Wnt-Frizzled Signaling Is Part of an FGF-Induced Cascade that Promotes Lens Fiber Differentiation

Lucy J. Dawes,1 Yuki Sugiyama,1 Ana S. Tanedo,1 Frank J. Lovicu,1,2 and John W. McAvoy1

PURPOSE. It is well established that lens fiber differentiation depends on an FGF-initiated growth factor signaling cascade. Given that recent studies indicate Wnt-Frizzled/Planar Cell Polarity (Wnt-Fz/PCP) signaling has a role in coordinating the orientation and alignment of fibers, this study set out to investigate the relationship between this pathway and FGF-induced fiber differentiation.

METHODS. Rat lens epithelial explants were cultured with FGF-2. Regulators of Wnt-Fz signaling, secreted frizzled-related protein-1 (Sfrp1), and inhibitor of Wnt production-2 (IWP-2) were applied to assess the role of this pathway in FGF-induced fiber differentiation. A TCF/Leu reporter mouse was used to assess canonical Wnt-Fz/b-catenin signaling.

RESULTS. FGF-induced fiber differentiation was accompanied by upregulation of Wnt-Fz signaling components, Fz3, Fz6, Dishevelled-2 (Dvl2), and Dishevelled-3. During differentiation, Fz and the centrosome/primary cilium translocated to the apical tip/leading edge of similarly polarized groups of cells. Addition of Sfrp1 or IWP-2 to FGF-treated explants inhibited cell elongation and reduced expression of fiber-specific markers, filensin and b-crystallin. Expression of Wnt-Fz signaling components was also reduced and a significant reduction in the active form of Dvl2 indicated inhibition of the pathway. Analysis of the TCF/Leu reporter mouse showed no evidence of canonical Wnt-Fz/b-catenin signaling during FGF-induced fiber differentiation.

CONCLUSIONS. This study shows that Wnt-Fz signaling is a component of the FGF-initiated cascade that regulates fiber differentiation. The presence of groups of fibers with Fz and centrosome/primary cilium polarized to the leading edge of each cell is consistent with a role for noncanonical Wnt-Fz signaling in coordinating polarized behavior of differentiating fibers. (Invest Ophthalmol Vis Sci. 2013;54:1582-1590) DOI: 10.1167/iovs.12-11357
vertebrate and invertebrate systems, it is becoming increasingly clear that noncanonical Wnt signaling also has important roles. In particular, the Wnt-Fz/planar cell polarity (Wnt-Fz/PCP) pathway has been a focus of much attention because of a growing awareness of its importance in coordinating directed cell migration and other oriented cell behaviors that are central to many developmental processes. Our recent studies in the lens indicate that as fibers undergo early stages of elongation, their alignment and orientation depends on the Wnt-Fz/PCP pathway. For example, in mice overexpressing secreted frizzled-related protein 2 (Sfrp2), a well-known regulator of Wnt-Fz signaling, fiber orientation is severely disrupted and this is associated with reduced expression/activation of downstream components of the PCP pathway. Given that FGF triggers fiber differentiation, we propose that a key part of this response involves Wnt-Fz signaling and that this regulates much of the coordinated cytoskeletal dynamics that underlie this process. In support of this, we now show that FGF-induced fiber differentiation in epithelial explants depends on activation of a Wnt-Fz signaling pathway.

Materials and Methods

Animals

All animal procedures were performed in accordance with the Association for Research in Vision and Ophthalmology Statement for the Use of Animals in Ophthalmic and Vision Research and the animal care guidelines published by the Institute for Laboratory Animal Research (Guide for the Care and Use of Laboratory Animals). All studies were approved by the Institutional Ethics Committee of the University of Sydney.

Preparation of Inverted Lens Epithelial Explants

Postnatal day 5 (P5) Wistar rats were sacrificed: eyes were removed and placed in prewarmed 37°C M199 medium with Earle's salts (Gibco; Invitrogen, Carlsbad, CA), supplemented with 50 IU/mL penicillin, 50 μg/mL streptomycin (Invitrogen), 0.2 mM l-arginine, and 2.5 μg/mL Amphotericin B (ThermoScientific, Waltham, MA). With the use of a dissecting microscope and jeweler's forceps, the eyes were torn open at the optic nerve to release the lens. Lens epithelial explants were prepared by gently tearing the posterior lens capsule adjacent to the posterior suture and slowly removing the lens fiber mass. The anterior lens capsules were flattened and pinned in an inverted position to the base of the tissue culture dish such that epithelial cells were in direct contact with the base of the tissue culture dish with their lens capsule facing and exposed directly to the media. These are known as ‘inverted’ explants (see Fig. 3B in Lovicu and McAvoy). After explantation, culture medium was replaced with 1 mL of fresh, equilibrated M199 with the addition of either 50 or 200 ng/mL FGF-2 (R&D Systems, Minneapolis, MN). Control dishes for FGF treatments were supplemented with 0.05% or 0.2% BSA. Explants were maintained at 37°C in 5% CO2 for up to 8 days.

Application of Wnt-Fz Pathway Inhibitors

To determine if Wnt/Fz signaling is key to regulating fiber differentiation, the Wnt-Fz signaling inhibitors secreted frizzled related protein 1 (Sfrp1; R&D Systems) and inhibitor of Wnt production-2/Wnt antagonist II (IWP-2; Merck, Germany) were employed. Human recombinant Sfrp1 has been shown to act as decoy receptor by preventing Wnt ligand from interacting with membrane bound Fz receptor. IWP-2 inhibits cellular Wnt processing and secretion via selective blockage of the membrane bound acyltransferase, porcupine, and has previously been shown to inhibit Dvl2 phosphorylation without induction of axin stability. Lens epithelial explants were treated with either 4 μg/mL Sfrp1 or 20 μM IWP-2 for 4 hours before the addition of 200 ng/mL FGF or 0.2% BSA; explants remained in these culture conditions for 4 days. Control dishes, lacking inhibitor, were supplemented with an equivalent volume of the vehicle, dimethylsulfoxide (DMSO).

Antibodies

Primary antibodies used in this study were as follows: mouse antibodies against E-cadherin (clone 36; BD Transduction Labs, Lexington, KY), β-catenin (clone 14, BD Transduction Labs), GAPDH (HyTest Ltd, Finland) and α-Acetylated Tubulin (T6793; Sigma-Aldrich, St. Louis, MO); rabbit antibodies against β-catenin (H102; Santa Cruz Biotechnology, Santa Cruz, CA), pericentrin (ab4448; Abcam, Cambridge, MA), Dvl2 (3224; Cell Signaling, Danvers, MA), Dvl5 (3218; Cell Signaling), Fz-3 (provided by Jeremy Nathans), Filensin (provided by Roy Quinlan) and β-cystallin (prepared as previously described); and goat antibody against Fz-6 (M-19, Santa Cruz Biotechnology). For Western blot analysis the following horseradish peroxidase (HRP) conjugated secondary antibodies were employed: goat anti-mouse IgG (Upstate, Billerica, MA), goat anti-rabbit IgG (Millipore, Billerica, MA) and rabbit anti-goat IgG (Invitrogen). For immunocytochemistry negative controls of mouse, rabbit and goat whole molecule IgGs were used (Jackson ImmunoResearch Laboratories, Westgrove, PA); secondary antibodies employed were Alexa Fluor 488 or 594-conjugated donkey anti-rabbit, mouse or goat IgG (Invitrogen).

Western Blot Analysis

Lens explants for each Western blotting experiment were obtained from littersmates and extracts prepared from pools of 6 to 9 explants. Following 4 days in experimental conditions, explants were rinsed in cold PBS and lens proteins extracted in RIPA buffer (50 mM Tris-HCl pH 8.0, 150 mM NaCl, 1% Igepal, 0.5% sodium deoxycholate, 0.1% SDS) containing complete mini-protease inhibitor cocktail tablet (Roche Diagnostics, Mannheim, Germany) and 10 mM sodium fluoride. Lysates were precleared by centrifuging at 13,000 rpm at 4°C for 15 minutes, and the protein content of the soluble fraction was determined using an assay kit (QuantiPro BCA Assay Kit; Sigma-Aldrich) according to manufacturer's instructions. Equal amounts of protein per sample were loaded onto 8% SDS-PAGE gels for electrophoresis and transferred onto a polyvinylidene fluoride membrane (Invitrogen; Invitrogen) with a electrophoretic transfer cell (Mini Trans-Blot; Bio-Rad, Hercules, CA). Western blotting was carried out as previously described. Proteins were detected using an enhanced chemiluminescence (ECL) substrate (SuperSignal West Dura Extended Duration ECL Substrate; Thermo-Scientific) and visualized using a G:Box with imaging software (GeneSnap v.6.08; Syngene, Cambridge, UK) for quantification of band intensities.

Immunocytochemistry

Inverted lens epithelial explants were fixed in 100% methanol for 45 seconds at room temperature followed by four successive washes with PBS. Following fixation, explants were washed over and pinned to the base of the same tissue culture dish such that lens cells faced uppermost toward the bathing medium with their capsule closest to the base of the dish. Nonspecific cellular sites were blocked with the addition of normal donkey serum (1:10) in 0.1% BSA in PBS with incubation for 1 hour at room temperature. Primary antibodies (1:50-1:750 dilution) were diluted in PBS containing complete mini-protease inhibitor cocktail tablet (Roche Diagnostics, Mannheim, Germany) and 10 mM sodium fluoride. Lysates were precleared by centrifuging at 13,000 rpm at 4°C for 15 minutes, and the protein content of the soluble fraction was determined using an assay kit (QuantiPro BCA Assay Kit; Sigma-Aldrich) according to manufacturer's instructions. Equal amounts of protein per sample were loaded onto 8% SDS-PAGE gels for electrophoresis and transferred onto a polyvinylidene fluoride membrane (Invitrogen; Invitrogen) with a electrophoretic transfer cell (Mini Trans-Blot; Bio-Rad, Hercules, CA). Western blotting was carried out as previously described. Proteins were detected using an enhanced chemiluminescence (ECL) substrate (SuperSignal West Dura Extended Duration ECL Substrate; Thermo-Scientific) and visualized using a G:Box with imaging software (GeneSnap v.6.08; Syngene, Cambridge, UK) for quantification of band intensities.
Meditec, Jena, Germany) with LSM Image Browser 5 software (Carl Zeiss Meditec). Measurements of optical thickness were taken from the central region of lens explants immunostained for β-catenin. Using a 340 objective a Z-stack function was performed with first and last parameters set before the first appearance of fluorescence signal and loss of all fluorescence respectively. Z-stacks of 0.8-μm intervals were acquired generating 20 to 35 optical slices. Using image browser software (Zeiss LSM Image Browser 5; Carl Zeiss Meditec) Z-stacks were displayed as orthogonal sections merged into an xz reconstruction of the thickness of the Z-stack against the xy image. By moving through the Z-stack and xz image (from apical to basal [capsule] xy view), optical thickness was measured as the distance between the first detection of β-catenin in cell boundaries to last detection.

TCF/Lef Reporter Gene Assay

P2 lenses were collected from TCF/Lef reporter mice, and inverted explants were set up and cultured for 4 days without (controls) or with 200 ng/mL FGF-2 as described above. X-gal staining was conducted according to manufacturer’s instructions (GAL-S; Sigma-Aldrich). After 3 hrs incubation with X-gal reaction solution at 37°C, explants were rinsed and coverslipped. For whole lens X-gal staining, postnatal day 3 eyes were fixed with 2% paraformaldehyde for 30 min and then processed for colour reaction according to the method described previously. Paraffin sections were prepared from stained eyes for histological analysis.

Statistical Analysis

A 2 tailed t-test analysis (Excel software; Microsoft, Redmond, WA) and one-way ANOVA (with Tukey’s posthoc analysis; IBM SPSS Statistics ver. 19 for Windows; SPSS Inc., Chicago, IL) were performed to determine statistical differences between experimental groups, set at \(P \leq 0.05 \).

RESULTS

FGF Upregulates Wnt-Fz Signaling Components

Studies conducted over many years in our laboratory and others have shown that FGF induces rat lens epithelial explants to undergo many of the morphological and molecular changes characteristic of fiber differentiation in vivo. As a first step to investigate involvement of Wnt-Fz signaling in fiber differentiation, we carried out Western blotting analyses on FGF-treated explants. E-cadherin, the epithelial marker, is downregulated. For Dvl2, although both bands showed increased density, the observation that the upper phosphorylated (active Dvl2) band was significantly increased (\(P \leq 0.05 \)) in the presence of FGF indicates that Wnt-Fz signaling is enhanced by FGF (see Supplementary Material and Supplementary Table, http://www.iovs.org/lookup/suppl/doi:10.1167/iovs.12-11357/-/DCSupplemental). For E-cadherin, the band density was substantially reduced by both concentrations of FGF. In the case of Dvl3, Fz3, Fz6, Filensin and E-cadherin both 50 ng/mL and 200 ng/mL showed significant difference compared to control (\(P \leq 0.05 \), 2-tailed t-test).

RESULTS

FGF Upregulates Wnt-Fz Signaling Components

Studies conducted over many years in our laboratory and others have shown that FGF induces rat lens epithelial explants to undergo many of the morphological and molecular changes characteristic of fiber differentiation in vivo. As a first step to investigate involvement of Wnt-Fz signaling in fiber differentiation, we carried out Western blotting analyses on FGF-treated explants. Initially we cultured explants with a half-maximal (50 ng/mL) or maximal (200 ng/mL) fiber differentiating dose of FGF-2 to cover the possibility of major FGF dose-related effects. For Dvl2, although both bands showed increased density, the observation that the upper phosphorylated (active Dvl2) band was significantly increased (\(P \leq 0.05 \)) in the presence of FGF indicates that Wnt-Fz signaling is enhanced by FGF (see Supplementary Material and Supplementary Table, http://www.iovs.org/lookup/suppl/doi:10.1167/iovs.12-11357/-/DCSupplemental). For E-cadherin, the band density was substantially reduced by both concentrations of FGF. In the case of Dvl3, Fz3, Fz6, Filensin and E-cadherin both 50 ng/mL and 200 ng/mL showed significant difference compared to control (\(P \leq 0.05 \), 2-tailed t-test).
Both bands showed an increase in FGF-treated explants; however, the observation that the upper band of Dvl2 was reduced (Fig. 5A, B). During FGF-induced fiber elongation, Fz6 and the centrosome localize to the leading edge of elongating fibers and after 8 days groups of aligned fibers are commonly seen to be similarly polarized (arrows). At higher magnification, strong Fz6 reactivity is evident at the apical tip of each of these fibers and, as indicated by pericentrin reactivity, is intimately associated with the centrosome (B1). Scale bar: (A, B), 20 μm; (A1, B1), 10 μm.

Inhibition of Wnt-Fz Signaling Impacts on FGF-Induced Fiber Differentiation

To determine if the upregulation/activation of Wnt-Fz signaling components was involved in regulating the fiber differentiation process, we introduced modulators of Wnt-Fz signaling into the explant cultures. Previous studies in our laboratory have shown that overexpression of Sfrp2 in lenses of transgenic mice disrupts the orientation/alignment of their fibers. Availability of the closely related Sfrp1 protein allowed us to introduce this modulator of Wnt-Fz signaling into explant cultures and assess its effects on fiber differentiation. FGF treatment induced substantial elongation of cells throughout the explants as shown by acetylated-tubulin immunoreactivity (Fig. 3). This localizes the stabilized microtubules that are a feature of fiber differentiation in vivo. Pericentrin immunoreactivity localizes the centrosome and this identifies the apical tip (leading edge) of each elongated cell in FGF-treated explants (Fig. 3f, inset). Frequently, as in this image, groups of elongated cells as defined by acetylated-tubulin reactivity are seen to be similarly oriented.

Sfrp1 on its own had no effect on the morphology of epithelial cells or their characteristic cobblestone-like packing arrangement (Figs. 5a–c; compare with controls in Fig. 2a). When Sfrp1 was included with FGF the cells did not show the same degree of elongation as seen in explants cultured in FGF alone (Fig. 5; compare d–f with g–i). The inclusion of IWP-2 with FGF had a similar inhibitory effect. This Wnt signaling antagonist was selected to complement the Sfrp1 studies because it works by inhibiting Wnt secretion from cells. As with Sfrp1, the presence of IWP-2 alone had no effect on morphology of cells in explants (Figs. 3j–l); however, when IWP-2 was included with FGF the cells were clearly shorter than cells in explants treated with FGF alone (Fig. 5; compare d–f with m–o). Analysis of β-crystallin immunoreactivity also showed that compared with FGF alone, the presence of either Sfrp1 or IWP-2 substantially reduced accumulation of this fiber-specific marker in explants (Fig. 4). Consistent with inhibition of elongation and β-crystallin accumulation, the explants treated with inhibitors were consistently thinner than explants treated with FGF alone (Table).

Western blots were also conducted to assess the inhibitory effect of IWP-2 (Fig. 5a). In the presence of IWP-2, FGF-enhanced expression of Dvl1 was reduced. Importantly, the upper (phosphorylated) band of Dvl2 was reduced (Fig. 5a).
Taken together, these results provide evidence that the blocking effect of IWP-2 on fiber differentiation is mediated through inhibition of the Wnt-Fz signaling pathway.

In the presence of IWP-2, the FGF-enhanced expression of filensin was also significantly inhibited (Fig. 5). This is consistent with the reduced elongation/differentiation of fibers as shown by diminished immunoreactivity for acetylated-tubulin and β-crystallin in these explants (see Figs. 3, 4). Also as reported earlier, the epithelial marker E-cadherin is substantially reduced as the majority of cells in the explant progress down the fiber differentiation pathway in response to FGE. The presence of IWP-2 does not appear to impact on the expression of E-cadherin in FGF-treated explants indicating that Wnt-Fz signaling is not required for expression of this epithelial marker (Fig. 5).

β-Catenin Signaling in TCF/Lef Reporter Mice

As noted earlier, the translocation of Fz and the centrosome/primary cilium to the leading edge of elongating fibers mimics the situation in vivo when cells shift from the germinative zone into the fiber differentiation compartment below the lens equator. Polarization of Fz and centrosome/primary cilium to the leading edge of the elongating fibers is a morphological feature of Wnt-Fz/PCP signaling that has been implicated in regulating the orientation/alignment of fibers in vivo.15 However, previous studies have reported evidence supporting a role for canonical Wnt-Fz/β-catenin signaling in regulating aspects of fiber differentiation.32 In contrast, studies from a number of laboratories including our own, using the transgenic reporter mouse lines TOP-gal, BAT-gal, and TCF/Lef that are routinely used for assessment of canonical Wnt-Fz signaling has shown a distinct absence of reporter activity in the lens fibers (Fig. 6).14,33–37 Thus, involvement of canonical Wnt-Fz/β-catenin signaling in FGF-induced fiber differentiation is uncertain. To investigate this further, we set up explants from TCF/Lef reporter mice and treated them with FGF to induce fiber differentiation. We assayed for reporter activity by staining for β-galactosidase (gives blue reaction product) after 4 days of culture. In these explants, no blue coloration was evident indicating absence of reporter activity (Figs. 6A–D). Particularly noteworthy was the observation that when FGF-treated explants had multilayered and elongated there was no evidence of blue coloration in any of these cells. Similar results were obtained with explants from P15 mice that were cultured with FGF for 1, 2, or 3 days (data not shown). We also noted that cells from remnants of ciliary body that were left attached to the peripheral lens capsule during explantation, stained blue (Figs. 6A, 6B). This provides a useful positive control because canonical Wnt-Fz/β-catenin signaling activity is prominent in the ciliary body (Fig. 6E), and has been shown to be important for determining formation of ciliary body and iris from periphery of optic cup.38,39 Thus, explants treated with FGF to induce fiber differentiation mimic the situation in vivo, as indicated by reporter mouse lines, that Wnt-Fz/β-catenin signaling does not feature in the fiber differentiation process.

Note that in additional experiments where we exposed explants to Wnt3a in an attempt to induce Wnt/β-catenin signaling, the overwhelming response was negative (see Supplementary Material and Supplementary Figure, http://www.iovs.org/lookup/suppl doi:10.1167/iovs.12-11357/-/DCSupplemental). Taken together, this indicates that lens epithelial cells are strongly resistant to activation of the canonical Wnt signaling pathway.

FIGURE 3. Sfrp1 or IWP-2 inhibits FGF-induced fiber elongation. Explants were cultured in 4 μg/ml Sfrp1 (A–C), 200 ng/ml FGF-2 (D–F), in the presence of both FGF and Sfrp1 (G–I), or in the presence of both FGF and IWP-2 (20 μM, J–L) for 4 days. β-catenin and pericentrin immunoreactivity (A, D, G, J) localizes cell margins and centrosomes, respectively. Acetylated-tubulin reactivity (B, E, H, K) localizes stabilized microtubules and helps visualize extent of cell elongation. In Sfrp1 alone, the cells maintain the cobblestone-like arrangement characteristic of lens epithelial cells in vivo (A–C). In FGF alone, cells show extensive elongation (D–F). Pericentrin reactivity localizes the centrosome and identifies the apical tip of each cell (E inset) and groups of elongated cells are often seen to point in a similar direction (E arrows). When Sfrp1 (G–I) or IWP-2 (M–O) is included with FGF, elongation is not as extensive as in explants with FGF alone. Scale bar: 20 μm.
and Dvl3 during FGF-induced fiber differentiation. We also show that the phosphorylated (active) form of Dvl2 increases during this process. Inclusion of Wnt-Fz signaling inhibitors results in diminished elongation and reduced expression of fiber-specific markers, filensin and β-crystallin. The reduction in active Dvl2 in the presence of the Wnt inhibitor, IWP-2, also supports a causal link between Wnt-Fz signaling and fiber differentiation. Taken together this indicates a role for Wnt-Fz signaling in regulating the fiber differentiation process downstream of FGF induction.

Previous studies with lens explants have also indicated a role for Wnt-Fz signaling in fiber differentiation. Evidence was presented that Wnts promote the morphological aspects of fiber cell differentiation in a process that requires FGF signaling, but is independent of β-catenin. Nuclear localization of β-catenin in differentiating fibers at the lens equator and in FGF-treated explants was also reported. Other studies showed that embryonic lenses of genetically modified mice lacking β-catenin (and thus lacking canonical Wnt signals), had decreased levels of β-crystallin and impaired fiber differentiation. This formed the basis for the proposal that canonical Wnt-Fz/β-catenin signaling has a role in regulating some molecular events in fiber differentiation, notably accumulation of the fiber differentiation marker, β-crystallin. The Lyu and Joo study reported that Wnt3a conditioned medium or vitreous could promote TOPFLASH (TCF reporter) activity in a transiently transfected mouse lens cell line. However, as already noted, the three widely used transgenic reporter mouse lines (TOP-gal, BAT-gal, and TCF/LeF), have shown a distinct absence of reporter activity in the lens fibers (Fig. 6). Moreover, our current studies with the TCF/LeF reporter mice that are commonly used to investigate canonical Wnt signaling in the eye, show that neither of the growth factor treatments used, FGF or Wnt3a, was able to promote signaling activity in explanted lens cells. Thus the current study provides no support for involvement of non-canonical Wnt-Fz signaling in fiber differentiation.

Upregulation and activation of Wnt-Fz signaling during fiber differentiation is accompanied by the translocation of Fz protein from discrete membrane domains in the epithelial precursors (controls) to become prominently localized at the leading edge of elongating fibers. The centrosome/primary cilium, although initially showing no association with Fz, becomes similarly polarized to the leading edge of each elongating fiber (Fig. 2). This is reminiscent of the situation in vivo where, during the epithelial to fiber transition, Fz and centrosome/primary cilium become localized to the apical tip of each elongating fiber as it abuts against the epithelium (see Sugiyama et al. Their intimate association in this region may be important because the centrosome can function as a major docking station with multiple functions in cell signaling and its position next to Fz may be critical for polarized cell behavior, such as formation of protrusive processes during directed cell migration.

TABLE. Measurement of the Optical Thickness of Explants (from β-catenin detection) Following Application of Wnt-Fz Signaling Inhibitors

<table>
<thead>
<tr>
<th>Experimental Condition</th>
<th>Optical Thickness of Explant, μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>14.88 ± 0.29</td>
</tr>
<tr>
<td>FGF (200 ng/mL)</td>
<td>26.16 ± 0.66</td>
</tr>
<tr>
<td>Sfrp1 (4 μg/mL)</td>
<td>16.46 ± 0.94</td>
</tr>
<tr>
<td>Sfrp1 + FGF</td>
<td>18.94 ± 1.11</td>
</tr>
<tr>
<td>IWP-2 (20 μM)</td>
<td>13.07 ± 0.36</td>
</tr>
<tr>
<td>IWP-2 + FGF*</td>
<td>16.25 ± 1.01</td>
</tr>
</tbody>
</table>

Values in this table are derived from mean ± SEM (n = 4).

* Significant difference between Sfrp/IWP-2 plus FGF compared with FGF alone group (P ≤ 0.05, ANOVA with Tukey’s test).
migration. Activated Dvl is likely to be key mediators in this context because they are known to be required for apical docking of basal bodies/centrosome, as well as functioning as a scaffold for cytoskeletal components and associated kinases, phosphatases, and adaptor proteins. Furthermore, given that studies in other systems show that Dvl is involved in the stabilization of microtubules, increased Dvl activity may be important for promoting local orientation and stabilization of microtubules during fiber differentiation. This is consistent with strong localization of acetylated-tubulin (indicating stabilized microtubules) associated with the centrosome at the leading edge (apical tips) of the elongating fibers (Fig. 3F).

Regulation of Dvl may also be one way that FGF influences Wnt-Fz signaling as studies in other developmental systems have shown that FGF is required for membrane localization of Dvl as well as polarization of cytoskeletal components during morphogenetic movements. While such a paradigm provides a plausible basis for their cooperation in the lens, other studies indicate additional possibilities. For example, it has been demonstrated that Wnt and FGF signals can be integrated to achieve robust expression of transcription factors that are important for coordinating convergent extension (depends on PCP signaling) at the neural plate border in Zebrafish. Given these diverse possibilities, further work will be needed to determine the mechanism(s) whereby FGF regulates Wnt-Fz signaling in the current context.

In summary, this in vitro study shows that FGF activates Wnt-Fz signaling during lens fiber differentiation. This is
evident from FGF-induced upregulation of key Wnt-Fz signaling components, Dvl2/3 and Fz5/6 as well as by promoting activation of Dvl. During FGF-induced Wnt-Fz signaling, in groups of elongating cells, Fz and the centrosome/primary cilium translocate to the apical tip/leading edge of each cell. Our previous studies have shown that PCP operates in the lens. The current study now shows that FGF promotes processes that reiterate features of the polarized behavior of differentiating fibers in vivo and is consistent with FGF preferentially promoting the noncanonical Wnt-Fz/PCP pathway rather than the canonical Wnt-Fz/β-catenin pathway. The inhibitor studies also show that Wnt-Fz signaling is downstream of FGF-induced fiber differentiation and given its known cytoskeletal organizing role in other systems, these results are consistent with noncanonical Wnt-Fz/PCP signaling organizing the fiber cell cytoskeleton and coordinating polarized behavior of fibers during lens morphogenesis and growth.

Acknowledgments
Thanks to Daniel Dufort for his gift of the TCF/Lef reporter mice and to Elizabeth Shelley and Li Wen for assistance with some of the procedures.

References

47. Garnett AT, Square TA, Medeiros DMBMP. Wnt and FGF signals are integrated through evolutionarily conserved enhancers to achieve robust expression of Pax3 and Zic genes at the zebrafish neural plate border. *Development*. 2012;139:4220–4231.