Genetic and Environmental Risk Factors for Age-Related Macular Degeneration in Persons 90 Years and Older

Lebriz Ersoy,1 Tina Ristau,1 Moritz Hahn,2 Marcus Karlstetter,1 Thomas Langmann,1 Katharina Dröge,1 Albert Caramoy,1 Anneke I. den Hollander,3 and Sascha Fauser1

1Department of Ophthalmology, University Hospital of Cologne, Cologne, Germany
2Institute of Medical Statistics, Informatics and Epidemiology, University of Cologne, Cologne, Germany
3Departments of Ophthalmology and Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands

Correspondence: Sascha Fauser, University Hospital of Cologne, Department of Ophthalmology, Kerpener Strasse 62, 50924 Cologne, Germany; Sascha.fauser@uk-koeln.de.
Submitted: October 11, 2013
Accepted: February 17, 2014

Purpose. We studied associations of genetic polymorphisms in age-related maculopathy susceptibility 2 (ARMS2) and complement factor H (CFH) in nonagenarians with age-related macular degeneration (AMD).

Methods. This case-control study comprised 2737 persons (1204 controls, 1433 AMD cases), including 166 nonagenarians (52 controls, 114 AMD cases). Single nucleotide polymorphisms (SNPs) in the genes ARMS2 and CFH were determined. Risk scores were computed by multiple logistic regression analysis, including genetic and environmental risk factors (smoking, hypertension, body mass index, diabetes) for different age groups (<70, 70–79, 80–89, ≥90 years [nonagenarians]).

Results. In nonagenarians, ARMS2 showed the weakest associations with AMD (odds ratio [OR] = 1.52, P = 0.127) compared to the other groups (OR, 70 years = 2.23, P = 1.05 × 10–13; OR, 70–79 years = 2.70, P = 1.00 × 10–13; OR, 80–89 years = 3.11, P = 6.56 × 10–8). For CFH, ORs for AMD increased with age (<70 years OR = 1.96, P = 1.80 × 10–11; 70–79 years OR = 1.89, P = 4.48 × 10–13; 80–89 years OR = 2.71, P = 1.28 × 10–15), but decreased again in the nonagenarians (OR = 2.21, P = 0.005). Compared to the group <70 years, reduced minor allele frequencies (MAFs) for AMD patients were observed in the nonagenarians (CFH 0.54 vs. 0.45, P = 0.009; ARMS2 0.44 vs. 0.29, P = 2.97 × 10–5), while the MAFs in controls were not significantly different. The genetic risk score revealed the lowest discriminative power in the nonagenarians with an area-under-curve (AUC) of 0.658 for receiver-operating characteristics (AUC 80–89 years = 0.768, 70–79 years = 0.704, <70 years = 0.682), while no significant difference was seen for the environmental risk score (AUC <70 years = 0.579, 70–79 years = 0.567, 80–89 years = 0.600, >90 years = 0.608).

Conclusions. Risk alleles in CFH and ARMS2 have a significantly smaller effect on AMD development in nonagenarians, while environmental factors retain a similar effect.

Keywords: age-related macular degeneration, age, genetics

Age-related macular degeneration is one of the most common age-related diseases and the leading cause of severe vision impairment in developed countries. Vision loss occurs mostly in advanced stages, either due to geographic atrophy of the retinal pigment epithelium or due to neovascular AMD with the formation of choroidal neovascularization (CNV). Although the etiology of AMD is known to be multifactorial, involving a complex interaction between genetic predisposition and environmental factors, such as age, cigarette smoking, body mass index (BMI), diabetes, and hypertension, the genetic variants associated with AMD account for approximately 70% of the risk for the condition. Hence, substantial effort has been made in understanding the genetics of AMD by identifying several AMD susceptibility loci over the past years. The two major loci were identified at chromosomes 1q31 and 10q26. These two loci explain approximately half of the heritability of AMD. They involve variants in the complement factor H (CFH) gene, the main regulator of the alternative complement pathway, and polymorphisms on chromosome 10q26 encompassing the age-related maculopathy susceptibility 2 (ARMS2) gene, and the adjacent high-temperature requirement factor A1 (HTRA1) gene, which may alter the integrity of Bruch’s membrane. Age is of high importance in the pathogenesis of AMD, with a prevalence of AMD in nonagenarians of almost 60%.

In this study, the impact of genetic associations and environmental influences in nonagenarian AMD patients in comparison with other age groups was investigated. For this purpose, four different age groups (<70, 70–79, and 80–89 years, and nonagenarians) were analyzed for risk variants in CFH and ARMS2, and known environmental risk factors, such as hypertension, BMI, cigarette smoking, and diabetes mellitus.

Patients and Methods

Study Population

The current study was part of the European Genetic Database (EUGENDA), available in the public domain at www.eugenda.
Risk Factors for Age-Related Macular Degeneration

Statistical Analysis

All calculations were carried out using SPSS software version 21.0 (IBM Software and Systems, Armonk, NY). Genetic associations of \textit{CFH} and \textit{ARMS2} with AMD risk were assessed by logistic regression analysis. Genotypes were coded as the number of AMD risk alleles (0, 1, and 2). For the logistic regression analyses of environmental factors, we included smoking (ever/never smoker), hypertension, diabetes, BMI (normal/overweight/obese), and sex. Odds ratios (OR) and 95% confidence intervals (CI) were calculated for genetic risk alleles and environmental risk factors in unadjusted and adjusted models. Based on the stepwise logistic regression for genetic and environmental factors, risk scores were calculated with three logistic regression equations:

\[
\logit(p_1) = \log\left[\frac{p_1}{1-p_1}\right] = \beta_0 + \beta_1*\text{ARMS2} + \beta_2*\text{CFH},
\]

where \(p_1\) = risk for AMD under genetic influence;

\[
\logit(p_2) = \log\left[\frac{p_2}{1-p_2}\right] = \beta_0 + \beta_1*\text{smoking} + \beta_2*\text{hypertension} + \beta_3*\text{BMI} + \beta_4*\text{diabetes} + \beta_5*\text{sex},
\]

where \(p_2\) = risk for AMD under environmental influence; and

\[
\logit(p_3) = \log\left[\frac{p_3}{1-p_3}\right] = \beta_0 + \beta_1*\text{ARMS2} + \beta_2*\text{CFH} + \beta_3*\text{smoking} + \beta_4*\text{hypertension} + \beta_5*\text{BMI} + \beta_6*\text{diabetes} + \beta_7*\text{sex},
\]

where \(p_3\) = risk for AMD under genetic and environmental influence.

An estimate for the probability of AMD for each risk score was calculated with the equation \(P = \exp(\logit(P))/ (1 + \exp(\logit(P)))\) and used to determine the receiver-operating-characteristics (ROC) curve.

RESULTS

Demographics

This study included 2737 persons. The nonagenarian group included 166 persons with at least 90 years of age (92.76 ± 2.46 years; range, 90–100 years). Characteristics of all age groups are summarized in Table 1.

Associations of \textit{ARMS2} and \textit{CFH} With AMD in Different Age Groups

Associations with AMD were determined for the SNPs rs10490924 in \textit{ARMS2} and rs1061170 in \textit{CFH} for different age groups using logistic regression analysis (Table 2). The weakest association for \textit{ARMS2} was observed in the group of nonagenarians. Similarly, the association of \textit{CFH} with AMD (and late AMD) increased continuously from the youngest group to the group of “80–89 years” and dropped down for persons aged more than 90 years. An additional analysis adjusting for sex, site, smoking, hypertension, BMI, and diabetes yielded similar results (Table 3).

Different Discriminative Ability of Computed Risk Scores for Different Age Groups

Based on genetic risk alleles and environmental factors, three multiple logistic regression models were generated. In the first...
model risk alleles of the two SNPs in *CFH* and *ARMS2* were used as predictive variables to compute genetic risk scores for each individual (model 1). An environmental risk score was calculated in a similar fashion (model 2). A general risk score was generated from all genetic and environmental factors (model 3, Table 4).

The highest classification efficiency in model 1 was observed in the group “80–89 years” (area-under-curve (AUC) = 0.768 for AMD versus No AMD, AUC = 0.797 for late AMD versus No AMD) and diminished in the nonagenarian group (AUC = 0.659 for AMD versus No AMD, AUC = 0.717 for late AMD versus No AMD). Analysis of only environmental risk score (model 2) showed poor classification efficiency for all age groups and the combined model 3 revealed similar results to model 1 with only marginally better classification.

Differences of Genetic Associations Within Different Age Groups

The Figure presents the minor allele frequencies (MAFs) in different age groups. Minor allele frequencies are compared using χ^2 test. P values of the χ^2 test comparing “<70 years” with “nonagenarians” are presented as P_1 for no AMD cases, P_2 for AMD cases, and P_3 for late AMD cases.

Table 1. Demographics

<table>
<thead>
<tr>
<th></th>
<th><70 y</th>
<th>70–79 y</th>
<th>80–89 y</th>
<th>Nonagenarians</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No AMD</td>
<td>AMD</td>
<td>No AMD</td>
<td>AMD</td>
</tr>
<tr>
<td>n</td>
<td>669</td>
<td>315</td>
<td>496</td>
<td>603</td>
</tr>
<tr>
<td>Sex (n%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>398/40.5%</td>
<td>189/60.0%</td>
<td>357/59.2%</td>
<td>257/64.1%</td>
</tr>
<tr>
<td>Male</td>
<td>271/59.5%</td>
<td>126/40.0%</td>
<td>246/40.8%</td>
<td>14/55.9%</td>
</tr>
<tr>
<td>Mean age ± SD</td>
<td>64.68 ± 4.13</td>
<td>65.06 ± 3.77</td>
<td>73.48 ± 2.76</td>
<td>82.58 ± 2.42</td>
</tr>
<tr>
<td>Site (n%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>355/50.1%</td>
<td>135/42.9%</td>
<td>235/47.4%</td>
<td>38/45.7%</td>
</tr>
<tr>
<td>UMCN</td>
<td>354/49.9%</td>
<td>180/57.1%</td>
<td>261/52.6%</td>
<td>319/52.9%</td>
</tr>
<tr>
<td>Smoking</td>
<td>385/59.3%</td>
<td>177/56.2%</td>
<td>271/54.6%</td>
<td>41/50.0%</td>
</tr>
<tr>
<td>Hypertension</td>
<td>231/35.1%</td>
<td>97/33.1%</td>
<td>211/43.1%</td>
<td>38/44.7%</td>
</tr>
<tr>
<td>Diabetes</td>
<td>45/6.8%</td>
<td>22/7.5%</td>
<td>42/8.6%</td>
<td>7/8.2%</td>
</tr>
<tr>
<td>BMI <25</td>
<td>276/44.0%</td>
<td>99/36.8%</td>
<td>158/34.4%</td>
<td>189/36.1%</td>
</tr>
<tr>
<td>25–29.9</td>
<td>258/41.1%</td>
<td>121/45.0%</td>
<td>235/51.2%</td>
<td>40/51.3%</td>
</tr>
<tr>
<td>≥30</td>
<td>93/14.8%</td>
<td>49/18.2%</td>
<td>66/14.4%</td>
<td>78/14.9%</td>
</tr>
</tbody>
</table>

UK, University Hospital of Cologne, Germany; UMCN, The Radboud University Nijmegen, the Netherlands.
Discussion

In this study we analyzed the age-dependent association of genetic and environmental risk factors for AMD, and compared very old persons aged 90–100 years with different age groups. While the associations for the two major genetic risk factors ARMS2 (rs10490924) and CFH (rs1061170) were strong in persons aged less than 90 years, with continuously rising OR pattern from the youngest group to the group of “80–89” years, this association was much weaker for the nonagenarian group. We also found significantly reduced risk allele frequencies in nonagenarians compared to the youngest group for the AMD phenotype, although the risk allele frequencies in controls remained relatively stable without significant difference. These findings were supported by risk score calculations using logistic regression model, demonstrating that CFH and ARMS2 risks alleles have a weaker role in AMD at very advanced age. In addition, no difference in environmental factors was observed between nonagenarians and younger AMD patients. This suggested that other genetic and environmental factors may be involved in the development of AMD in this age group. In addition, one can speculate that risk alleles in CFH and ARMS2 are associated with increased mortality.
A similar age-dependent association of CFH was described previously by Adams et al.17 where the prevalence of AMD in persons homozygous for the CFH risk variant was decreased in older persons (age range from 48–86 years). Grassmann et al.18 also reported relatively lower associations of 13 AMD risk variants with AMD in an elderly group (>75 years) in comparison with a younger group (<75 years). The phenomenon of genetic differences between younger and older populations is widely described in longevity studies and explained as a result of differential survival, with an enrichment of "longevity genes" in the elderly.19,20 Lower effect sizes (ORs) of genetic risk alleles in ARMS2 and CFH on the development of AMD, and lower risk allele frequencies in nonagenarian AMD patients may be caused by increased mortality of AMD patients carrying these alleles. Differential survival by AMD has been investigated in other studies. Some found an increased mortality risk in persons with AMD,21,22 while others did not find this association.23,24 The AREDS Report No. 13 showed an association of AMD with increased mortality even after adjustment for potentially important covariates.7 In contrast, in the Rotterdam Study, shorter mortality even after adjustment for potentially important factors also affecting mortality: There was no significant association of AMD with mortality after adjustment for various systemic factors.24 The CFH risk variant could be associated with an increased mortality27 by its reduced capacity to downregulate complement activation and control inflammation.28 In a longitudinal study of nonagenarians, increased mortality was observed among the carriers of the CFH rs1061170 allele independent of comorbidities.27

The results presented here are based on a case-control study, and, thus, do not allow the analysis of longitudinal or epidemiologic parameters. Our study included a large nonagenarian group, who primarily came from a small area in Germany, which may increase the chance of a selection bias, especially as a bias toward more healthy and mobile nonagenarians is possible. Furthermore, our analysis was limited to two genetic polymorphisms and few environmental factors. An extended analysis including other genetic and environmental factors may identify effects that explain AMD in the nonagenarian population. It must be noted that environmental factors may change over time as well. Therefore, the nonagenarian group cannot be matched easily with younger populations. For example, it is unknown what time span in life nonagenarian group cannot be matched easily with younger group (75 years). The phenomenon of genetic differences between younger and older populations is widely described in longevity studies and explained as a result of differential survival, with an enrichment of "longevity genes" in the elderly.19,20 Lower effect sizes (ORs) of genetic risk alleles in ARMS2 and CFH on the development of AMD, and lower risk allele frequencies in nonagenarian AMD patients may be caused by increased mortality of AMD patients carrying these alleles. Differential survival by AMD has been investigated in other studies. Some found an increased mortality risk in persons with AMD,21,22 while others did not find this association.23,24 The AREDS Report No. 13 showed an association of AMD with increased mortality even after adjustment for potentially important covariates.7 In contrast, in the Rotterdam Study, shorter mortality even after adjustment for various systemic factors also affecting mortality: There was no significant association of AMD with mortality after adjustment for various systemic factors.24 The CFH risk variant could be associated with an increased mortality27 by its reduced capacity to downregulate complement activation and control inflammation.28 In a longitudinal study of nonagenarians, increased mortality was observed among the carriers of the CFH rs1061170 allele independent of comorbidities.27

The results presented here are based on a case-control study, and, thus, do not allow the analysis of longitudinal or epidemiologic parameters. Our study included a large nonagenarian group, who primarily came from a small area in Germany, which may increase the chance of a selection bias, especially as a bias toward more healthy and mobile nonagenarians is possible. Furthermore, our analysis was limited to two genetic polymorphisms and few environmental factors. An extended analysis including other genetic and environmental factors may identify effects that explain AMD in the nonagenarian population. It must be noted that environmental factors may change over time as well. Therefore, the nonagenarian group cannot be matched easily with younger populations. For example, it is unknown what time span in life nonagenarian group cannot be matched easily with younger group (75 years). The phenomenon of genetic differences between younger and older populations is widely described in longevity studies and explained as a result of differential survival, with an enrichment of "longevity genes" in the elderly.19,20 Lower effect sizes (ORs) of genetic risk alleles in ARMS2 and CFH on the development of AMD, and lower risk allele frequencies in nonagenarian AMD patients may be caused by increased mortality of AMD patients carrying these alleles. Differential survival by AMD has been investigated in other studies. Some found an increased mortality risk in persons with AMD,21,22 while others did not find this association.23,24 The AREDS Report No. 13 showed an association of AMD with increased mortality even after adjustment for potentially important covariates.7 In contrast, in the Rotterdam Study, shorter survival of AMD patients was explained by systemic risk factors also affecting mortality: There was no significant association of AMD with mortality after adjustment for various systemic factors.24 The CFH risk variant could be associated with an increased mortality27 by its reduced capacity to downregulate complement activation and control inflammation.28 In a longitudinal study of nonagenarians, increased mortality was observed among the carriers of the CFH rs1061170 allele independent of comorbidities.27

In summary, in our study genetic risk alleles in CFH and ARMS2 showed significantly smaller effect on AMD development in nonagenarians, while environmental factors retained a similar effect in advanced age. Larger epidemiologic studies with more statistical power are needed to investigate the role of CFH and ARMS2 in nonagenarians and to validate our results. The verification of the enrichment of nonrisk allele frequencies of CFH and ARMS2 in a long-lived population may indicate a genetic influence of CFH and ARMS2 on mortality.

Acknowledgments

Disclosure: L. Ersoy, None; T. Ristau, None; M. Hahn, None; M. Karlstetter, None; T. Langmann, None; K. Dröge, None; A. Caramoy, None; A. J. den Hollander, None; S. Fauser, None

References