further.

The perception of relative magnitude was also found
to be poor for components that are incorporated into
a stacked set (Figure 2b). One possible explanation is
that stacking causes the L-junctions delineating each
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Figure 2. Example stimuli for perception of magnitude in bar charts. Participants are shown a set of bars (some marked by a dot), and
asked to estimate the percentage by which the larger of the two marked bars exceeds the other. (a) Separation effect. Estimates of
relative height are less accurate when bars are separated than when adjacent. (b) Stacking effect. Estimates for isolated components
(left) are less accurate when these are incorporated into a stacked set (right). This decrease in accuracy suggests that L-junctions are
interpreted as corners of a distinct object, but when they become T-junctions, the stems are interpreted as marking segments of the
same object.

component to become T-junctions, with the stems of
these T-junctions then being unable to maintain their
interpretation as boundaries of components of distinct
size (Talbot et al., 2014). If so, this proposal would be in
accord with the conclusions of other studies as to how
T- and L-junctions affect the way that simple figures
are perceived (e.g., Adelson, 2000; Enns & Rensink,
1991), and possibly draw on the same perceptual
mechanisms. One way of exploring this further might
be via the effects of perceived complexity, which seems
to slow down the comprehension of bar charts, with
1.7 seconds added for each component that is perceived
(Fischer, 2000; Hollands & Spence, 1998).

Proportion in pie charts

Pie charts have long been used in visualization,
but again, little is known about how they work. To
investigate, several studies focused on the most common
function of pie charts: representing proportion.
Simplified charts were used that had no labelling, with
the task being to estimate the proportion of a single
target sector, or “slice,” relative to the whole (Kosara
& Skau, 2016; Skau & Kosara, 2016). Observers were
tested on variants such as pie charts with their centers
removed, or with slices not aligned with the periphery;
performance was measured as a function of the angle
subtended by the slice. Results showed that—contrary
to traditional belief (e.g., Simkin & Hastie, 1987)—the
critical variable is not the angle of the slice; rather, it
seems to be either the area of the slice or the length of
the arc along its periphery (Kosara & Skau, 2016; Skau
& Kosara, 2016). Subsequent experiments using pie
charts depicted at various angles of viewing—which
leaves relative areas unaffected, but not angles or

arcs—indicated that the relevant quantity is likely area
(Kosara, 2019).

These results in turn raise the issue of how area
is perceived in a given shape. Chong and Treisman
(2003) found that the average perceived size of a set
of briefly viewed circles is best described by a value
between the means of the areas and the diameters,
suggesting that area was not directly perceived by at
least some participants. In addition, Morgan (2005) and
Nachmias (2008) found that the area of rectangles and
ellipses seems to be assessed via two single-dimensional
measurements—essentially, width and height—with no
high-accuracy perception of area itself. Extending such
considerations to the perception of other shapes (such
as those of pie chart slices) would be an interesting
direction for future work; the perception of proportion
could be an important part of this process.

Use of color

Color is a common way to distinguish different
categories of data in a display. Although the perception
of color has received considerable attention in vision
science, research has generally focused on elements
subtending at least a few degrees of visual angle, or
on patterns that vary at the pixel level (e.g., Poirson &
Wandell, 1993). To explore what happens in graphical
representations, Stone, Szafir, and Setlur (2014) asked
participants to judge whether two adjacent squares
(of a size typical of visualization applications) were
the same color or not; the difference in color between
the squares was adjusted until a JND was reached.
Results showed an important regularity: color JND was
not constant, but rather, was a linear function of the
inverse size of the elements tested (Stone et al., 2014;
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Szafir, 2017). The underlying mechanism is not known,
but may involve the intraocular scattering of light in the
retina (Carter & Silverstein, 2010). Interestingly, color
perception at these scales also seems to be influenced by
shape (Smart & Szafir, 2019).

Another use of color is for attentional selection.
Whereas items can be readily selected based on color
for virtually all tasks (Wolfe & Horowitz, 2004), such
selection seems to fail when estimating correlation in
scatterplots. When a second (distractor) set of dots
of lower correlation is added, JNDs for the target set
always increase, regardless of the size of the color
difference (Elliott & Rensink, 2019, 2020). In contrast,
when the same stimuli (including colors) are used in
estimating the number of items or average position of
a given subset, such selection can be done quite easily
(Chong & Treisman, 2003, 2005; Elliott & Rensink,
2019). This task dependence of attentional selectivity
is a phenomenon unlikely to have been uncovered by
investigating more traditional issues.

Redundant encoding

A common belief in visualization is that multiple
classes in a display can be more easily distinguished if
they differ in several feature dimensions rather than
just one—for example, if items differ in both shape and
color, rather than shape or color alone. To determine
if redundant encoding of this kind actually does help,
Nothelfer, Gleicher, and Franconeri (2017) showed
participants simple displays containing dozens of small
items of various shapes and colors. One of the display
quadrants lacked elements of a particular color, shape,
or particular color and shape conjunction; participants
were asked to report the location of this quadrant.
Performance was best when the target quadrant lacked
items differing in both dimensions from the items in the
other quadrants. This finding suggests that multiple
features can be concurrently selected when items receive
only diffuse attention, generalizing what is known for
individual objects that are given focused attention
(Egeth & Pachella, 1969).

Average value in scatterplots

Scatterplots have long been used to support the
perception of various kinds of structure in a dataset
(e.g., see Friendly & Denis, 2005). One of their most
common uses has been to enable the visual estimation of
average value (i.e., average height of a set of dots). The
average position—as well as other features—of a set of
dots can be rapidly ascertained via ensemble perception
(e.g., Alvarez & Oliva, 2008), suggesting that this may
underlie the perception of average values in scatterplots
(Szafir et al., 2016). This possibility was examined by

Gleicher, Correll, Nothelfer, and Franconeri (2013),
who showed observers simple displays containing two
sets of dots, with the dots in each set having distinctive
colors and shapes; observers were then asked to detect
differences in the average heights of the two sets.
Consistent with known characteristics of ensemble
perception (Alvarez & Oliva, 2008; Chong & Treisman,
2003), performance was found to be invariant across
different numbers of dots (15–75), and was best when
the two sets had large differences in color.

Curiously, redundant encoding—using both color
and shape—had no effect on the perception of average
values, even when displays were presented for as long as
10 seconds (Gleicher et al., 2013). This outcome differs
from the findings of Nothelfer et al. (2017), who—as
described elsewhere in this article—did find redundancy
effects when the task was to localize a texture quadrant.
This difference may indicate that the ability to select
multiple dimensions is somehow task specific, perhaps
having to do with the noise resistance of the average
estimation process (Nothelfer et al., 2017); alternatively,
redundancy may only benefit processes that operate
over brief time scales (see Szafir et al., 2016).

Correlation in scatterplots

Rensink and Baldridge (2010) investigated the
perception of Pearson correlation in simple versions
of scatterplots that contained no ticks or labels along
the axes (Figure 3). Two aspects of performance
were examined: precision and accuracy. Precision was
measured in the same way as for, say, size, or color:
the minimum difference needed to notice that one of
two side-by-side scatterplots has a higher correlation
(Figure 3). Estimated magnitude was assessed via a
bisection technique similar to that used for assessing
the perceived magnitude of properties such as lightness
(Plateau, 1872), that is, adjusting a middle plot so that
its apparent correlation is midway between those of two
reference plots.

Results showed that, for a wide range of designs
and correlation values, performance can be described
by two general laws: a linear Weber-like law for JND
(which decreases as correlation increases) and a
logarithmic Fechner-like law for magnitude (Rensink,
2014; 2017). Given the pervasiveness of Weber’s law
in visual psychophysics (e.g., see Pardo-Vasquez et
al., 2019; Ross, 1997), the finding of such laws here
suggests the involvement of a perceptual process
rather than high-level cognition. Indeed, Li, Martens,
and van Wijk (2010) found that the process involved
approaches the theoretical optimum possible, at
least when sample sizes are small. Importantly,
discrimination and estimation appear to be linked,
with the intercept of the JND line corresponding
with the amount of bend in the logarithmic curve
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Figure 3. Example stimuli for discrimination of correlation in scatterplots. Two side-by-side scatterplots are presented, with
participants asked to select the one appearing to be more correlated. The averages and marginal distributions of the distributions of
dots in both directions are equated, so that correlation is the only property that differs between the two plots. These differences are
adjusted until performance reaches some predefined threshold, for example, 75% correct, with the corresponding difference then
taken as the JND.

(Rensink & Baldridge, 2010). This linkage suggests that
the Fechner assumption holds—that is, that each JND
corresponds with an equal perceptual step (Rensink,
2017). Such a phenomenon is not generally encountered
for continuous sensory properties such as size or
brightness, where perceived magnitude is a power
function of the corresponding physical magnitude. This
finding suggests that the pattern of behavior found for
correlation may be a signature of the perception of
abstract numerical quantities, that is, quantities with
no linkages to any sensory quality. The involvement
of such quantities might also explain why subsets of
dots cannot be selected on the basis of color (Elliott &
Rensink (2019)—the sensory information may simply
not be there.

As to mechanism, one possibility consistent with
these behaviors is entropy theory: observers infer the
shape of a probability density function associated
with the dot cloud, and use the logarithm of its
width—corresponding with the information entropy
(or disorder) of the dot cloud—as a perceptual proxy
for correlation (Rensink, 2017). Alternate explanations
such as the size of the bounding box of the dots
can be ruled out, as can measures such as average
distance of the dots to the regression line, leaving
density functions as the most likely way to account
for the results (Elliott & Rensink, 2020; Yang et al.,
2019). Moreover, this account implies that the Fechner
assumption—that each JND represents an equal
perceptual difference—has the interesting form that
each JND represents an equal number of bits (Rensink,
2017).

Entropy theory asserts that the relevant quantity for
correlation perception in scatterplots is the width of
an inferred probability density function, rather than
its first- or second-order moments (e.g., averages or
standard deviations). As such, work on correlation
perception may be a complementary way to explore

mechanisms related to those that underlie ensemble
perception. The abstract nature of density functions
may also account for the finding of general Weber-like
laws for other graphical representations, whose
appearances can differ considerably from those of
scatterplots (Harrison et al., 2014; Rensink, 2014). In
any event, such discoveries would not likely have been
found as readily using more traditional approaches.

Interaction in visualization

Although the power of visualization has historically
been based on static graphical representations, advances
in technology have enabled an extension to more
dynamic displays, usually under interactive control
(Pike, Stasko, Chang, & O’Connell, 2009; Yi, Kang,
Stasko, & Jacko, 2007). Such interaction—for example,
moving through various subsets of data, spotting an
outlier in one of them, then drilling down to get more
information about it—often plays a critical role in
visualization, especially when a task is incompletely
defined or a dataset poorly understood (Fekete, van
Wijk, Stasko, & North, 2008; Roth, 2012; Thomas
& Cook, 2005). Given that visual perception itself is
also inherently interactive (e.g., Findlay & Gilchrist,
2003; Land & Tatler, 2009; Rensink, 2000), the
question then is what can be learned about vision—and
in particular, the interdependence of lower level
perception and higher level cognition—by considering
the corresponding aspects of visualization.

Early investigations of how visualizations assist
in complex tasks tended to focus on their cognitive
aspects, for example, the conceptual schemas underlying
the comprehension of a given graph (e.g., Pinker, 1990;
Shah, 2002; Wickens & Flach, 1988). But such work
had relatively little impact on our understanding of
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Figure 4. Extended vision thesis. (a) Schematic of natural vision. Structure of the physical world is estimated via a set of processes that
use both high-level knowledge and low-level data. Feedback is present at all levels; it is applied to the physical world via actions such
as eye or hand movements. (b) Schematic of extended vision. Here, structure in a dataset is perceived via a set of processes that use
both high-level knowledge and low-level input, with visual input to the user now being an intermediate stage of processing, taking its
input from the graphical representations formed by the visualization pipeline. Feedback is still present at all levels, with analyst
commands controlling the visualization pipeline, including selection of data. (Based on Rensink, 2014).

vision. A more productive approach for purposes here
may therefore be to focus instead on the control of
processes that enable the discovery of structure in
data independent of semantics, and in particular, on
processes that enable the interaction of perception and
cognition.2

It is worth noting that many of the low-level
“semantics-free” operations in visualization have
recognizable correlates in human perception—for
example, identification, localization, clustering,
grouping, linking, panning, zooming, and filtering
(Amar, Eagan, & Stasko, 2005; Roth, 2012). Indeed,
selection is sometimes described as a component of
these operations in the same way that visual attention
is sometimes described as the selective application
of various operations (e.g., Rensink, 2015). Such
considerations suggest a degree of isomorphism
between vision and visualization, so that investigating
the interactive aspects of one may help us understand
those in the other.

One characterization of this isomorphism is
what might be called the extended vision thesis: the
informational linkages between human and machine
create a composite system that can perceive structure in
an abstract dataset in much the same way that a natural
visual system can perceive structure in the physical
world (Figure 4). In this view, the visualization pipeline
that maps abstract data to a graphical representation
(Card et al., 1999) is essentially an extension of low-level
vision, enabling the human analyst to perceive structure
in information from sources other than physical ones

(Rensink, 2014). An interactive system adds feedback
control; this exists at all stages, resulting in a rough
architectural consistency with what is found in the
human visual system. The resulting process is often
divided into a lower level loop that extracts data
from the input image and feeds it to a higher level
“sensemaking loop” that in turn controls the lower
level loop (Pirolli & Card, 2005). This process has clear
similarities with the “cycle of perception” in computer
vision (Mackworth, 1978) and the “perceptual cycle”
in human vision (Neisser, 1976), in which perception
is influenced by high-level knowledge, which in turn
is influenced by perception. A popular mantra for
exploratory visualization is “overview first, zoom and
filter, then details on demand” (Shneiderman, 1996);
this has an echo in visual perception, where a global
view of the scene can guide subsequent attentional
filtering, construction, and tracking of items (e.g.,
Rensink, 2000). For vision and visualization, then,
many of the problems and solutions may be much the
same.

As for the case of graphical representations, there
are no guarantees this approach will necessarily be
productive. For example, the kinds of tasks carried
out interactively may simply not be amenable to
well-defined solutions, or, if there are such solutions,
it may not be possible to implement them using
operations available in current visualization systems.
And even if this could be done, the unnaturalness of
the stimuli and task—not to mention the technology
itself—might result in strategies and operations that
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differ considerably from those used in natural vision.
And finally, even if an isomorphism of this kind
does exist, the approach described here may be too
reductive—the simplifications and controls needed to
carry out experiments of the kind advocated here might
not be able to isolate the key components used in more
realistic situations.

Although these concerns are valid in theory, they
need not be so in practice. For example, the naturalness
of a display does not seem to be critical for performance
on interactive tasks (Smallman & St. John, 2005;
Hegarty, Smallman, & Stull, 2012), suggesting that
simplified, controlled experiments may often succeed at
capturing important aspects of interaction. Moreover,
any limits encountered that are not due to the machine
component (such those involving timing or memory)
can reliably be attributed to the human system.
And finally, as the following examples show, there
is also empirical evidence to believe that interactive
visualization can often provide an interesting way to
explore how lower level processes interact with higher
level ones, and how these together interact with the
world.

Latency of operations

A common recommendation for interaction is that
the latency of operations—the time between motor
command and updated display—should be less than
about 300 ms if performance is to be unaffected, and
experienced as seamless (Ballard, Hayhoe, Pook & Rao,
1997; Gray & Fu, 2004; Vozar & Tilbury, 2014). As
a step toward understanding this phenomenon, Liu
and Heer (2014) examined the effect of latency on
exploratory visual analysis, using a simplified version of
a real-world dataset. Participants were given a small set
of simple operations (e.g., pan and zoom) and asked
to find interesting patterns, such as outliers and data
abnormalities, and to suggest hypotheses to account for
them. Performance was assessed in terms of the number
of observations and hypotheses made, and measured as
a function of the latency of the commands.

The latency of the basic operations was typical of
most visualization applications, that is, 100 ms or so,
and this supported behavior typical of this kind of
visualization system. Interestingly, adding a 500-ms
delay to each operation led to fewer hypotheses and
poorer exploration strategies; adding a 1000-ms delay
made the system unusable. These results suggest that
optimal sequences of operations may decay to less
optimal ones—and even disintegrate entirely—if not
carried out sufficiently quickly.

Interestingly, participants initially tested on
high-latency conditions did not improve in subsequent
low-latency ones, pointing to a degree of hysteresis:
a reluctance to change strategy once a sequence of

operations had been set up (Liu & Heer, 2014). The
nature and extent of such hysteresis would be worth
exploring. Another possible extension would be to map
out the latency limits even when commands are not
involved (when watching slow-moving animations, say);
investigations of this kind might provide a useful way
to map out the dynamics of the processes involved in a
perceptual task.

Role of motor control

Visualizations often use interaction to facilitate
perception of the three-dimensional (3D) structure of
a particular dataset or world (Buja et al, 1996). An
interesting issue is the extent to which the resulting
percept depends upon active motor control: does it
require the motor action itself, the intent, or perhaps
just the result?

Keehner et al. (2008) examined this issue by
comparing the perception of 3D structure for rendered
objects displayed interactively (i.e., rotated and
translated via user commands) against those displayed
via an animated sequence of two-dimensional images.
The ability of observers to determine the 3D structure
of each object was assessed via their accuracy in
determining the cross-section of the object for an
arbitrary cutting plane. Results showed that when
an object was displayed using an optimal sequence
of views—where each view contained the maximum
amount of relevant information—the ability to infer
cross-sections was unaffected by whether the object was
perceived actively (i.e., via user commands) or passively
(i.e., viewed as an animated sequence of images). This
finding suggests that performance is determined entirely
by the information displayed, with active control
important only to the extent that it makes task-relevant
information available. How users eventually learn the
optimal—or at least, near-optimal—sequence of views
for a given object remains an open issue.

The results of such studies may connect with work
in vision science on the information needed to recover
3D structure from motion sequences (see Anderson &
Bradley, 1998).

They may also connect with the more general issue of
the role of prediction in perception (e.g., see Cavanagh,
1997; Hawkins & Blakeslee, 2004): could the predictions
enabled by the intent of a motor command somehow
facilitate at least some perceptual processing (cf.,
efferent copy in eye movements)?

Selection of operations

Another important issue in perception is the selection
and arrangement of a set of operations for a given
task when different sequences can yield results that
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are largely similar. This prospect was examined by
Gray and Fu (2004), who investigated whether users
preferred functionally equivalent operations that
were internal or external to the viewer (e.g., mental
rotation vs. rotating an image in the display). They
asked users to program a device using a visual display
covered to varying extents for different amounts of
time; the extent to which internal operations (involving
memory) were used in preference to external ones
(involving fixation of the display) was assessed via
eye movements and the amount of information
accessed.

Results, which were fairly similar across users,
were consistent with a “least-effort” principle, which
asserts that if a given task can be carried out by several
possible sequences of operations, the one selected—at
least for operations at the 300-ms scale—is that which
minimizes the overall time needed, regardless of the
mechanisms involved. A similar experiment examining
the manipulation of blocks on screen to create a copy
of a given pattern gave much the same results (Gray,
Sims, Fu, & Schoelles, 2006). To the extent that this
principle holds in general (and for other time scales),
it would imply that—apart from timing—the physical
nature of interaction operations in a perceptual task
is largely irrelevant. If so, this principle could have
important applications to natural as well as extended
vision.

One example of this is might be foraging, where all
the relevant targets in a display (or part of a display)
must be examined sequentially (Thornton & Horowitz,
2015; Wolfe, 2013). Strategies for this task seem to
be largely if not entirely determined by temporal
constraints, with little effect of response modality
(Thornton, de’Sperati, & Kristjánsson, 2019). Indeed,
it has been suggested that the least-effort principle
may explain the switches in attentional strategies that
occur when foraging is carried out at different speeds,
for example, when the marking of individual items is
synchronized to the beat of a metronome that runs
at various rates (Thornton, Nguyen, & Kristjánsson,
2020).

Future directions

The work reviewed here provides some grounds for
believing that the investigation of visualization can be
an effective way to explore various aspects of visual
perception, resulting new kinds of issues, new aspects
of behavior, and new kinds of possible mechanisms
and principles. These examples are not intended to
constitute an exhaustive survey of what can be done
using this approach; rather, they are intended to provide
a sense of the kinds of issues that can arise, the ways
these might be investigated, and the kinds of findings

that might result. Many aspects of visualization—and
their explanations—remain to be explored.

Graphical representations

Although the investigation of graphical
representations is undoubtedly the subdomain of
visualization that has received the greatest attention,
much can still be done. To begin with, investigation
could be extended into several of the results already
obtained. Examples of relevant questions include the
following:

• Why does the estimation of average magnitude
for sets of bars in bar charts involve the sums of
bar lengths or areas (Yuan et al., 2019)? How does
this relate to ensemble coding, which—at least for
area—involves averages rather than cumulative
values (Raidvee et al., 2020)?
• Might other kinds of geometric relations exist
beyond those uncovered by Nothelfer and
Franconeri (2020)? And what other summary
statistics might be determined by ensemble
processes beyond mean and range or variance
(Szafir et al., 2016)?
• What is the nature of the perceptual representations
that underlie correlation perception? Are the
Weber- and Fechner-like laws found for various
graphical representations (Harrison et al., 2014;
Rensink, 2014) more general yet? And does the
finding that attentional selection fails for correlation
estimation in multiclass scatterplots (Elliott &
Rensink, 2019) but not for estimation of averages
(Chong & Treisman, 2003, 2005) imply the existence
of different forms of ensemble coding?

Note that investigation need not be limited to the
graphical representations already discussed. Hundreds
of different representations are currently in use (Harris,
1999), with various appearances and supporting various
functions. (For examples, see Figure 5.) For most, the
perceptual mechanisms involved are largely unknown,
as is the explanation of various interesting behaviors.
For example, Kong, Heer and Argawala (2010) found
that people distinguish values in a treemap (Figure 5c)
best when the components are rectangles with diverse
aspect ratios; curiously, squares are not easy to compare
to each other, nor can rectangles be easily compared if
they have extreme aspect ratios.

Investigation is also just beginning of other aspects
of perception, such as the effect of graphic design on
memory (Borkin et al., 2013), the representation of
uncertainty in data (Bonneau et al., 2014), and the
number of data dimensions that can be effectively
displayed in a single image (Halford, Baker,McCredden,
& Bain., 2005; Healey & Enns, 2012). As such, it seems
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Figure 5. Examples of designs for graphical representation. (a) Parallel coordinates. Each data element is a line, with its intersection
with a co-ordinate axis representing the value for that dimension. (b) Stream graph. This is a time series, where the thickness of each
stream represents its value. (c) Treemap. Here, each rectangle represents the relative quantity for a set of categories. (d) Network
graph. Nodes represent entities, with links representing the associations between them.

that the study of graphical representations can offer a
large number of ways to investigate various aspects of
visual cognition (see also Kosara, 2016); indeed, it is
difficult to imagine a domain better suited for this kind
of work.

Interaction in visualization

Similar to the case of graphical representations,
investigations could also be extended to uncover
more about the mechanisms involved in interaction.
Questions could include the following:

• How does latency affect visual processing? Is there
a single value such that all processes in a sequence
remain unaffected if latency stays within that limit?
Work on teleoperation—for example, Vozar &
Tilbury, 2014—may be of relevance here. And
given that the timecourse of conscious cognition
differs from that of automatic actions (e.g., Milner
& Goodale, 1995), could this approach also help
to elucidate the extent to which consciousness is
involved?
• To what extent are interaction commands
necessary for perception in a dynamic display? In
particular, to what extent is the information in

the commands themselves—for motor actions or
otherwise—needed to perceive various kinds of
structure? What kind of information is needed at
what time?
• How general is the least-effort principle for selecting
operations in perceptual sequences? Foraging
strategies for multiple-target search in simple
environments seem to be consistent with this
principle (Thornton, Nguyen, & Kristjánsson,
2020). Does it also apply to foraging more broadly
construed (Pirolli & Card, 2005; Pirolli, 2007),
where information is accumulated over time for
various tasks?

There is also potential in other operations. For
example, comparison is not only an important part
of perception (Farell, 1985), but also of visualization
(Roth, 2012). Although there exists a diverse array
of designs that support comparison in visualization,
all seem to rely on three basic elements: juxtaposition
(side by side), superposition, and explicit encoding of
differences (Gleicher et al., 2011); these elements may
reflect distinct levels of information integration. There
may also be lessons here in regards issues such as the
encodings used in working memory.

Many other open-ended tasks might also be studied
by the use of simplified versions in simple environments
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(e.g., see Prpic et al., 2019; Thornton, de’Sperati, &
Kristjánsson, 2019). Consider, for example, navigation.
In visualization, this process is often facilitated by
the use of an overview map (e.g., Beard & Walker,
1990); could its counterpart in perception be the
coarse representation of the immediate environment
sometimes thought to guide the perception of scenes
(Rensink, 2000)? Could we discover why such maps
facilitate performance, and have this help us to
understand how scenes are perceived? Related issues
are why particular kinds of landmarks prove useful
(e.g., Parush & Berman, 2004; Vinson, 1999), and the
extent to which navigation is possible for spaces of
higher dimension (e.g., Buja et al., 1996); results here
could cast additional light on the extent to which our
visual systems are hard-wired for the world in which we
live. Also of interest would be the way that navigation
is carried out on small screen devices, where different
strategies are likely used (e.g., Burigat, Chittaro, &
Gabrielli, 2008). This approach might even extend to
issues such as the kinds of physics that can exist—or
at least, be perceived—in such environments (Ullman,
Spelke, Battaglia, & Tenenbaum, 2017).

Other aspects

Visualization is a complex area, standing at the
intersection of several research traditions (Munzner,
2014; Spence, 2014). Some of the issues involved
(e.g., efficient algorithms for data transformation)
are unlikely to ever concern vision science. Others
(e.g., workflows for data analysis) involve cognitive
mechanisms that are incompletely understood at the
moment, and may never affect our understanding of
visual perception. And yet others (e.g., design for a
particular application) may involve vision, but the
prevalence of subjective and context-specific factors
may prevent them from forming a part of systematic
considerations (Rensink, 2014).

Even granted this, however, other aspects of
visualization could still help us better understand
perception and its relation to cognition. Examples
include the following:

• What is the basis for thinking about abstract
categories in terms of geometric or topological
spaces (e.g., seeGärdenfors, 2004)? An isomorphism
of some kind with perceived space is evidently
involved. But how is this isomorphism established,
and how much structure can it contain? More
generally, what is the basis of effective visual
metaphor (Paley, 2009; Ziemkiewicz & Kosara,
2008)?
• What is the structure of a visual task? Although
work has been done on how vision is used in
everyday life (e.g., Gibson, 1966; Land & Tatler,

2009), relatively little is still known about the
structure of complex visual tasks. In contrast,
considerable work in visualization has been done
on abstract task taxonomies and the decomposition
of tasks into simpler operations (e.g., see Amar,
Eagan, & Stasko, 2005; Roth, 2012; Schulz, Nocke,
Heitzler, & Schumann, 2013). To the extent that the
extended vision thesis holds, such work may reflect
something about the nature of the tasks carried out
in natural vision.
• To what degree can visual representations
incorporate—or at least support—semantics? Early
work (e.g., Pinker, 1990) focused on how graphs can
help in understanding a situation. Other kinds of
visualization could also provide useful perspectives
here—for example, the understanding of maps
(MacEachren, 1995) and diagrams (Massironi,
2010; Tversky, 2011).

Studies along some of these lines have already begun.
For example, Lin et al (2013) investigated the issue
of semantic associations with color (e.g., blue and
oceans), comparing performance on barcharts where
colors corresponded—or did not correspond—with
the categories depicted. Results showed a small but
significant speedup when semantic associations were
consistent; these may connect to the color-concept
associations found in visual search (Treisman& Souther,
1985). Schloss et al. (2019) found that associations can
also exist between color and quantity, although these do
not seem to exist between color and emotional valence
(Schloss, Witzel, & Lai, 2020). Work of this kind might
also help to clarify not only the relationship between
the functional aspects of perception and cognition, but
also between these and aesthetics (e.g., Filonik & Baur,
2009).

Summary

It has been argued here that the interaction of
visualization and vision science can be expanded to
include the controlled investigation of visualization
itself. Such studies can suggest new kinds of questions,
uncover interesting new phenomena in perception,
and accelerate the uncovering of various perceptual
mechanisms. Visualization is a domain well-suited for
the exploration of our visual intelligence, with widely
used design elements likely embodying considerable
information not only about the nature of the perceptual
processes involved, but also their links with higher level
cognition. Studies of visualizations have accordingly
raised new questions about vision, such as our ability to
perceive abstract structure (rapidly or otherwise) in an
image, and the degree to which our perceptual system
is hardwired for the natural world. They have also
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led to the discovery of behaviors, such as the general
laws of correlation perception, unexpected failures
of attentional selection, and a possible signature of
abstract information; they have also led to the proposal
of mechanisms such as entropy estimation, as well as
a principle for selecting the operations to be used in a
perceptual sequence. Such studies therefore not only
challenge several existing views about vision (e.g., the
nature of attentional selection), but have also extended
our knowledge of perception in new directions.

Based on this information, it might be worth
viewing visualization not only as an important area
for vision science, but also as an important area of
vision science, analogous to, say, scene perception or
material perception, which were developed based on a
recognition of the shortcomings of existing techniques
and stimuli. Indeed, the investigation of visualization
might not only extend our knowledge of perception,
but might also provide a theoretical grounding for
several aspects of visualization itself (Rensink, 2014).
In any event, the usefulness of a two-way connection
between vision science and visualization would seem to
be clear. Together with the “forward” connections that
have already been developed, reverse connections of the
kind described here can be the basis of a productive
feedback loop in which developments in each area can
spur developments in the other, resulting in a body of
seamless interdisciplinary work created by—and of
benefit to—researchers in both fields.

Keywords: visual cognition, information visualization,
data visualization, perceptual organization, visual system,
computational theory
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Footnotes
1A closely-related related area is scientific visualization, which is similar
but focuses on the kinds of information particular to the natural sciences.
Other related fields include statistical graphics (the visualization of

statistical data), cartography (the visualization of geographic data) and
visual analytics (the use of visualization for sophisticated analytical
reasoning; its exploration aspect is sometimes referred to as visual data
mining). “Visualization” is used here as a cover term for all of these.
2The division between perceptual and conceptual is broadly similar to
that between low- and high-level interaction, which involve interface and
problem-space operations respectively (Pike et al., 2009). Higher-level
operations often depend on factors such as user characteristics (e.g.,
expertise), context (e.g., motivation), and the particulars of the task,
which are difficult to take into account; as such, they will not be further
discussed here.

References

Adelson, E. H. (2000). Lightness perception and
lightness illusions (pp. 339–351). In M. Gazzaniga
(Ed.), The new cognitive neurosciences (2nd ed.).
Cambridge MA: MIT Press.

Alvarez, G. A., & Oliva, A. (2008). The representation
of simple ensemble visual features outside the focus
of attention. Psychological Science, 19, 392–398.

Amar, R. A., Eagan, J., & Stasko, J. T. (2005). Low-level
components of analytic activity in information
visualization (pp. 111–117). Proceedings of the 2005
IEEE Symposium on Information Visualization.
Minneapolis, Minnesota, October 23–25, 2005.

Anderson, R. A., & Bradley, D. C. (1998). Perception
of three-dimensional structure from motion. Trends
in Cognitive Sciences, 2, 222–228.

Ballard, D. H., Hayhoe, M. M., Pook, P. K., & Rao,
RP. (1997). Deictic codes for the embodiment
of cognition. Behavioral and Brain Sciences, 20,
723–742.

Beard, D. V., & Walker, J. Q. (1990). Navigational
techniques to improve the display of large
two-dimensional spaces. Behavior and Information
Technology, 9, 451–466.

Beecham, R., Dykes, J., Meulemans, W., Slingsby, A.,
Turkay, C., & Wood, J. (2017). Map LineUps:
Effects of spatial structure on graphical inference.
IEEE Transactions on Visualization and Computer
Graphics, 23, 391–400.

Bertin, J. (2010/1967). Semiology of graphics: Diagrams,
networks, maps. Madison: University of Wisconsin
Press.

Bonneau, G. P., Hege, H-C., Johnson, C. R., Oliveira,
M. M., Potter, K., Rheingans, P., . . . Schultz,
T. (2014). Overview and state-of-the-art of
uncertainty visualization (pp. 5–30). In C. Hansen,
M. Chen, C. Johnson, A. Kaufman, & H. Hagen
(Eds.), Scientific visualization. Mathematics and
visualization. London: Springer.

Borkin, M. A., Vo, A. A., Bylinski, Z., Isola, P.,
Sunkavalli,, Oliva, A., . . . Pfister, H. (2013).
What makes a visualization memorable? IEEE

Downloaded from jov.arvojournals.org on 08/12/2022



Journal of Vision (2021) 21(8):3, 1–18 Rensink 14

Transactions on Visualization and Computer
Graphics, 19, 2306–2315.

Boynton, D. M. (2000). The psychophysics of informal
covariation assessment: Perceiving relatedness
against a background of dispersion. JEP: HPP, 26,
867–876.

Brewer, C. A. (1999). Color use guidelines for data
representation (pp. 55–60). Proceedings of the
Section on Statistical Graphics. Alexandria, VA:
American Statistical Association.

Buja, A., Cook, D., & Swayne, D. F. (1996). Interactive
high-dimensional data visualization. Journal of
Computational and Graphical Statistics, 5, 78–99.

Burigat, S., Chittaro, L., & Gabrielli, S. (2008).
Navigation techniques for small-screen devices: An
evaluation on maps and web pages. International
Journal of Human-Computer Studies, 66, 78–97.

Card, S. K., Mackinlay, J. D., & Shneiderman, B.
(1999). Information visualization (pp. 1–34). In S.
K. Card, J. D. Mackinlay, & B. Shneiderman (Eds.),
Readings in information visualization: Using vision
to think. San Francisco: Morgan Kaufman.

Carter, R. C., & Silverstein, L. D. (2010). Size matters:
Improved color-difference estimation for small
visual targets. Journal of the Society for Information
Display, 18, 17–28.

Cavanagh, P. (1997). Predicting the present. Nature,
386, 19–21.

Chong, S. C., & Treisman, A. (2003). Representation of
statistical properties. Vision Research, 43, 393–404.

Chong, S. C., & Treisman, A. (2005). Statistical
processing: Computing the average size in
perceptual groups. Vision Research, 45, 891–900.

Cleveland, W. S., & McGill, R. (1984). Graphical
perception: Theory, experimentation, and
application to the development of graphic methods.
Journal of the American Statistical Association, 79,
531–554.

Cui, L., & Liu, Z. (2021). Synergy between research
on ensemble perception, data visualization, and
statistics education: A tutorial review. Attention,
Perception & Psychophysics, 83, 1290–1311,
doi:10.3758/s13414-020-02212-x.

Doherty, M. E., Anderson, R. B., Angott, A. M.,
& Klopfer, D. S. (2007). The perception of
scatterplots. Perception & Psychophysics, 69,
1261–1272.

Egeth, H., & Pachella, R. (1969). Multidimensional
stimulus identification. Perception & Psychophysics,
5, 341–346.

Elliott, M., Nothelfer, C., Xiong, C., & Szafir, D.
(2021). A design space of vision science methods
for visualization research. IEEE Transactions

on Visualization and Computer Graphics, 27,
1117–1127.

Elliott, M., & Rensink, R. (2019). Attentional
color selection depends on task structure.
Vision Sciences Society, St. Petersburg, FL,
USA, May 2019. Journal of Vision, 19, 270b,
https://doi.org/10.1167/19.10.270b.

Elliott, M., & Rensink, R. (2020). Further evidence
that probability density shape is a proxy for
correlation. Vision Sciences Society, virtual
meeting, June 2020. Journal of Vision, 20, 1481,
https://doi.org/10.1167/jov.20.11.1481.

Enns, J. T., & Rensink, R. A. (1991). Preattentive
recovery of three-dimensional orientation from line
drawings. Psychological Review, 98, 335–351.

Farell, B. (1985). “Same”-“different” judgments: A
review of current controversies in perceptual
comparison. Psychological Bulletin, 98, 419–
456.

Fekete, J.-D., van Wijk, J. J., Stasko, J. T., & North,
C. (2008). The value of information visualization
(pp. 1–18). In A Kerren, J. T. Stasko, J.-D. Fekete,
& C. North (Eds). Information Visualization:
Human-Centered Issues and Perspectives. LNCS
4950. Berlin: Springer.

Few, S. C. (2013). Information dashboard design:
Displaying data for at-a-glance monitoring.
Burlingame, CA: Analytics Press.

Filonik, D., & Baur, D. (2009). Measuring aesthetics
for information visualization. Proceedings,
13th International Conference on Information
Visualisation. Barcelona, Spain. pp. 579–584.

Findlay, J. M., & Gilchrist, I. D. (2003). Active vision:
The psychology of looking and seeing. Oxford, UK:
University Press.

Fischer, M. H. (2000). Do irrelevant depth cues affect
the comprehension of bar graphs?Applied Cognitive
Psychology, 14, 151–162.

Friendly, M., & Denis, D. (2005). The early origins
and development of the scatterplot. Journal of the
History of the Behavioral Sciences, 41,103–130.

Gärdenfors, P. (2004). Conceptual spaces: The geometry
of thought. Cambridge MA: Bradford Books.

Gibson, J. J. (1966). The senses considered as perceptual
systems. Boston: Houghton Mifflin.

Gleicher, M., Albers, D., Walker, R., Jusufi, I., Hansen,
C. D., & Roberts, J. C. (2011). Visual comparison
for information visualization. Information
Visualization, 10, 289–309.

Gleicher, M., Correll, M., Nothelfer, C., & Franconeri,
S. (2013). Perception of average value in multiclass
scatterplots. IEEE Transactions on Visualization
and Computer Graphics, 19, 2316–2325.

Downloaded from jov.arvojournals.org on 08/12/2022

http://doi.org/10.3758/s13414-020-02212-x
https://doi.org/10.1167/19.10.270b
https://doi.org/10.1167/jov.20.11.1481


Journal of Vision (2021) 21(8):3, 1–18 Rensink 15

Gray, W. D., & Fu, W.-T. (2004). Soft constraints
in interactive behavior: The case of ignoring
perfect knowledge in-the-world for imperfect
knowledge in-the-head. Cognitive Science, 28, 359–
382.

Gray, W. D., Sims, C. R., Fu, W.-T, & Scholles, M.
J. (2006). The soft constraints hypothesis: A
rational analysis approach to resource allocation
for interactive behavior. Psychological Review, 113,
461–482.

Griffin, A. L. (2017). Cartography, visual perception
and cognitive psychology (pp. 44–54). In A. J. Kent,
& P. Vujakovic (Eds.), The Routledge handbook of
mapping and cartography. London and New York:
Routledge.

Griffin, A. L., & Montello, D. R. (2015). Vision and
discrimination (pp. 1055–1059). In M. Monmonier
(Ed.), The history of cartography, volume 6:
Cartography in the twentieth century. Chicago, IL:
University of Chicago Press.

Hawkins, J., & Blakeslee, S. (2004). On intelligence.New
York: Owl Books.

Hagh-Shenas, H., Interrante, V., & Park, C. H. (2006).
A closer look at texture metrics for visualization.
Electronic Imaging. Proceedings of SPIE - The
International Society for Optical Engineering
6057W.

Halford, G. S., Baker, R., McCredden, J., & Bain, J. D.
(2005). How many variables can humans process?
Psychological Science, 16, 70–76.

Harris, R. L. (1999). Information graphics: A
comprehensive illustrated reference. Oxford, UK:
Oxford University Press.

Harrison, L., Yang, F., Franconeri, S., & Chang, R.
(2014). Ranking visualizations of correlation using
Weber’s law. IEEE Transactions on Visualization
and Computer Graphics, 20, 1943–1952.

Healey, C. G, & Enns, J. T., (2012). Attention and visual
memory in visualization and computer graphics.
IEEE Transactions on Visualization and Computer
Graphics, 18, 1170–1188.

Hegarty, M., Smallman, H. S., & Stull, A. T. (2012).
Choosing and using geospatial displays: Effects of
design on performance and metacognition. Journal
of Experimental Psychology: Applied, 18, 1–17.

Hollands, J. G., & Spence, I. (1998). Judging proportion
in graphs: The summation model. Applied Cognitive
Psychology, 12, 173–190.

Keehner, M., Hegarty, M., Cohen., C., Khooshabeh, P.,
& Montello, D. R. (2008). Spatial reasoning with
external visualizations: What matters is what you
see, not whether you interact. Cognitive Science, 32,
1099–1132.

Keshvari, S., & Rosenholtz, R. (2016). Pooling
of continuous features provides a unifying
account of crowding. Journal of Vision, 16, 39,
https://doi.org/10.1167/16.3.39.

Kong, N., Heer, J., & Agrawala, M. (2010). Perceptual
guidelines for creating rectangular treemaps. IEEE
Trans. Visualization and Computer Graphics, 16,
990–998.

Kosara, R. (2016). An empire built on sand:
Reexamining what we think we know about
visualization (pp. 162–168). BELIV ’16, October
24, 2016,Baltimore, MD.

Kosara, R. (2019). Evidence for area as the primary
visual cue in pie charts (pp. 101–105). 2019 IEEE
Visualization Conference (VIS), October 20,
Vancouver, BC, Canada.

Kosara, R., & Haroz, S. (2018). Skipping the replication
crisis in visualization: Threats to study validity and
how to address them: Position paper (pp. 102–107).
2018 IEEE Evaluation and Beyond - Methodological
Approaches for Visualization (BELIV), October 21,
2018, Berlin, Germany.

Kosara, R., & Skau, D. (2016). Judgment error in
pie chart variations (pp. 91–95). Proceedings of
the Eurographics Conference on Visualization
(EuroVis), E. Bertini, N. Elmqvist, & T. Wischgoll
(Eds.). May 31–June 3, 2016, Bergen, Norway.

Land, M. F., & Tatler, B. W. (2009). Looking and acting:
Vision and eye movements in natural behaviour.
Oxford, UK: University Press

Lewandowsky, S., & Spence, I. (1989). Discriminating
strata in scatterplots. Journal of the American
Statistical Association, 84, 682–688.

Li, J., Martens, J.-B., & van Wijk, J. J. (2010). Judging
correlation from scatterplots and parallel coordinate
plots. Information Visualization, 9, 13–30.

Lin, S., Fortuna, J., Kulkarni, C., Stone, M., & Heer, J.
(2013). Selecting semantically-resonant colors for
data visualization (pp. 401–410). Proceedings of the
13th Eurographics Conference on Visualization,May
4-5, 2013, Leipzig, Germany.

Liu, Z., & Heer, J. (2014). The effects of interactive
latency on exploratory visual analysis. IEEE
Transactions on Visualization and Computer
Graphics, 20, 2122–2131.

MacEachren, A. M. (1995). How maps work:
Representation, visualization, and design (pp.
51–149). New York: Guilford Press.

Mackworth, A. K. (1978). Vision research strategy:
Black magic, metaphors, mechanisms, miniworlds
and maps (pp. 53–59). In A. Hanson (Ed.),
Computer vision systems, New York: Academic
Press.

Downloaded from jov.arvojournals.org on 08/12/2022

https://doi.org/10.1167/16.3.39


Journal of Vision (2021) 21(8):3, 1–18 Rensink 16

Massironi, M. (2010). The psychology of graphic
images: Seeing, drawing, communicating. Mahwah,
NJ: Erlbaum.

Meyer, J., Taieb, M., & Flascher, I. (1997). Correlation
estimates as perceptual judgments. Journal of
Experimental Psychology: Applied, 3, 3–20.

Milner, A. D., & Goodale, M. A. (1995). The visual
brain in action. Oxford: Oxford University Press.

Montello, D. R. (2002). Cognitive map-design
research in the twentieth century: Theoretical and
empirical approaches. Cartography and Geographic
Information Science, 29, 283–304.

Morgan, M. J. (2005). The visual computation of 2-D
area by human observers. Vision Research, 45,
2564–2570.

Munzner, T. (2014). Visualization analysis and design.
Boca Raton, FL: CRC Press.

Nachmias, J. (2008). Judging spatial properties of
simple figures. Vision Research, 48, 1290–1296

Neisser, U. (1976). Cognition and reality. San Francisco:
Freeman.

Nothelfer, C., Gleicher, M., & Franconeri, S. (2017).
Redundant encoding strengthens segmentation
and grouping in visual displays of data. Journal of
Experimental Psychology: Human Perception and
Performance, 43, 1667–1676.

Nothelfer, C., & Franconeri, S. (2020). Measures of
the benefit of direct encoding of data deltas for
data pair relation perception. IEEE Transactions on
Visualization and Computer Graphics, 26, 311–320.

Paley, W. B. (2009). Interface and mind. it – Information
Technology, 51, 131–141.

Parush, A., & Berman, D. (2004). Navigation and
orientation in 3D user interfaces: The impact
of navigation aids and landmarks. International
Journal of Human-Computer Studies, 61, 375–395.

Pardo-Vasquez, J. L., Castineiras-de Saa, J. R., Valente,
M., Damiao, I., Costa, T., & Vicente, M. L., . .
.Renart, A. (2019). The mechanistic foundation of
Weber’s law. Nature Neuroscience, 22, 1493–1502.

Pike, W. A., Stasko, J., Chang, R., & O’Connell, T.
A. (2009). The science of interaction. Information
Visualization, 8, 263–274.

Pinker, S. (1990). A theory of graph comprehension (pp.
73–126). In R. Freedle (Ed.), Artificial Intelligence
and the Future of Testing. Hillsdale, NJ: Lawrence
Erlbaum Associates, Inc.

Pirolli, P. (2007). Information foraging theory: Adaptive
interaction with information. Oxford, UK: Oxford
University Press.

Pirolli, P., & Card, S. (2005). The sensemaking
process and leverage points for analyst technology
as identified through cognitive task analysis.

Proceedings of International Conference on
Intelligence Analysis (Vol. 5). May 19–20, 2005,
Atlanta, Georgia.

Plateau, J. (1872). Sur la mesure des sensations
physiques, et sur la loi qui lie l’intensité de ces
sensations à l’intensité de la cause excitante.
Comptes Rendus Hebdomadaires des Séances de
l’Académie des Sciences, 65, 677–680.

Poirson, A. B., & Wandell, B. A. (1993). Appearance of
colored patterns: Pattern-color separability. Journal
of the Optical Society of America, A, Optics, Image
& Science, 10, 2458–2470.

Prpic, V., Kniestedt, I., Camilleri, E., Maureira, M.
G., Kristjánsson, Á., & Thornton, I. M. (2019). A
serious game to explore human foraging in a 3D
environment. PLoS One, 14, e0219827.

Raidvee, A., Toom, M., Averin, K., & Allik, J.
(2020). Perception of means, sums, and areas.
Attention, Perception, & Psychophysics, 82, 865–
876.

Rensink, R. A. (2000). The dynamic representation of
scenes. Visual Cognition, 7, 17–42.

Rensink, R. A. (2011). The management of visual
attention in graphic displays (pp. 63–92). In C. Roda
(Ed.), Human attention in digital environments.
Cambridge, UK: University Press.

Rensink, R. A. (2014). On the prospects for a science
of visualization (pp. 147–175). In W. Huang (Ed.),
Handbook of human centric visualization. New
York: Springer.

Rensink, R. A. (2015). A function-centered taxonomy
of visual attention (pp. 347–375). In P. Coates,
& S. Coleman (Eds.), Phenomenal qualities:
Sense, perception, and consciousness. Oxford, UK:
University Press.

Rensink, R. A. (2017). The nature of correlation
perception in scatterplots. Psychonomic Bulletin &
Review, 24, 776–797.

Rensink, R. A., & Baldridge, G. (2010). The perception
of correlation in scatterplots. Computer Graphics
Forum, 29, 1203–1210.

Rosenholtz, R. (2011). What your visual system sees
where you are not looking. Proceedings of SPIE -
The International Society for Optical Engineering
7865. April27–28,2011, Munich, Germany,
doi:10.1117/12.876659.

Rosenholtz, R., Li, Y., & Nakano, L. (2007).
Measuring visual clutter. Journal of Vision, 7, 17,
https://doi.org/10.1167/7.2.17.

Ross, H. E. (1997). On the possible relations between
discriminability and apparent magnitude. British
Journal of Mathematical and Statistical Psychology,
50, 187–203.

Downloaded from jov.arvojournals.org on 08/12/2022

http://doi.org/10.1117/12.876659
https://doi.org/10.1167/7.2.17


Journal of Vision (2021) 21(8):3, 1–18 Rensink 17

Roth, R. E. (2012). Cartographic interaction primitives:
Framework and synthesis. Cartographic Journal,
49, 376–395.

Roth, R. E. (2017). Visual variables (11 pp.). In D.
Richardson, N. Castri, M. F. Goodchild, A.
Kobayashi, W. Liu, & R. A. Marston (Eds.),
International encyclopedia of geography: People, the
earth, environment and technology. Oxford, UK:
Wiley, doi:10.1002/9781118786352.wbieg0761.

Schloss, K. B., Gramazio, C. C., Silverman, A. T.,
Parker, M. L., & Wang, A. S. (2019). Mapping
color to meaning in colormap data visualizations.
IEEE Transactions on Visualization and Computer
Graphics, 25, 810–819.

Schloss, K. B., Witzel, C., & Lai, L. Y. (2020). Blue hues
don’t bring the blues: Questioning conventional
notions of color-emotion associations. Journal
of the Optical Society of America A, 37, 813–
824

Schulz, H.-J., Nocke, T., Heitzler, M., & Schumann,
H. (2013). A design space of visualization tasks.
IEEE Transactions on Visualization and Computer
Graphics, 19, 2366–2375.

Shah, P. (2002). Graph comprehension: The role of
format, content and individual differences (pp.
173–185). In M. Anderson, B. Meyer, & P. Olivier
(Eds.), Diagrammatic representation and reasoning.
New York: Springer.

Shneiderman, B. (1996). The eyes have it: A task by
data type taxonomy for information visualizations
(pp. 336–343). Proceedings of the 1996 IEEE
Symposium on Visual Languages. September 3–6,
1996, Boulder, Colorado.

Simkin, D., & Hastie, R. (1987). An information-
processing analysis of graph perception. Journal of
the American Statistical Association, 82, 454–465.

Skau, D., & Kosara, R. (2016). Arcs, angles, or areas:
Individual data encodings in pie and donut charts.
Computer Graphics Forum, 35, 121–130.

Smallman, H. S., & St. John, M. (2005). Naïve realism:
Limits of realism as a display principle. Proceedings
of the Human Factors and Ergonomics Society
Annual Meeting, 49, 1564–1568.

Smart, S., & Szafir, D. A. (2019). Measuring the
separability of shape, size, and color in scatterplots
(pp. 1–14). Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems, paper
669. May 14–19, 2019, Glasgow, Scotland, UK,
doi:10.1145/3290605.3300899.

Spence, R. (2014). Information visualization: An
introduction. 3rd ed. New York: Springer.

Stone, M., Szafir, D. A., & Setlur, V. (2014). An
engineering model for color difference as a function
of size (pp. 253–258). Color and Imaging Conference

2014. Society for Imaging Science and Technology.
November 3–7, Boston, Massachusetts.

Szafir, D. A. (2017). Modeling color difference
for visualization design. IEEE Transactions on
Visualization and Computer Graphics, 24, 392–401.

Szafir, D. A., Haroz, S., Gleicher, M., & Franconeri,
S. (2016). Four types of ensemble coding in
data visualizations. Journal of Vision, 16, 11,
https://doi.org/10.1167/16.5.11.

Talbot, J., Setlur, V., & Anand, A. (2014). Four
experiments on the perception of bar charts.
IEEE Transactions on Visualization and Computer
Graphics, 20, 2152–2160.

J. Thomas, & K. Cook (Eds.) (2005). Illuminating the
path: A research and development agenda for visual
analytics. Los Alamitos, CA: IEEE Computer
Society Press.

Thornton, I. M., de’Sperati, C., & Kristjánsson, Á.
(2019). The influence of selection modality, display
dynamics and error feedback on patterns of human
foraging. Visual Cognition, 27, 626–648.

Thornton, I. M., Nguyen, T. T., & Kristjánsson, Á.
(2020). Foraging tempo: Human run patterns in
multiple target search are constrained by the rate
of successive responses. Q J Exp Psychol, Sep
16; 1747021820961640. Online ahead of print,
https://doi.org/10.1177/1747021820961640.

Thornton, I. M., & Horowitz, T. S. (2015). Does
action disrupt multiple object tracking (MOT)?
Psihologija, 48, 289–301.

Treisman, A., & Souther, J. (1985). Search asymmetry:
A diagnostic for preattentive processing of
separable features. Journal of Experimental
Psychology: General, 114, 285–310.

Tversky, B. (2011). Visualizing thought. Topics in
Cognitive Science, 3, 499–535.

Ullman, T. D., Spelke, E., Battaglia, P., & Tenenbaum,
J. B. (2017). Mind games: Game engines as an
architecture for intuitive physics. Trends in Cognitive
Sciences, 21, 649–665.

Vinson, N. G. (1999). Design guidelines for landmarks
to support navigation in virtual environments.
Proceedings CHI ’99. New York: ACM Press.

Vozar, S., & Tilbury, D. M. (2014). Driver modeling
for teleoperation with time delay (pp. 3551–3556).
Proceedings of the 19th World Congress, The
International Federation of Automatic Control,
August 24–29, 2014,Cape Town, South Africa.

Ware, C. (2008). Visual thinking for design. Burlington,
MA: Elsevier.

Ware, C. (2012). Information visualization: Perception
for design, 3rd ed. San Francisco: Morgan
Kaufman.

Downloaded from jov.arvojournals.org on 08/12/2022

http://doi.org/10.1002/9781118786352.wbieg0761
http://doi.org/10.1145/3290605.3300899
https://doi.org/10.1167/16.5.11
https://doi.org/10.1177/1747021820961640


Journal of Vision (2021) 21(8):3, 1–18 Rensink 18

Wickens, C. D., & Flach, J. M. (1988). Information
processing (pp. 111–155). In L. Wiener, & D. C.
Nagel (Eds.)Human Factors in Aviation. Cambridge,
MA: Academic Press.

Wickens, C. D., & McCarley, J. S. (2008). Applied
attention theory. Boca Raton, FL: CRC Press.

Wolfe, J. M. (2013). When is it time to move to
the next raspberry bush? Foraging rules in
human visual search. Journal of Vision, 13(3), 10,
https://doi.org/10.1167/13.3.10.

Wolfe, J. M., & Horowitz, T. S. (2004). What attributes
guide the deployment of visual attention and how
do they do it? Nature Reviews Neuroscience, 5,
495–501.

Yang, F., Harrison, L. T., Rensink, R. A., Franconeri,
S. L., & Chang, R. (2019). Correlation judgment
and visualization features: A comparative study.
IEEE Transactions on Visualization and Computer
Graphics, 25, 1474–1488.

Yi, J. S., Kang, Y., Stasko, J. T., & Jacko, J. A. (2007).
Toward a deeper understanding of the role of
interaction in information visualization. IEEE
Transactions on Visualization and Computer
Graphics, 13, 1224–1231.

Yuan, L., Haroz, S., & Franconeri, S. (2019). Perceptual
proxies for extracting averages in data visualizations.
Psychonomic Bulletin & Review, 26, 669–676.

Zacks, J., Levy, E., Tversky, B., & Schiano, D. J. (1998).
Reading bar graphs: Effects of extraneous depth
cues and graphical context. Journal of Experimental
Psychology: Applied, 4, 119–138.

Zacks, J. M, & Franconeri, S. L. (2020). Designing
graphs for decision-makers. Policy Insights from the
Behavioral and Brain Sciences, 7, 52–63.

Ziemkiewicz, C., & Kosara, R. (2008). The shaping
of information by visual metaphors. IEEE
Transactions on Visualization and Computer
Graphics, 14, 1269–1276.

Downloaded from jov.arvojournals.org on 08/12/2022

https://doi.org/10.1167/13.3.10

