Monoallelic \(ABCA4\) Mutations Appear Insufficient to Cause Retinopathy: A Quantitative Autofluorescence Study

Philipp L. Müller,1,2 Martin Gliem,1,2 Elisabeth Mangold,3 Hanno J. Bolz,4,5 Robert P. Finger,1,6 Myra McGuinness,6 Christian Betz,4 Zhichun Jiang,7 Bernhard H. F. Weber,8 Robert E. MacLaren,9 Frank G. Holz,1,2 Roxana A. Radu,7 and Peter Charbel Issa1,2

1Department of Ophthalmology, University of Bonn, Bonn, Germany
2Center for Rare Diseases Bonn (ZSEB), University Hospital of Bonn, Bonn, Germany
3Institute of Human Genetics, University of Bonn, Bonn, Germany
4Bioscientia Center for Human Genetics, Ingelheim, Germany
5Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany
6Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
7Stein Eye Institute, Department of Ophthalmology, University of California-Los Angeles School of Medicine, Los Angeles, California, United States
8Institute of Human Genetics, University of Regensburg, Regensburg, Germany
9The Nuffield Laboratory of Ophthalmology & Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom

Correspondence: Peter Charbel Issa, Department of Ophthalmology, University of Bonn, Ernst-Abbe-Str. 2, 53127 Bonn, Germany; peter.issa@ukb.uni-bonn.de.

PLM and MG contributed equally to the work presented here and should therefore be regarded as equivalent authors.

Submitted: July 7, 2015
Accepted: November 17, 2015

Citation: Müller PL, Gliem M, Mangold E, et al. Monoallelic \(ABCA4\) mutations appear insufficient to cause retinopathy: a quantitative autofluorescence study. Invest Ophthalmol Vis Sci. 2015;56:8179–8186. DOI:10.1167/iovs.15-17629

PURPOSE. To investigate the effect of \(ABCA4\) mutation status on lipofuscin-related quantitative autofluorescence (qAF) in humans and on bisretinoid accumulation in mice.

METHODS. Genotyped parents \((n = 26; \text{age } 37–64 \text{ years})\) of patients with biallelic \(ABCA4\)-related retinopathy underwent in-depth retinal phenotyping including qAF imaging as a surrogate measure for RPE lipofuscin accumulation. In addition, bisretinoids as the main components of autofluorescent lipofuscin at the ocular fundus were quantified in \(Abca4^{-/-}\), \(Abca4^{+/+}\), and wild-type mice.

RESULTS. Index patients showed a retinal phenotype characteristic for \(ABCA4\)-related retinopathy, including increased qAF levels. In contrast, qAF measures in carriers of only one \(ABCA4\) mutation were not different from age-matched controls in this sample, and there was no difference between truncating and missense mutations. Also, none of these carriers presented an abnormal phenotype on conventional imaging. One parent with \(ABCA4\)-related retinopathy and increased qAF carried an additional \(ABCA4\) mutation, explaining the phenotype under a recessive disease model (pseudodominance). Biochemical analysis in the mouse model revealed direct downstream products \((A2PE-H_2, \text{atRAL} \text{dimer-PE})\) of the \(ABCA4\) substrate \(\text{V-RET-PE}\) to be similar in wild-type and \(Abca4^{-/-}\) mice. Both bisretinoids were 12- to 18-fold increased in \(Abca4^{-/-}\) mice. Levels of \(A2E\) and \(A2PE\) in \(Abca4^{-/-}\) mice were in between those measured in wild-type and \(Abca4^{+/+}\) mice.

CONCLUSIONS. This study indicates that carriers of monoallelic \(ABCA4\) mutations are phenotypically normal. However, biochemical analysis in the \(Abca4^{-}\)-deficient mouse model suggests detectable effects of one mutation in \(ABCA4\) on the molecular level. The findings may have implications for therapeutic approaches such as gene replacement therapy.

Keywords: quantitative fundus autofluorescence, monoallelic, \(Abca4\), carrier, phenotype

Biallelic mutations in the adenosine triphosphate (ATP)-binding cassette (ABC) transporter \(ABCA4\) are among the most common causes for inherited retinal disease and, thus, for loss of vision early in life. \(ABCA4\)-related retinopathy may clinically present as Stargardt disease, cone-rod dystrophy, or bull’s-eye maculopathy.1–5 Despite this phenotypic heterogeneity, a common feature among most patients is an increased lipofuscin-related fundus autofluorescence (AF) upon excitation with blue light,6–9 which occurs before functional decline or the development of pattern-like fundus changes.2 Fundus AF intensity largely depends upon the concentration of lipofuscin in the retinal pigment epithelium (RPE),5 which considerably accumulates in patients with Stargardt disease.10,11 Similar observations have been reported in the \(Abca4^{-}\)-mouse, an established animal model for \(ABCA4\)-related retinopathy.12,13 There has been an ongoing debate on whether or not monoallelic \(ABCA4\) mutations might also cause disease at the benign end of the spectrum of \(ABCA4\)-related retinopathy. For instance, single variations in \(ABCA4\) have been implicated to be associated with age-related macular degeneration (AMD),14–16 but this finding could not be replicated by others.17–19 Moreover, late-onset Stargardt disease and a similar-appearing AMD subtype were suggested to be associated with monoallelic \(ABCA4\) mutations.20,21 Some inconsistency between studies may be due to clinical categorization based on the retinal phenotype. Interpretation may then be biased by possible clinical misclassification of disease and/or uncertainty in
comprehensively identifying the complete mutational profile in a diseased individual. If monoallelic ABCA4 mutations were indeed disease causing, either dominant-negative effects of the abnormal protein product or haploinsufficiency would be the pathophysiological mechanism. Both mechanisms would need to be considered when developing therapeutic gene delivery strategies for ABCA4-related retinopathy.

To further explore potential effects of monoallelic ABCA4 mutations, we investigated genotyped parents of patients with retinal disease due to biallelic mutations in ABCA4. To compare these genotypically defined probands with controls, quantitative fundus AF (qAF) imaging, which was recently used by Burke et al.\(^8\) to characterize patients with Stargardt disease, was used as a sensitive in vivo surrogate measure for RPE lipofuscin accumulation. Findings are to be discussed in the context of a biochemical analysis of bisretinoids, the major fluorophores and main molecular substrates of RPE lipofuscin, in eyes of a mouse model carrying a single mutant Abca4 allele.

METHODS

Patients

In a monocenter cross-sectional study, patients and controls were examined between December 2013 and December 2014 at the Department of Ophthalmology of the University of Bonn, Germany. The study was in adherence with the Declaration of Helsinki. Institutional Review Board approval (Ethikkommission, Medizinischen Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn) and written patient consent were obtained. The study included index patients with ABCA4-related retinopathy and their parents. ABCA4-related retinopathy was diagnosed based on characteristic findings on indirect ophthalmoscopy, optical coherence tomography, and conventional fundus AF imaging. The clinical diagnosis was confirmed by the presence of biallelic mutations in ABCA4, and segregation analysis was carried out with samples of the parents. All index patients and their parents underwent a complete ophthalmologic examination including best-corrected visual acuity (BCVA), slit-lamp examination, and indirect ophthalmoscopy with dilated pupils. Axial length and corneal curvature were measured using the IOL-Master 500 (Carl Zeiss Meditec, Jena, Germany). Healthy subjects without ocular disease served as controls.

To minimize an influence of factors known to alter qAF measurements,\(^22\) exclusion criteria were age ≥ 65 years, ethnicity other than Caucasian, significant lens opacities, dilated pupil diameter below 7 mm, unstable fixation, refractive error > ±6 dioptries (spherical equivalent), and any other additional known ocular pathology or prior intraocular surgery.

Genetic Testing

Genomic DNA was extracted from blood lymphocytes by standard protocol. ABCA4 sequence analysis of all coding exons and flanking splice junctions was performed either by Sanger chain-terminating dideoxynucleotide sequencing after PCR amplification, by multiplex ligation-dependent probe amplification (MLPA) analysis (performed when only a single mutation was detected), or by next-generation sequencing (NGS) including a quantitative readout to detect large structural rearrangements using a gene panel covering 120 genes associated with inherited retinal disease as described previously.\(^23\) Validation of identified putatively pathogenic variants and segregation analysis were carried out by conventional sequencing. Bioinformatic analyses were performed using MutationTaster,\(^24\) SIFT,\(^25\) and PolyPhen-2\(^26\) programs to assess pathogenicity of identified mutations (Supplementary Table S1). Nomenclature of mutations followed standards of the Human Genome Variation Society (HGVS).

Image Acquisition and Analysis

Pupils were dilated by instillation of 0.5% tropicamide and 2.5% phenylephrine. All probands underwent a standardized imaging protocol consisting of fundus photography (Visucam; Carl Zeiss Meditec), spectral-domain optical coherence tomography (SD-OCT), and fundus AF imaging using a cSLO (488-nm excitation, Spectralis HRA+OCT; Heidelberg Engineering, Heidelberg, Germany).\(^27\)

Quantitative AF was performed as originally described by Delori et al.\(^22\) Briefly, a Spectralis HRA (Heidelberg Engineering) was equipped with an internal fluorescence reference to account for fluctuations in laser power and detector sensitivity. The reference material was identical to that used by Delori et al. (Supplementary Fig. S1).\(^22\) The reference was mounted in the intermediate retinal plane of the camera such that it could be imaged simultaneously with the fundus. The system was calibrated with a master reference provided by Heidelberg Engineering to adjust the qAF scale to imaging devices used in previous studies.\(^8,22\) Calibration of the system was verified in 3 to 6 monthly intervals.

For image acquisition, the camera was positioned centered to the fovea using the near-infrared reflectance mode and the internal fixation light. After switching to the qAF mode (488-nm excitation and 500- to 680-nm detection), focus and alignment were adjusted to obtain a maximum and uniform signal. The retina was illuminated for 20 to 30 seconds to bleach visual pigment, and the detector sensitivity was adjusted to avoid overexposure. With optimal camera position a series of 12 successive images was recorded in the high-speed mode, a 30\(^\circ\) field of view, and 768×768-pixel resolution.

For image analysis, each image of a series was checked for optimal image quality. Images were excluded in cases of inhomogeneous illumination, sectorial opacities (e.g., eyelash, floaters), or unstable fixation. Images were then averaged and saved without normalization. The right eye was used for analysis. If not applicable (e.g., due to poor image quality or anatomical abnormalities), the left eye was used instead. This was the case for six index patients and eight parents.

For further analysis, images were exported from the HEYEX software to a custom-made image analysis program (IGOR; WaveMetrics, Inc., Lake Oswego, OR, USA). The mean gray value of the fluorescent reference and of a circular region consisting of eight subsegments with an eccentricity of approximately 7" to 9" centered to the fovea was measured. Retinal vessels and areas of atrophy were excluded based on histogram analysis. Individual segments were excluded from further analysis if atrophy covered more than 50% of the segment. The qAF value was then calculated from the gray values of the segment and the reference, the offset of the laser, the magnification, the lens opacity (based on normative data),\(^28\) and a device-specific calibration factor.\(^22\) The overall qAF value was computed as the mean of the qAF values of the eight segments (QAFs).

Establishment of a Normative Database

Normative data were acquired from 110 healthy controls of Caucasian ethnicity between 8 and 64 years of age. Quantitative AF values increased with age and were comparable to previously published data (Supplementary Fig. S2).\(^29\) Repeatability was 6.4% within one session and 13.1% between sessions.
Quantification of Bisretinoids in Mouse Eyes

Three-month-old wild-type (strain 129/Sv), heterozygous (Abca4/+) and knockout Abca4−/− (129S4/SvJae-abca4−/−) mice were raised under 12-hour cyclic light (40–50 lux) and fed a standard rodent diet (NIH-31, 7015; Harlan Teklad, Madison, WI, USA), all carrying the Rpe65-Leu450 allele but free of the known Rd8 mutation.30 Mouse studies were done in adherence to guidelines established by the University of California-Los Angeles Animal Research Committee and the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research. After euthanasia, eyes were samples were extracted with the addition of 4 mL chloroform/methanol (2:1, vol/vol) was added, and the organic phases were pooled, filtered, dried under L 2-propanol. A stream of argon, and redissolved in 100 μL chloroform. For 10 minutes. Extraction was repeated with the addition of 4 mL chloroform. Organic phases were pooled, filtered, dried under a stream of argon, and redissolved in 100 μL 2-propanol. Bisretinoid extracts were analyzed by normal-phase HPLC with a silica column (Zorbax-Sil 5 μm, 250 × 4.6 mm; Agilent Technologies, Wilmington, DE, USA) as previously described. Absorption units at 435 nm were converted to picomoles using a calibration curve with an authentic A2E standard and the published molar extinction coefficient for A2E32; the identity of each bisretinoid peak was confirmed by online spectral analysis. Data are presented as picomoles and milli-absorbance (mAU) per eye for A2E and other bisretinoids, respectively.

Statistical Analysis

Data were firstly analyzed descriptively. For human participants, comparisons between groups were conducted using age-adjusted linear regression, modeled with log transformations of qAF and age. The 95% prediction intervals for each retinal segment for the control group were calculated using standard error of the forecast. The average qAF of each retinal segment was standardized by the mean qAF value for each group to calculate the relative qAF. One-way ANOVA with Bonferroni post hoc testing adjusting for multiple comparisons of differences between groups was performed to compare bisretinoid levels in the mouse model of Stargardt disease. All analyses were conducted using Stata 12.1 (StataCorp, College Station, TX, USA).

RESULTS

Twenty-six parents of 17 unrelated index patients with ABCA4-related retinopathy were included in the study (Table). In each parent, segregation analysis revealed one of the two pathogenic ABCA4 mutations identified in the affected offspring.

Index Patients With Biallelic ABCA4 Mutations

All index patients (mean age ± SD, 24.1 ± 9.1 years; range, 14–39 years) exhibited phenotypic findings characteristic for ABCA4-related retinopathy (Supplementary Fig. S5). Lipofuscin-related qAFs levels were above the age-related 95% prediction interval of the control group in 16 out of the 17 patients, suggesting extensive disease-related lipofuscin accumulation (red triangles in Fig. 1; Table). One index patient had a qAF level within the normal range; most likely due to widespread dark flecks within the analyzed area (Supplementary Fig. S3, index of family 15).

TABLE. Summary of Age, Quantitative Autofluorescence Levels (qAFs), and ABCA4 Mutations of All Subjects Investigated in This Study

<table>
<thead>
<tr>
<th>Number</th>
<th>Index Age</th>
<th>Mother Age</th>
<th>Father Age</th>
<th>qAFs</th>
<th>ABCA4 Mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19</td>
<td>44</td>
<td>41</td>
<td>618</td>
<td>c.1622T>C (p.Leu541Pro) / c.3113C>T (p.Ala1038Val)</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>51</td>
<td>—</td>
<td>755</td>
<td>c.2588G>A (p.Gly1961Glu)</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>49</td>
<td>—</td>
<td>334</td>
<td>c.5882G>A (p.Gly1961Glu)</td>
</tr>
<tr>
<td>4</td>
<td>21</td>
<td>—</td>
<td>53</td>
<td>601</td>
<td>c.1622T>C (p.Leu541Pro) / c.3113C>T (p.Ala1038Val)</td>
</tr>
<tr>
<td>5</td>
<td>39</td>
<td>62</td>
<td>—</td>
<td>459</td>
<td>c.1622T>C (p.Leu541Pro) / c.3113C>T (p.Ala1038Val)</td>
</tr>
<tr>
<td>6</td>
<td>17</td>
<td>46</td>
<td>53</td>
<td>707</td>
<td>c.1622T>C (p.Leu541Pro) / c.3113C>T (p.Ala1038Val)</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>55</td>
<td>—</td>
<td>405</td>
<td>c.1622T>C (p.Leu541Pro) / c.3113C>T (p.Ala1038Val)</td>
</tr>
<tr>
<td>8</td>
<td>34</td>
<td>59</td>
<td>—</td>
<td>590</td>
<td>c.1622T>C (p.Leu541Pro) / c.3113C>T (p.Ala1038Val)</td>
</tr>
<tr>
<td>9</td>
<td>35</td>
<td>61</td>
<td>—</td>
<td>520</td>
<td>c.1622T>C (p.Leu541Pro) / c.3113C>T (p.Ala1038Val)</td>
</tr>
<tr>
<td>10</td>
<td>14</td>
<td>45</td>
<td>44</td>
<td>554</td>
<td>c.1622T>C (p.Leu541Pro) / c.3113C>T (p.Ala1038Val)</td>
</tr>
<tr>
<td>11</td>
<td>20</td>
<td>42</td>
<td>40</td>
<td>411</td>
<td>c.1622T>C (p.Leu541Pro) / c.3113C>T (p.Ala1038Val)</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>37</td>
<td>—</td>
<td>662</td>
<td>c.1622T>C (p.Leu541Pro) / c.3113C>T (p.Ala1038Val)</td>
</tr>
<tr>
<td>13</td>
<td>31</td>
<td>63</td>
<td>64</td>
<td>468</td>
<td>c.1622T>C (p.Leu541Pro) / c.3113C>T (p.Ala1038Val)</td>
</tr>
<tr>
<td>14</td>
<td>31</td>
<td>59</td>
<td>61</td>
<td>412</td>
<td>c.1622T>C (p.Leu541Pro) / c.3113C>T (p.Ala1038Val)</td>
</tr>
<tr>
<td>15</td>
<td>36</td>
<td>59</td>
<td>59</td>
<td>366</td>
<td>c.1622T>C (p.Leu541Pro) / c.3113C>T (p.Ala1038Val)</td>
</tr>
<tr>
<td>16</td>
<td>25</td>
<td>54</td>
<td>59</td>
<td>428</td>
<td>c.1622T>C (p.Leu541Pro) / c.3113C>T (p.Ala1038Val)</td>
</tr>
<tr>
<td>17</td>
<td>14</td>
<td>57</td>
<td>58</td>
<td>759</td>
<td>c.1622T>C (p.Leu541Pro) / c.3113C>T (p.Ala1038Val)</td>
</tr>
</tbody>
</table>
from controls (age-adjusted linear regression: qAF8 values was found to carry a second independent outlier of controls. Another parent (mother, family 15) with elevated qAF8 values compared to controls. Parents with monoallelic (\textit{ABCA4}) mutations (stop, frameshift, or splice site mutations) compared to those with missense mutations (\(\kappa(135) = 0.961 \), \(P = 0.34 \), adjusted for the natural log of age; Figs. 1, 2) in this sample.

The spatial distribution of qAF levels was comparable between controls, index patients with two \textit{ABCA4} mutations, and their parents carrying one \textit{ABCA4} mutation. Highest values were located in the superotemporal and temporal segments, whereas lowest values were found in the nasal and inferior segments (Figs. 3).

Changes of Bisretinoid Levels in \textit{Abca4}^{+/−} Mice

To analyze the biochemical effects of monoallelic \textit{Abca4} mutations, bisretinoid levels from the whole eye of 3-month-old \textit{Abca4}^{+/−} mice were compared to those in wild-type (\textit{Abca4}^{+/+}) and knockout (\textit{Abca4}^{−/−}) mice at the same age. Levels of N-retinylidene-phosphatidylethanolamine (N-Ret-PE), the precursor of all tested bisretinoids, were not different between the groups (Supplementary Fig. S4). Compared to wild-type (\textit{Abca4}^{+/+}) mice, levels of \textit{a}4RAL dimer-PE and A2PE-H2 were only slightly increased in \textit{Abca4}^{−/−} mice, but revealed a 12- and 18-fold increase, respectively, in \textit{Abca4}^{+/−} mice (Figs. 4a, 4b). In contrast, the levels of A2PE and total A2E were increased 3- and 6-fold in \textit{Abca4}^{+/−} and \textit{Abca4}^{−/−} mice, respectively, compared to wild-type (\textit{Abca4}^{+/+}) controls (Figs. 4c, 4d).

DISCUSSION

The results of this study indicate that one \textit{ABCA4} mutation is not sufficient to cause changes typical for \textit{ABCA4}-related retinopathy in humans, confirming the recessive nature of \textit{ABCA4}-related retinopathy. Carriers of monoallelic mutations were indistinguishable from controls when investigated with a multimodal imaging approach including quantitative assessment of lipofuscin-related fundus AF (qAF). The latter method can be considered highly sensitive for detecting very early manifestations of \textit{ABCA4}-related retinal disease, even though a minority of patients with specific \textit{ABCA4} mutations and/or specific phenotypic changes may reveal qAF levels in the normal range. According to the number and severity of \textit{ABCA4} mutations on retinal disease manifestation has been suggested. Accordingly, individuals with two severe \textit{ABCA4} mutations may manifest an early widespread structural and functional decline, while individuals with a combination of one severe and one mild or of two mild mutations present with the Stargardt disease phenotype confined to the posterior pole. Monoallelic \textit{ABCA4} mutations have been hypothesized to cause late-onset Stargardt disease or enhanced susceptibility to AMD. In these studies patients were defined by their retinal
phenotype and genetic testing that was mostly limited to mutational analysis of *ABCA4*.

The approach of this study differs from that in previous reports in that individuals were included based on their carrier state of monoallelic mutations in *ABCA4* instead of their phenotype. A second mutation in *ABCA4* or in any other gene conferring risk of retinal disease would be present only according to its (mostly low) frequency in the general population. Our cohort involved subjects similar in age and with monoallelic *ABCA4* mutations similar to those in patients reported in recent studies that suggested a potential association between monoallelic *ABCA4* mutations and atrophic subforms of AMD or late-onset Stargardt disease (Supplementary Table S2). Provided that *ABCA4* indeed had a causative role in patients of these previous studies, it is possible that a second *ABCA4* mutation was missed. In line with this

FIGURE 2. Quantitative autofluorescence (qAF) in exemplary families with either truncating (a) or missense (b) *ABCA4* mutations. Left: Fundus autofluorescence images and corresponding color-coded qAF images in two index patients and their parents ([a] family 10. [b] family 11). Although gray levels appear similar, color-coded images reveal elevated qAF levels in the index patients. Right: Age-dependent qAF of the index patients (red triangles) and their parents (blue squares and dots) with monoallelic *ABCA4* mutations. Dashed lines: 95% prediction interval of normal controls (black crosses).
assumption, the only parent in our study with a phenotype compatible with late-onset Stargardt disease (mother, family 15) turned out to carry a mild \(\text{ABCA4} \) mutation in trans to the deletion she had passed on to the index patient. Alternatively, retinal disease in some patients in the previous studies may have been due to mutation(s) in a gene other than \(\text{ABCA4} \).

In accordance with the human imaging data, direct downstream products of the \(\text{ABCA4} \) substrate \(N\)-Ret-PE,\(_36 \) A2PE-H\(_2 \) and a \(t \)-RAL dimer-PE were distinctly increased in \(\text{Abca}4^{+/+} \) mice while levels were similar in \(\text{Abca}4^{+/0} \) and wild-type controls. However, \(\text{Abca}4^{-/-} \) mice showed levels of A2E and A2PE in between those measured in wild-type and \(\text{Abca}4^{-/-} \) mice. This suggests a more complex situation on the molecular level (at least in mice), where the product of the normal allele does not fully compensate for a loss of functional product from the mutant allele. Different dynamics of formation and degradation of retinal bisretinoids might underlie these findings, including, for instance, saturation of specific biochemical processes when only one allele is functional.

These results have to be interpreted with reference to recent findings that revealed differences in the composition of mouse and human lipofuscin,\(^{37} \) which cannot be assessed using quantitative measures of lipofuscin-related AF. Besides

![Figure 3](image1.png)

Figure 3. Spatial distribution of quantitative autofluorescence (qAF). The relative spatial distribution of qAF values (a) along the qAF\(_8 \) circle (b) was comparable between controls, index patients, and parents with monoallelic \(\text{ABCA4} \) mutations. The values represent the qAF of each segment relative to the mean of all segments (qAF\(_8 \)). *Error bars* show the 95% confidence interval. S, superior; ST, superiortemporal; T, temporal; IT, inferiortemporal; I, inferior; IN, inferiornasal; N, nasal; SN, superonasal.

![Figure 4](image2.png)

Figure 4. Bisretinoid levels (\(a \): \(t \)-RAL dimer-PE, \(b \): A2PE-H\(_2 \), \(c \): A2-PE, \(d \): total A2E) from eye cups of 3-month-old wild-type mice (black, \(n = 6 \), \(\text{Abca}4^{+/+} \)), mice with monoallelic \(\text{Abca}4 \) mutation (blue, \(n = 5 \), \(\text{Abca}4^{+/0} \)), and \(\text{Abca}4 \) knockout mice (red, \(n = 6 \), \(\text{Abca}4^{-/-} \)). mAU/eye, milli absorbance units per eye. *Error bars* show standard deviation. **\(P < 0.01 \); ***\(P < 0.001 \).
A2E and A2PE, multiple other bisretinoid species and fluorophores have been detected in the RPE, which might be more important for the development of degenerative changes. However, their relative contributions to the overall lipofuscin-related AF signal intensity are currently unknown.

Accordingly, one cannot exclude subclinical effects of monoallelic ABCA4 mutations that remained undetected by means of all imaging modalities used herein. For instance, there may be an overall increased bisretinoid load that differs from normal in its composition, cellular toxicity, and spectral AF properties. Future studies using more precise spectral molecular imaging tools might reveal more details of the underlying molecular pathways. However, if such hypothetical and subclinical processes would affect retinal health later in life, a gradual onset of morphologic and/or functional changes might be expected. The lack of retinal alterations in carriers of monoallelic ABCA4 mutations up to an age of 64 years in our cohort suggests absence of such processes or a threshold damage that needs to be overcome before overt manifestation of retinal disease.

Although it would be interesting to study carriers of monoallelic ABCA4 mutations over 65 years of age, there is currently no established method to correct for the increasing variability of lens opacities with increasing age when recording qAF measures. Moreover, if carriers with monoallelic ABCA4 mutations presented with macular disease in the seventh or eighth decade, it might be difficult to differentiate between a monogenic effect and a genetically unrelated susceptibility to multifactorial AMD, which is highly prevalent in the older population. Thus, if rare variants in ABCA4 would indeed have a (modest) effect on AMD, very large cohorts and high-quality phenotyping would be needed to confirm such a hypothesis. In any case, one may not expect a risk for developing severe visual symptoms due to monoallelic ABCA4 mutations even at older age because supposedly early fundus changes (such as increased lipofuscin-related qAF) should precede functional decline.

Apart from the inability to differentiate specific fluorophores within the RPE, limitations of this study include the low number of study participants and the relatively old age of some participants (>60 years). The latter is accompanied by increasing variability of lens opacities, resulting in more variable and less reliable qAF measures. However, the uniformity of the observation and the strict criteria for image quality, which is essential for qAF imaging, suggest acceptable validity of our results.

The finding that carriers of monoallelic ABCA4 mutations were phenotypically normal in our setting has implications for future therapeutic approaches. Gene replacement therapy is currently pursued, but challenges include the large size of the ABCA4 coding region, the relatively inefficient viral transduction of photoreceptors, and a possibly low disease-specific efficiency of gene delivery. However, the lack of haploinsufficiency in the pathogenesis of ABCA4-mediated retinal and macular degenerations shown here suggests that gene therapy may be effective despite these challenges.

Acknowledgments

We thank Markus Reisinger for providing the genotype of family 17. We thank Francois Delori for providing the IGOR software that was developed in conjunction with the Department of Ophthalmology at Columbia University, New York, New York, United States. Supported by the ProRetina Deutschland, Aachen, Germany, and the BONFOR research program of the University of Bonn, Bonn, Germany (Grant O-137.0018). The Department of Ophthalmology, University of Bonn, receives research support from Heidelberg Engineering. The sponsor or funding organization had no role in the design or conduct of this research. No sponsor or funding agency had any involvement in the design, collection, analysis, and interpretation of the data; manuscript writing; or the decision to submit the manuscript for publication. HJB and CB are employees of Bioscientia, which is part of a publicly traded diagnostic company.

Disclosure: P.L. Müller, None; M. Gliem, None; E. Mangold, None; H.J. Bolz, Bioscientia (E); R.P. Finger, None; M. McGuinness, None; C. Betz, Bioscientia (E); Z. Jiang, None; B.H.F. Weber, None; R.E. MacLaren, None; F.G. Holz, Heidelberg Engineering (C); R.A. Radu, None; P. Charbel Issa, None.

References

