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Purrose. To examine human performance and agreement on reticular pseudodrusen (RPD)
detection and quantification by using single- and multimodality grading protocols and to
describe and evaluate a machine learning system for the automatic detection and
quantification of reticular pseudodrusen by using single- and multimodality information.

Mernops. Color fundus, fundus autofluoresence, and near-infrared images of 278 eyes from
230 patients with or without presence of RPD were used in this study. All eyes were scored
for presence of RPD during single- and multimodality setups by two experienced observers
and a developed machine learning system. Furthermore, automatic quantification of RPD area
was performed by the proposed system and compared with human delineations.

Resurts. Observers obtained a higher performance and better interobserver agreement for
RPD detection with multimodality grading, achieving areas under the receiver operating
characteristic (ROC) curve of 0.940 and 0.958, and a k agreement of 0.911. The proposed
automatic system achieved an area under the ROC of 0.941 with a multimodality setup.
Automatic RPD quantification resulted in an intraclass correlation (ICC) value of 0.704, which
was comparable with ICC values obtained between single-modality manual delineations.

Concrusions. Observer performance and agreement for RPD identification improved
significantly by using a multimodality grading approach. The developed automatic system
showed similar performance as observers, and automatic RPD area quantification was in
concordance with manual delineations. The proposed automatic system allows for a fast and
accurate identification and quantification of RPD, opening the way for efficient quantitative
imaging biomarkers in large data set analysis.
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ge-related macular degeneration (AMD) is a progressive eye

disease affecting mainly the elderly and causing vision loss
at advanced stages.! The early stages of AMD are characterized
by the presence of pigmentary changes and drusen, which are
deposits accumulating between the retinal pigment epithelium
(RPE) and the Bruch’s membrane. A newly appreciated
extracellular lesion in AMD, commonly termed ‘“subretinal
drusenoid deposits” or ‘“reticular pseudodrusen” (RPD),
presents different characteristics and distribution than normal
drusen and is a strong risk factor for progression to advanced
AMD.27 Therefore, its identification and quantification is of
paramount importance for a better understanding of disease

progression.

Reticular pseudodrusen are visible on color fundus (CF)
photography, fundus autofluorescence (FAF) imaging, and near-
infrared (NIR) imaging among other retinal imaging modalities
such as confocal blue reflectance, indocyanine green angiog-
raphy, spectral-domain optical coherence tomography (SD-
OCT), and fluorescein angiography.®-!> On CF images, RPD are
described as indistinct, yellowish interlacing networks with a
width of 125 to 250 um.'* On FAF images, RPD are
characterized as hypofluorescent lesions, while on NIR images,

RPD are characterized as groups of hyporeflectant lesions
against a mild hyperreflectant background.'>"!7 Previous
studies'*!” have reported a difference in sensitivities for RPD
detection among image techniques. However, RPD identifica-
tion using a single-image modality is challenging, as the
characteristic changes associated with RPD are often subtle
and may not always be detected when using only one imaging
technique. Therefore, for an accurate diagnosis, RPD detection
should be performed with two or more image modalities.!!
Although other studies have investigated and compared the
performance of individual image techniques for RPD detec-
tion,'>17 a study of the performance obtained by using multiple
image modalities simultaneously has not been performed yet, to
the best of our knowledge.

Despite its expected higher accuracy, grading of multi-
modality images represents a considerable workload for a
human grader. Machine learning algorithms have huge potential
for dealing with complex information extracted from different
image modalities. Furthermore, automatic systems are not
influenced by fatigue and mindset and, therefore, are less prone
to variability than humans. Previously developed systems for
the automatic detection of drusen showed good performance
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on CF images.'®2! Whether they also perform well fusing
information from different image modalities is currently
unknown. To the best of our knowledge, there is no method
for the automatic identification of RPD fusing information from
different image modalities.

The aim of the present study was 2-fold. Firstly, we
evaluated the performance and the agreement between human
observers by using single- as well as multimodality grading
approaches for RPD detection. In the single-modality ap-
proach, RPD detection was performed by using only one image
technique (namely, CE FAE or NIR). In contrast, during the
multimodality grading session, the observers evaluated the
three available image modalities simultaneously. Secondly, we
aimed to investigate the effectiveness of a novel machine
learning algorithm for the automatic identification and
quantification of RPD by using combined information from
different image modalities and comparing its performance to
that of human observers.

METHODS

Study Data Set

A set of subjects with and without RPD was selected from the
Rotterdam Study, a prospective cohort study investigating risk
factors for chronic diseases in the elderly.?? The study adhered
to the tenets set forth in the Declaration of Helsinki, and
investigational review board approval was obtained. Only
patients with CE FAFE and NIR images available were included
in this study. Color fundus images were taken by using a 35°
field-of-view Topcon TRC 50EX fundus camera (Topcon
Optical Company, Tokyo, Japan) with a Sony DXC-950P digital
camera with a resolution of 768 X 576 pixels (Sony Electronics,
Inc., New York, NY, USA). Fundus autofluorescence and NIR
images were taken with a Heidelberg Retina Angiograph 2
(Heidelberg Engineering, Heidelberg, Germany) with a field of
view of 30° and a resolution of 768 X 768 pixels. In total 278
eyes of 230 patients aged 65 years and older were selected
from the last examination round of the Rotterdam Study. All CF
images were graded according to the Wisconsin Age-Related
Maculopathy Grading?? and the International Classification and
Grading System for Age-Related Maculopathy and Age-Related
Macular Degeneration®* by local graders of the Rotterdam
study, using visual assessment. These annotations constituted
the reference standard for our study. We selected all the eyes
for which RPD were identified in this round (N = 72) from CF
images. Status of RPD was also confirmed on FAF and NIR
imaging. For positive and negative controls, we selected eyes
that were graded by the local Rotterdam study graders as
having soft distinct or soft indistinct drusen but without RPD
(IN=108) and eyes that did not contain any type of drusen (N=
98), respectively. The positive and negative controls did not
have any signs of RPD in the other modalities (FAF and NIR). As
the database did not contain any information about the extent
of RPD area, two human observers (G.H.S.B., C.B.) made RPD
area delineations in consensus by using the three modalities
simultaneously for the eyes containing RPD. These delineations
were used as reference standard for the quantification of RPD
area.

Observer Study: Single- Versus Multimodality
Grading

All images were evaluated independently by two human
observers (G.H.S.B., C.B.) for evidence of RPD. Reticular
pseudodrusen were defined as indistinct, yellowish interlacing
networks with a width of 125 to 250 um on CF images'?;
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groups of hyporeflectant lesions in regular patterns on FAF
images!>-17; and groups of hyporeflectant lesions against a
mildly hyperreflectant background in regular patterns on NIR
images.!” Observer 1 had 4 years of reading experience for all
three imaging modalities, whereas observer 2 had 19 years of
reading experience on CF imaging and 5 years on FAF and NIR
imaging. The observers were asked to use a scoring system
ranging from O to 1, indicating the likelihood of presence of
RPD. Two different grading approaches were used: single- and
multimodality grading. During single-modality grading, the
observers graded each image modality separately in a
randomized order. Color fundus, FAE and NIR images were
pooled and shown randomly to the observers. Observers were
also asked to indicate whether the image was of sufficient
quality for grading. The quality of an image is deemed
insufficient when it becomes difficult or impossible to make
a confident assessment regarding the presence of RPD. During
multimodality grading, observers were asked to diagnose RPD
after observing CE FAE and NIR images from the same eye
simultaneously. The eyes were shown in randomized order in
this grading session as well.

In a separate grading session, the observers manually
delineated in consensus the area covered by RPD, based on
one single modality, that is, single-modality RPD delineation on
CE FAE or NIR images. Only the 72 eyes containing RPD as
indicated by the reference were taken into account for the
quantification of RPD area.

Automatic Reticular Pseudodrusen Identification

The proposed machine learning algorithm simultaneously
analyzed the available modalities from an eye examination to
automatically identify reticular pseudodrusen areas. The
algorithm assigned the complete eye examination a probability
between 0 and 1, indicating the probability of presence of RPD
and providing a quantification of the area covered by the
lesions. To accomplish this, the algorithm performed three
steps: preprocessing, feature extraction, and classification and
quantification.

Preprocessing. In the preprocessing step, two different
methods were applied to the images: image registration and
vessel removal.

1. Registration will provide a geometric alignment across
modalities to identify corresponding pixels that repre-
sent the same scene. This multimodal image registration
was performed by using a semiautomatic affine method,
where the images are deformed to accurately match
user-specified points or landmarks.? In this study, three
corresponding landmarks on prominent image locations,
such as vessel bifurcations, were manually selected on
each modality and used to perform the registration.

2. To reduce intensity variations due to presence of
vessels, the retinal vasculature was removed from the
images. The vasculature was automatically extracted by
using a previously developed algorithm?® and used as
input in an inpainting algorithm,?” which removes the
vessels by interpolating intensities at the supplied image
locations. Figure 1 shows an example CF image (Fig.
1A), FAF image (Fig. 1B), and NIR image (Fig. 1C) of an
eye and Figures 1D through 1F shows their correspond-
ing images after vessel removal, respectively.

Feature Extraction. To perform an automatic analysis of
the images, the machine learning algorithm uses information
that is extracted from the images and encoded in numerical
values or so-called features. To do so, each color channel of the
CF image, as well as the FAF and NIR image, was separately
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FiGure 1.

convolved with a set of Gaussian filters. These filters are based
on Gaussian derivatives up to second order at different scales
and are invariant to rotation and translation.?® For each
resulting filtered image, the mean, standard deviation, skew-
ness, and kurtosis values in a circular neighborhood around
each pixel were calculated. The corresponding features for
each pixel were then obtained by concatenating these
extracted values in a single feature vector.

Classification and Quantification. To determine wheth-
er a pixel is part of an RPD area, a random forest classifier was
used to obtain an automatic classification based on the
calculated features. This classifier operates by constructing a
multitude of decision boundaries (trees) to make a separation
between multiple classes.?® After training, the random forest
classifier provided a probability between 0 and 1 indicating the
probability that the pixel belongs to an RPD area, based on
labeled training examples and the input pixel feature vector.
Figure 2 shows the images of the modalities of an example eye
(Figs. 2A-C) and the output of the classifier (Fig. 2D). Finally,
an image score indicating the likelihood of the eye examination
to contain RPD was assigned by taking the 99th percentile of
the obtained probability map.

To quantify the area covered by RPD, a threshold was set on
the probability map. This threshold was image based and
experimentally determined as the 55th percentage of the
maximum value of the probability map. Only the area inside
the Early Treatment Diabetic Retinopathy Study (ETDRS)
grading grid was taken into account for the quantification.

Statistical Analysis

The performance of the observers and the proposed machine
learning algorithm for the single- and multimodality approach-
es was evaluated by measuring the area (Az) under the receiver
operating characteristic (ROC) curve.3° Statistical comparisons
were made by using bootstrap analysis with 5000 bootstraps.>!
Bootstrap analysis is an nonparametric test that is commonly
used to estimate the variance of ROC analysis. Results with a P
value lower than 0.05 were seen as statistically significant.
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Coregistered (A) CE (B) FAFE, and (C) NIR images and their corresponding results after vessel removal (D-F).

Bonferroni correction was applied to counteract the problem
of multiple comparisons.3? For observers, K statistics were also
reported to assess interobserver variability.>®> As the proposed
machine learning algorithm requires labeled example data for
training, the evaluation was performed by using a patient-based
leave-one-out strategy.>*

Automatic quantification of RPD area was evaluated by
calculating the percentage of detected RPD area inside the
ETDRS grading grid and was compared with the observer
delineations. The RPD area agreement with observers was
measured by using intraclass correlation (ICC) statistics.

RESULTS

Image Quality Assessment

Table 1 shows the image quality analysis of the observers for
the different image modalities. Of the 278 eyes, only 172
(61.9%) were graded by both observers as having all image
modalities with good quality and were established as the “good
quality” set for the subsequent data analysis. Bad quality of the
FAF image was the main reason for a bad-quality indication for
the multimodal examination (CFHFAF+NIR).

Comparison of Single- and Multimodality Grading

Figure 3 shows the ROC curves for the single modality
approaches using CF (Fig. 3A), FAF (Fig. 3B), or NIR (Fig. 3C)
images and the multi modality grading approach (Fig. 3D). The
point on the curve closest to the upper left corner in the ROC
curve is used to compute sensitivity/specificity pairs.

Table 2 shows the Az values and sensitivity/specificity pairs
for the single- and multimodality grading of observer 1 and
observer 2, respectively, calculated on the full data set and on
the subset of good-quality images as indicated by both
observers. The performance of both observers for RPD
detection considerably increased when performing a multi-
modality grading.
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FIGURE 2.
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Example of the classification result obtained by the proposed machine learning algorithm. Given that an eye examination consisted of

(A) a CF image, (B) an FAF image, and (C) an NIR image, the algorithm outputs (D) a probability map indicating the likelihood for each pixel to be

part of an RPD area. Red values indicate higher probability to be RPD.

K statistics were calculated to measure interobserver
variability during single- and multimodality grading sessions.
Table 3 shows the x values between the observers for the
different grading sessions. Observers achieved a higher
agreement with multimodality grading. When considering only
good-quality images, observers also achieved high agreement
when using FAF images.

Performance of the Automatic Method

The ROC curves for the proposed machine learning algorithm
are shown in Figure 3. The corresponding Az values and the
sensitivity/specificity pairs for the single- and multimodality
approaches are summarized in Table 4.

Quantification of the Area Covered by RPD

The box plots in Figure 4 show the RPD area percentage inside
the ETDRS grading grid as delineated by the observers and as
identified by the automatic system. Only eyes that were of
good quality as indicated by both observers were taken into
account. The multimodality area delineations made during
consensus grading of the two observers was used as the
reference for the RPD area quantification.

Tasie 1. Number and Percentage of Good-Quality Images as Indicated
by Observers for the Different Image Modalities Independently

Observer 1 Observer 2 Consensus

CF 272 (97.8%) 268 (96.4%) 264 (95.0%)
FAF 211 (75.9%) 195 (70.1%) 185 (66.5%)
NIR 269 (96.8%) 265 (95.3%) 264 (95.0%)

Last column shows the number of images for which both observers
agree that the image is of good quality.
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The agreement between single-modality RPD area delinea-
tions made by the observers and the reference delineations set
by using multimodal information reached ICC values of 0.580
(—0.034; 0.830), 0.790 (0.409; 0.920), and 0.930 (0.763; 0.976)
for the CE FAE and NIR delineations, respectively. For the
automatic quantification of the RPD area, ICC values of 0.637
(0.395; 0.796), 0.389 (0.082; 0.631), and 0.557 (0.280; 0.747)
were obtained for the single-modality analysis of CE FAE and
NIR images with respect to the reference delineations.
Comparing the automatic multimodality approach with the
reference standard, an ICC value of 0.704 (0.495; 0.837) was
obtained.

DIsCcUSSION

In this study, we assessed the performance achieved for RPD
detection by using multimodal information and compared it to
the one obtained by using several single-image techniques. In
our larger data set,''"'317 we have demonstrated that a
significantly higher performance, as well as a better interrater
agreement, is achieved when the reticular pattern is assessed in
a multimodality grading approach. Moreover, our automatic
machine learning algorithm for RPD detection and quantifica-
tion using multimodal information performed within the same
range as the human graders.

Two independent human observers identified RPD areas by
using two different grading protocols. During the single-
modality grading session, only information from a single-image
technique was available, whereas during the multimodality
approach, the observers evaluated evidence of RPD by using all
the modalities simultaneously. Both observers achieved higher
performance with the multimodality approach, reaching Az
values of 0.940 and 0.958 (Fig. 3; Table 2). Although previous
studies®!!'12 have evaluated the accuracy for detecting RPD of
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Ficure 3. Receiver operating characteristic curves for the identification of eyes with RPD using (A) CF images, (B) FAF images, (C) NIR images, and

(D) a multimodality setup.

single-image modalities only, our results confirm their conclu-
sions that a more accurate diagnosis of RPD is obtained by
using multiple image modalities.

In contrast to observer 1, observer 2 achieved high
performance on RPD assessment with CF images. Possible
reasons for this observation include the vaster experience of
this observer on this modality and the lower sensitivity of this
image technique.!? The disparity between the observers’
performance was substantially reduced when the assessment
was performed by using multiple image modalities (Table 2).
When the observers scored FAF images, the performance was
significantly lower than when they used multimodality reading.
This may be due to the poor quality level of the FAF images.
Only 66.5% of the images were considered of good quality by
both observers, as shown in Table 1. During FAF acquisition, a
mean intensity image is constructed to reduce noise in the
image. However, eye movements may cause displacement
errors, resulting in a lower contrast and thus lower quality of
the FAF image. Another reason is the presence of cataracts in
the study population. The wavelength used for FAF imaging is
affected more by cataracts than the one used in NIR imaging,
resulting in lower image quality. As shown in Table 2, the
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adoption of a multimodality grading approach can overcome
image quality issues, maintaining a high detection performance
independently of the quality level of a particular image
technique. When considering only the subset of good-quality
images, the performance of both observers increased for both
single- and multimodality gradings.

Interobserver agreement was also investigated by using the
two grading protocols. Table 3 shows that the agreement
between observers substantially increased when multiple
imaging techniques were used to evaluate the evidence of
RPD. When taking only the subset of good-quality images into
account, the agreement between observers improved when
using CE FAE and the multimodal approach. However,
agreement when using CF images is still substantially lower
than when using the other modalities. Other studies!? have
included multiple graders but no information about interob-
server agreement has been reported.

In this study, we also developed and evaluated a machine
learning algorithm for the automatic identification and
quantification of RPD using multimodal information. The
results showed that the proposed system achieved similar
performance as the observers (Fig. 3; Table 4). Similar to the
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TasLe 2. Performance of Observer 1 and Observer 2 for RPD
Detection Using Single- and Multimodality Grading
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Tale 4. Performance of the Automatic System for RPD Detection
Using Single- and Multimodality Grading

All Good Quality All Good Quality
Az Se Sp Az Se Sp Az Se Sp Az Se Sp
Observer 1 Single modality
Single modality CF 0.942 0.833 0922 0939 0.887 0.860
CF 0.879* 0778 0951 0.888° 0.789 0.974 FAF 0.844* 0806 0747 0935 0919 0.891
FAF 0.881* 0.889 0.806 0959 0.946 0.966 NIR 0927 0847 0893 0919 0814 0.902
NIR 0936 0903 0956 0.936 0929 0918  Myltimodality 0941 0875 0873 0949 0.861 0.882
Multimodality 0.940 0917 0.961 0956 0944 0.963 Area under the ROC values and Se and Sp values are reported.
Observer 2 * Indicates a statistical significant difference of the Az value with
single modality respect to the multimodality approach.
CF 0944 0944 0989 0944 0930 0917
FAF 0.793* 0.653 0951 0961 0973 0.946 other image techniques. As reported in previous publica-
NIR 0.932 0.903 0.922 0.929* 0900 0.918 tiOﬂS,12’17 the ViSibility of RPD differs over imaging modalities,
. ) causing these differences. As RPD are more pronounced on
Multimodality 0.958 0972 0942 0974 1.000 0.949

Area under the ROC values and optimal sensitivity (Se) and
specificity (Sp) values are reported.

* Indicates a statistical significant difference of the Az value with
respect to the multimodality approach.

observers’ gradings, the incorporation of multimodal informa-
tion improved the performance of the algorithm. Using
multimodal information, the proposed algorithm achieved an
Az value of 0.941 and a sensitivity/specificity pair of 0.875/
0.873. Compared to the observers, who reached a k agreement
of 0.87 with the reference, the automatic system had a x
agreement of 0.70. However, 20% of the misclassified cases
correspond to cases where there was disagreement between
the observers. Of the false-positive cases, 9 cases contained
low-quality images, 3 cases presented geographic atrophy, 1
case showed a neovascular macular detachment, and 12 cases
contained soft indistinct drusen. As described in other
publications,!!:35:3¢ RPD and drusen have very similar charac-
teristics and they might therefore more easily be misinterpret-
ed by the automatic system. Better discriminant features, such
as image context information or local intensity changes, might
improve the performance of the automatic system, but this has
to be further investigated.

Quantification of RPD area is a more difficult task owing to
the undefined boundaries of RPD.!>"17 When comparing the
manual delineations performed on CF images with the
reference delineations based on multimodal information, an
ICC value of 0.580 was achieved. When comparing the FAF or
NIR delineations with the reference delineations, the agree-
ment was better, reaching ICC values of 0.790 and 0.930,
respectively. As presented in Figure 4, the RPD area was
underestimated when using CF images as compared with the

TaBLe 3. K Agreement and 95% Confidence Intervals Between
Observers for Single- and Multimodality Reading Sessions

All Good Quality

K 95% CI K 95% CI

Single modality

CF 0.654 (0.556-0.752) 0.724  (0.632-0.817)
FAF 0.468  (0.363-0.572) 0.938  (0.879-0.998)
NIR 0.884  (0.822-0.945) 0.839  (0.767-0.910)
Multimodality 0911  (0.857-0.965) 0.936  (0.874-0.998)

CI, confidence interval.
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FAF and NIR, the delineations on these modalities were more
similar to reference delineations. The quantified RPD area,
which was automatically obtained by the proposed algorithm,
was in agreement with the area delineated by the observers,
reaching an ICC value of 0.704. Of note, only images of good
quality were used for RPD area quantification because images
with insufficient quality were not suitable, as it was nearly
impossible for observers to delineate RPD area on these
images. Another limitation of this study was that the
multimodal approach included only fundus images, excluding
information obtained with SD-OCT. Including this modality in
the multimodal protocol might result in better understanding
of the reticular pattern, thus increasing accuracy in their
identification.”1%3> Spectral-domain OCT can provide 3-D
information about RPD formation and is essential for RPD
volume measurements. This enhancement will be of great
importance for clinical trials studying the development and
progression of RPD. We will investigate this improvement in
further studies.

In conclusion, we were able to show that a multimodal
approach significantly increased observer performance and
interobserver agreement for detection of RPD in fundus images
when the information of different imaging modalities was

U

= Reference
= Manual
u Automatic

1.007

N

8

S

6

=]

4

RD area percentage
8

.21

<]
1

00

T T T T T T
Reference CF FAF NIR Multi- CF FAF NIR
modality
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and is shown in gray. Single-modality manual area percentages are
shown in blue. The area percentages obtained by the automatic
method for single- and multimodality analysis are shown in red.
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evaluated simultaneously. Furthermore, an automatic machine
learning algorithm for detection and quantification of RPD
using multimodal information was developed and evaluated,
showing comparable results with those obtained by observers.
The area covered by RPD was also automatically quantified by
the algorithm, tallying the values manually provided by the
observers. The absence of SD-OCT is regarded as a limitation of
this study and will be investigated in future work. This
automatic algorithm yields a quick and reliable diagnosis and
quantification of RPD, for large data set analysis within
population studies and for gaining insights into risk factors
involved in AMD and disease progression.
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