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PURPOSE. Infantile nystagmus (IN) consists of largely horizontal oscillations of the eyes that
usually begin shortly after birth. The condition is almost always associated with lower-than-
normal visual acuity (VA). This is assumed to be at least partially due to motion blur induced
by the eye movements. Here, we investigated the effect of image motion on VA.

METHODS. Grating stimuli were presented, illuminated by either multiple tachistoscopic
flashes (0.76 ms) to circumvent retinal image motion, or under constant illumination, to
subjects with horizontal idiopathic IN and controls. A staircase procedure was used to
estimate VA (by judging direction of tilt) under each condition. Orientation-specific effects
were investigated by testing gratings oriented about both the horizontal and vertical axes.

RESULTS. Nystagmats had poorer VA than controls under both constant and tachistoscopic
illumination. Neither group showed a significant difference in VA between illumination
conditions. Nystagmats performed worse for vertically oriented gratings, even under
tachistoscopic conditions (P < 0.01), but there was no significant effect of orientation in
controls.

CONCLUSIONS. The fact that VA was not significantly affected by either illumination condition
strongly suggests that the eye movements themselves do not significantly degrade VA in adults
with IN. Treatments and therapies that seek to modify and/or reduce eye movements may
therefore be fundamentally limited in any improvement that can be achieved with respect to
VA.
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Infantile nystagmus (IN) describes a regular, repetitive
movement of the eyes. It usually develops within the first 6

months of life, causing ocular oscillations that are constant and
persist throughout life. While many individuals with IN have a
comorbid pathology of the visual pathway, approximately 30%
appear not to and have been labeled as ‘‘idiopathic.’’1 Despite
the absence of any other detectable pathology, idiopathic cases
of IN are typically associated with a moderate reduction in
visual acuity (VA), which has been assumed to be caused by the
eye movements themselves. For example, the Nystagmus
Acuity Function (NAF) and eXpanded NAF (NAFX) are outcome
measures that quantify eye movement characteristics in order
to predict VA.2,3 Yet, it is not actually known to what extent
image motion affects VA in individuals with IN.

Infantile nystagmus waveforms typically exhibit so-called
foveations—periods during which the eyes move more slowly.
It has been presumed that these periods exist to facilitate better
VA by reducing motion blur induced by the eye movements.
Nonetheless, the eyes are never truly stable for more than a few
milliseconds. In normal subjects, an increase in image velocity
(above 2.5 deg/s) causes a concordant reduction in VA and
perceived contrast intensity, regardless of the direction of
movement.4–7 One previous study has examined the effects of
comparable (nystagmoid) image motion on the vision of normal
subjects, and found a decline in VA at velocities above 3 deg/s.8

While many nystagmus waveforms contain foveation periods

with velocities below this threshold, some do not, even in
subjects with idiopathic IN. Previous studies2,3,9,10 have
demonstrated a strong intersubject correlation between
waveform dynamics and VA. In addition, in experiments in
which normally sighted subjects are presented with image
motion similar to that produced by nystagmus waveforms, VA
improves as simulated foveation period duration increas-
es.8,11–13 This wealth of evidence has led to the assumption
that poor waveform dynamics (i.e., brief or high-velocity
foveations) reduce VA. Many clinical therapies have been
predicated on this assumption.2,14,15 Nonetheless, in principle,
it remains possible that the reverse is true: that poor VA may
result in the development of a waveform with less accurate,
briefer foveations.16

Jin and colleagues17 have demonstrated that a small flash of
light is equally likely to be perceived at all times regardless of
when it is presented during the nystagmus waveform.
Furthermore, images stabilized on the retina, afterimages of
bright flashes, and migraine auras are occasionally perceived as
continuously moving in individuals with IN.18,19 This evidence
suggests that visual perception is continuous throughout the
slow phases of nystagmus as well as during foveations. Chung
et al.20 have found that normal subjects presented with an
image moving in a nystagmoid fashion have improved VA when
the image is shown during the simulated foveations but hidden
for the remainder of the slow phases. One might therefore
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expect VA to be similarly degraded by motion blur during the
entire slow phase in individuals with IN.

Here, we sought to measure VA in adults with IN in the
absence of image motion, by using briefly flashed gratings in an
otherwise dark environment. Abadi and King-Smith21 have
adopted a similar approach. They have determined the
luminance required to detect the presence of a single line
under continuous and tachistoscopic (0.2 ms) conditions; data
were derived from four individuals with IN and three control
subjects. Visual stimuli were presented to both groups with a
brief flash of light to eliminate image motion, so that the
impact of image motion on visual sensitivity could be
estimated. They have found that sensitivity to a 168 long line
oriented in the same axis as the nystagmus is higher than to a
line oriented in the orthogonal axis, which is attributed to
meridional amblyopia. However, the relationship between the
tachistoscopic and continuous presentations is not discussed,
and the sensitivity measure used (i.e., relative sensitivity)
cannot be interpreted clinically. Therefore, we used gratings to
directly measure the impact of image motion on VA.

METHODS

Seventeen subjects with horizontal idiopathic IN volunteered
for the study. First, the diagnosis of idiopathic IN as reported by
the subject or by their ophthalmologist was investigated by an
optometrist using high-speed eye movement recording, oph-
thalmoscopy, optical coherence tomography, and a detailed
family history. Subjects with nystagmus showing any signs of
coexisting ocular pathology other than strabismus were
excluded. Following these examinations, four were excluded
on the basis of eye movement recordings (one with gaze-
evoked nystagmus but no nystagmus in the primary position;
three with fusion maldevelopment nystagmus syndrome), two
were excluded on the basis of history (achromatopsia and
acquired nystagmus), one was excluded owing to iris
transillumination (suggesting albinism), and one was excluded
owing to having active pathology (Fuchs’ endothelial dystro-
phy). Nine subjects with IN remained to participate in the
study (three females, aged 21–69 years; mean, 43 years). Nine
normally sighted individuals with no history of ocular disease
were recruited (four females, aged 21–48 years; mean, 28
years). The investigation was carried out in accordance with
the Declaration of Helsinki; informed consent was obtained
from the subjects after explanation of the nature and possible
consequences of the study. Ethical approval was granted by the
Cardiff School of Optometry and Vision Sciences Human
Research Ethics Committee.

First, clinical monocular VA of each eye was measured by
using a self-illuminated logMAR chart at 3 m under clinical
conditions. The eye with the best VA was then used as the test
eye. Subjects with equal VA had their dominant eye tested, as
determined by investigation of suppression using a distance
Mallett unit. In the case of equidominance, the right eye was
tested by default. For the test eye, habitual distance spectacle
correction was worn, or refracted correction was provided if
refractive error exceeded 60.50 diopters (mean sphere) from
the habitual correction. The nontest eye was patched.

Subjects were seated 2 m in front of a 128 aperture in the
center of a white cardboard mask, through which square-wave
gratings were presented (Fig. 1). Large gratings were used in
order to ensure that the participant’s gaze would be directed
toward similar visual stimuli at all times, regardless of eye
position during the nystagmus cycle. In addition, gratings
provide a robust measure of VA, relying solely on resolution
rather than recognition as in the case of optotypes. Twenty
square-wave gratings were produced by a high-quality profes-

sional printer (RA-4 process, Durst Epsilon photographic
printer; Durst Image Technology UK Ltd., Surrey, UK) with
fundamental spatial frequencies ranging from �0.46 to 1.48
logMAR on heat-treated, nonglossy photographic card large
enough to fill the 128 aperture.

Four small bull’s-eye targets were arranged around the
aperture at 908 intervals, providing reference axes (horizontal
and vertical) to aid in judgment of tilt. The bull’s-eye targets
were illuminated by spots of light from a projector, situated
behind the subject.

Gratings were illuminated either constantly, by a lamp
providing 1.62 log cd/m2, or tachistoscopically by an unlimited
number of flashes each lasting 0.76 (60.01) ms, from a Metz
Mecablitz 76 MZ-5 flash unit (Metz, Zirndorf, Germany) with an
output of 4.64 cd�s/m2. Flash brightness was empirically
adjusted in a pilot experiment to provide VA approximately
equal to that obtained under constant illumination for one
normally sighted individual. Assuming an eye rotating at 14
deg/s (the average ocular velocity in IN22), a flash of this
duration would cause only 0.018 of image smear (allowing a
maximum possible VA of �0.19 logMAR). The flash was
strobed, with the delay between flashes varying randomly
between 2 to 6 Hz in order to prevent flash-timing prediction.

For each presentation, gratings were automatically tilted on
a motorized platform either 58 up/down from horizontal or
left/right from vertical. Figure 2 shows the tilting mechanism
with the aperture removed. Subjects were allowed as much
time (or as many flashes) as desired before reporting the
perceived tilt direction of each presentation, using a response
box. No feedback was given for correct or incorrect responses.
The finest grating available that provided a VA equivalent to or
worse than the subject’s clinical VA (i.e., slightly coarser) was
used for the first presentation. Visual acuity was estimated by
using a two-alternative forced choice transformed up–down
psychophysical staircase procedure of eight reversals with a
three-up/one-down criterion. The direction of tilt for any given
presentation was decided by combined Gellerman-Fellows
sequences.23 Grating reorientation and flash delivery was
automated and computer controlled. The computer identified
which grating was to be used next, and the gratings were then
physically replaced. Visual acuity was estimated as the mean of
the final six staircase reversals.24

As mentioned above, this procedure was performed under
two different lighting conditions, with gratings oriented about
two axes:

FIGURE 1. Photograph of the aperture frame illuminated by the flash
unit, with a grating mounted inside (tilted 58 up to the left), as viewed
by subjects. The bull’s-eye targets serving as horizontal and vertical axis
references can be seen around the grating edge.
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� Constant horizontal: Gratings oriented 658 about the
horizontal axis, under constant illumination;

� Tachistoscopic horizontal: Gratings oriented 658 about
the horizontal axis, illuminated tachistoscopically;

� Constant vertical: Gratings oriented 658 about the
vertical axis, under constant illumination; and

� Tachistoscopic vertical: Gratings oriented 658 about the
vertical axis, illuminated tachistoscopically.

Test presentation order was randomized.

RESULTS

The Table shows the data obtained from all 18 subjects,
including clinical VA and, for each of the four conditions,
grating acuity (logMAR).

The data from the Table are summarized in Figure 3.
Figure 3 shows that, under all illumination conditions and

orientations, subjects with idiopathic IN performed significant-
ly worse than controls (all P < 0.005). Subjects with idiopathic

IN performed worse for vertically oriented gratings, whereas
controls did not show an orientation effect (see below). Most
importantly, illumination type did not affect VA for either
group. Note that no effect of illumination was expected or
observed in the control group, since the brightness of the flash
was adjusted in a pilot experiment to give approximately the
same VA.

Tachistoscopic Versus Constant Illumination

The effect of tachistoscopic presentation on VA was analyzed
by using paired samples t-tests. Tachistoscopic presentation
caused no significant difference in VA in controls for either
orientation (horizontal: P ¼ 0.6224; vertical: P ¼ 0.0807).
Similarly, in nystagmats, there was no significant difference
between lighting conditions for either orientation (horizontal:
P ¼ 0.2311; vertical: P ¼ 0.2431).

Effect of Orientation

Paired samples t-tests indicate a significant orientation effect in
nystagmats under both constant (P ¼ 0.0076) and tachisto-
scopic (P ¼ 0.0188) conditions. For both lighting conditions,
near-horizontal grating acuity was better than that for near-
vertical gratings. However, the VA for control subjects was not
significantly different regardless of orientation under both
conditions (P ¼ 0.8672 for constant light and P ¼ 0.4426 for
tachistoscopic presentation).

DISCUSSION

Under all lighting conditions and stimulus orientations, VA was
worse for subjects with idiopathic IN than controls. Crucially,
the fact that VA did not improve under tachistoscopic
illumination suggests that image motion may not be the

limiting factor to VA in IN. We found no significant difference
in VA between constant and tachistoscopic illumination, even

for vertically oriented gratings. Since all the nystagmats in this
study had primarily horizontal nystagmus, if motion blur were
a limiting factor to visual perception, one would have expected
vertically oriented gratings to be clearer under tachistoscopic

FIGURE 2. Computer-controlled platform used for automating grating
orientation, shown here with the aperture removed.

TABLE. VA (logMAR) Recorded for All Subjects

Subject Sex Age, y

Clinical

VA

Constant

Horizontal

Constant

Vertical

Tachistoscopic

Horizontal

Tachistoscopic

Vertical

Idiopathic IN GT2 M 59 0.78 0.80 0.86 0.70 0.91

DB M 53 0.64 0.65 0.65 0.80 0.65

JT M 24 0.42 0.21 0.33 0.33 0.41

SW F 69 0.16 0.21 0.37 0.17 0.34

JC2 F 54 0.54 0.42 0.53 0.34 0.54

GS M 28 0.54 0.39 0.51 0.28 0.42

NB M 44 0.26 �0.06 0.31 �0.11 0.33

DP M 38 0.60 0.16 0.54 �0.02 0.68

VW F 21 0.34 0.36 0.46 0.23 0.52

Mean 6 standard error 0.48 6 0.07 0.35 6 0.09 0.51 6 0.06 0.30 6 0.10 0.53 6 0.06

Controls LP F 23 0.10 0.03 0.01 0.17 0.08

JS2 M 24 �0.16 �0.04 �0.03 0.01 �0.07

FE M 47 �0.08 �0.14 �0.11 �0.08 �0.03

PG M 20 �0.20 �0.11 �0.14 �0.17 �0.08

TM M 48 �0.22 �0.11 �0.03 �0.11 �0.04

AS F 23 �0.14 �0.03 �0.06 �0.01 �0.10

MU F 21 �0.08 0.03 �0.07 �0.03 0.02

BF F 26 �0.10 �0.08 0.01 0.02 0.07

JT2 M 23 �0.14 �0.09 �0.09 �0.20 0.00

Mean 6 standard error �0.11 6 0.03 �0.06 6 0.02 �0.06 6 0.02 �0.05 6 0.04 �0.02 6 0.02
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illumination, resulting in a change in measured VA. Although
no effect of illumination was expected in controls (since the
flash brightness was set to approximately achieve equality), the
absence of a significant improvement in VA in the subjects with
idiopathic IN was unexpected.

Under both lighting conditions, subjects with idiopathic IN
had significantly poorer VA for vertical gratings than horizontal,
whereas controls showed no effect of orientation. This finding is
strongly suggestive of meridional amblyopia in IN and has
previously been reported under constant illumination.25 Abadi
and King-Smith21 have found a similar effect under tachistoscop-
ic illumination using a measure of visual sensitivity, although ours
is the first study to measure VA under this condition.

Previous studies2,3,12 have reported a correlation between
foveation quality (e.g., duration, accuracy) and VA, and
concluded that eye movement characteristics can be used to
predict VA. While this has been shown with simulated
waveforms in controls and between individuals with IN, the
correlation does not appear to be evident in response to
waveform changes within the same subject.26,27 The results of
minimizing image motion in the present study strongly suggest
that there is an upper limit on the VA possible in adults with
idiopathic IN, and that this limit is independent of eye
movement characteristics.

Treatments such as biofeedback have been shown to cause
increased foveation duration, but were abandoned owing to the
lack of an improvement in VA.28,29 In light of our unexpected
finding indicating that VA cannot be expected to improve, it may
now be worth revisiting this and other therapies, as there may
be other visual benefits that are not captured by VA
measurement. For example, we hypothesize that prolonging
foveation duration might result in faster visual recognition speed
(i.e., reduced visual recognition time), since the retinal locus of
highest photoreceptor density would be directed toward the
object of interest for a greater proportion of time.

Despite the incessant eye movements, adults with IN
usually do not experience oscillopsia,18 but regardless of this
stable percept, retinal anatomy dictates that vision cannot be

optimal when the fovea is not directed at the locus of
attention. It is hardly surprising therefore that VA, a static
measure of visual function in which viewing time is unlimited,
cannot adequately represent the visual experience of those
with nystagmus.

Algorithmic measures of waveform characteristics (such as
Nystagmus Optimal Fixation Function and NAFX) are designed
to quantify visual performance, but these are currently
predicated on the presumed relationship between VA and
foveation characteristics. Alternative assessments might mea-
sure other aspects of visual performance, such as processing
speed (e.g., time-restricted optotype recognition tasks30 or
visual response speed measurements31) or target acquisition
timing.32 Ideally, these measures would correlate with fovea-
tion characteristics and subjective visual experience better
than VA.

Image motion blur can have a deleterious effect on vision in
normal subjects, which has understandably led to an assumption
that the blur induced by the oscillations in IN is, at least partly,
responsible for their reduced VA. However, previous stud-
ies27,33,34 have found little if any significant change in subjects’
VA as a result of modifications to their eye movements, whether
produced by varying gaze angle, stress, or task demand.
Moreover, although treatments for nystagmus are often designed
to reduce the velocity of the eye movements, they rarely elicit
improvements in VA, whether using optotypes for recognition
acuity15,35,36 or its prerequisite, resolution acuity, as measured
by gratings in the present study.

The results of the present study indicate that removing the
image motion blur altogether in subjects with IN also does not
change VA, suggesting that their VA may already be fundamen-
tally limited, owing to an underlying pathology and/or stimulus
deprivation amblyopia as a result of motion blur during the
critical period for visual development. One view on the
pathogenesis of IN is that it is a developmental adaptation to
enhance contrast in the presence of a pre-existing visual acuity
deficit.37–39 If this is the case, then the parameters of the adult
waveform (foveation duration, average eye velocity, etc.) may
well reflect the maximum VA that was available in infancy. This
would explain the strong correlation between, for example,
foveation duration and VA across subjects.10 In other words,
poor-quality nystagmus waveforms may not lead to poor VA;
rather, the properties of nystagmus waveforms in adults may
reflect the underlying VA, as suggested by a recent study on the
development of IN.40 For these reasons, interventional studies
are likely to require better outcome measures than VA alone if
they are to demonstrate an objective change in visual
performance.
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