Diabetic retinopathy is the leading cause of vision loss in working-age adults, affecting a large subset of the over 24 million diabetics in the United States1,2 and an even greater number worldwide. Diabetic macular edema (DME) affects over 25% of diabetics with 20 years or more duration,3 and is the primary cause of central vision loss due to diabetic retinopathy. Diabetic macular edema results from a combination of pathologic leakage from damaged retinal microvasculature and insufficient clearance of plasma by Müller and retinal pathologic leakage from damaged retinal microvasculature.

Diabetic macular edema results from a combination of primary cause of central vision loss due to diabetic retinopathy. 25% of diabetics with 20 years or more duration,3 and is the number worldwide. Diabetic macular edema (DME) affects over million diabetics in the United States1,2 and an even greater

While noninvasive optical imaging systems such as optical coherence tomography (OCT) provide valuable morphologic information and are useful to monitor DME and its response to treatment,6 FA remains essential for diagnosis and characterization of DME disease. Fluorescein angiography offers critical biological information such as location, intensity, and leakage source; and leakage area as measured by FA continues to be a relevant secondary endpoint in major studies of DME treatment.7 In addition, various subtypes of DME have been proposed based on differences in the pattern of fluorescein leakage as seen by FA.8 For example, focal leakage manifests as discrete foci of leakage on early FA frames and corresponds to microaneurysms (MAs). In contrast, the diffuse subtype is characterized by generalized leakage prominent on late FA frames without a discretely identifiable source. Eyes with DME can demonstrate either leakage pattern, or more commonly, a mixture of both.9

Identification of DME subtypes by FA has potential to guide therapy and monitor disease activity. While reproducible quantitative and qualitative analysis of FA is possible by experienced graders in the setting of a formal imaging reading center, its use for subtyping in the clinical setting is hindered by the subjective nature of FA interpretation. Accordingly, there has been longstanding interest in objective methods for quantification of leakage by FA. While several investigators have utilized automated segmentation for automatic analysis of FA,10-21 MA detection,22-27 extraction of vessels,15,16,19,29 and foveal avascular zone (FAZ) detection,14,29-33 relatively few algorithms have been focused on automated leakage detection or quantification.30,34-39

Pur

METHODS. Fluorescein angiography images obtained from 24 eyes of 24 subjects with DME were retrospectively analyzed. Both video and still-frame images were obtained using a Heidelberg Spectralis 6-mode HRA/OCT unit. We aligned early and late FA frames in the video by a two-step nonrigid registration method. To remove background artifacts, we subtracted early and late FA frames. Finally, after postprocessing steps, including detection and inpainting of the vessels, a robust active contour method was utilized to obtain leakage area in a 1500-µm-radius circular region centered at the fovea. Images were captured at different fields of view (FOVs) and were often contaminated with outliers, as is the case in real-world clinical imaging. Our algorithm was applied to these images with no manual input. Separately, all images were manually segmented by two retina specialists. The sensitivity, specificity, and accuracy of manual interobserver, manual intraobserver, and automatic methods were calculated.

RESULTS. The mean accuracy was 0.86 ± 0.08 for automatic versus manual, 0.83 ± 0.16 for manual interobserver, and 0.90 ± 0.08 for manual intraobserver segmentation methods.

CONCLUSIONS. Our fully automated algorithm can reproducibly and accurately quantify the area of leakage of clinical-grade FA video and is congruent with expert manual segmentation. The performance was reliable for different DME subtypes. This approach has the potential to reduce time and labor costs and may yield objective and reproducible quantitative measurements of DME imaging biomarkers.

Keywords: leakage segmentation, diabetic macular edema, fundus fluorescein angiography, nonrigid registration
Martinez-Costa et al.35 have published a method for detection of macular angiographic leakage due to retinal vein occlusion. The foveal center is manually detected, and then images are aligned automatically. Pixels with a statistically high increment in gray level along the sequence within the closest area to the fovea center are segmented as leakage. Another method by Cree et al.36 assumes that captured images are composed of two functions, one describing the true underlying image and the other the incurred degradation due to uneven illumination or occluded optical pathways. Any leakage of fluorescein dye is then detected by analyzing the restored data and finding areas of the image that do not have normal fluorescence intensity attenuation. The exponential model of fluorescein decay utilized by Cree et al.36 is an extension of the linear model used by Phillips et al.37,38 In contrast, other researchers claim that the intensity profile of the hyperfluorescent region is not entirely predictable,39 especially in cases of late filling vasculature, scars caused by laser surgery, or late staining of the optic nerve head. The obtained temporal profiles in the work of Berger,40 after using a polynomial warping algorithm for FA registration, also show that simple models are not able to correctly match the intensity profile of the hyperfluorescent regions.

To address this problem, Buchanan and Trucco41 utilized (1) contextual knowledge and (2) spatiotemporal features exploiting the evolution of intensity levels over the sequences of ultra-widefield retinal angiograms to train an AdaBoost algorithm. More recently, El-Shahawy et al.42 modeled manually cropped macular image in the early frames by a two-dimensional Gaussian surface, which is then subtracted from the corresponding area in late frames to segment the leakage area using a Gaussian mixture model classification algorithm. This algorithm analyzes only one early frame and one late frame, and along with the previously noted studies, uses rigid phase correction registration. All these noted methods either use rigid registration35,37,38,41 (the shortcomings of which will be experimentally proven for our problem) or require manual inputs35,37,38,41 (e.g., in the registration step or for fovea detection).

In this paper, we present a fully automated image segmentation algorithm (which does not require manual inputs) for reproducible and accurate quantification of leakage area in DME. An exciting characteristic of our algorithm is its applicability to real-world clinical images, which often include low-quality images with various sources of outliers, without requiring any manual input.

Methods

Study Subjects

This study was approved by the Duke University Health System Institutional Review Board (IRB) in accordance with Health Insurance Portability and Accountability Act (HIPAA) regulations and the standards of the 1964 Declaration of Helsinki. Twenty-four eyes of 24 subjects were included in the study. Only images obtained from the transited eye were analyzed. In order to be included, subjects had to be diagnosed with DME based on clinical exam, FA, and OCT imaging. Exclusion criteria included other causes of macular edema, globally poor image quality (due to media opacity or patient cooperation), missing early- or late-frame images, or photographer error that made accurate segmentation even by manual graders impossible in the opinion of the expert graders. In order to test the performance of the algorithm over a wide spectrum of DME subtypes, efforts were made to include representative subjects with predominantly focal, predominantly diffuse, and mixed pattern leakage (as determined by expert clinicians) in the study.

Data Acquisition

Expert clinicians retrospectively identified FA images obtained during routine clinical care at the Duke Eye Center. All images were obtained using a Heidelberg Spectralis 6-mode HRA/OCT unit (Heidelberg Engineering, Heidelberg, Germany). The first minute of the study was captured in movie mode using the high-resolution setting (4.7 frames per second), and subsequent late-phase images were captured as single images in ART mode (averaging nine images). Each grayscale image in the sequence was composed of 768×768-pixel images. The FOVs of the early movie and the late-phase images were 30°, 35°, and 55° (Table 1). Following acquisition, image files were deidentified and exported in E2E format for further analysis.

Image Processing Algorithms

A block diagram of our proposed method for leakage detection from FA images of DME patients is shown in Figure 1. The first step in our algorithm is accurate registration of the FA image sequence for each patient, where we register a set number of frames in the video (called registered frames) to one reference frame in the sequence. After accurate registration of the FA sequence, we estimate the normalized difference between the early and late FA images. After several postprocessing steps including detection and inpainting of vessel regions, we find an initial estimate of the leakage area. Finally, we utilize the robust active contour method42 to accurately detect the boundaries of the leakage region. These steps are discussed in more detail in the following subsections.

Registration. Accurate registration is a critical step because (1) fluorescence level in FA images is different from one subject to another and (2) nonleakage areas (e.g., vessels) also fluoresce. Since the contrast agent accumulates slowly, the leakage area appears most prominently in the later frames of the FA video sequence, as opposed to MAs, vessels, or laser scars, which are more prominent in earlier frames. Thus, a logical approach for detecting the actual leakage area is to
compare the fluorescence levels of geographically similar areas of the retina at different time points.

Registration of an FA sequence, which may span a few minutes, is in general a challenging problem since (1) global and local illumination of frames in an FA video (spanning up to a few minutes) cannot be considered constant; (2) MAs, leakage, and vessels appear and disappear throughout the video; and (3) interframe motion cannot be modeled as rigid (see discussion of Multiresolution Nonrigid Local Registration in Fig. 5 below).

This problem is even more challenging for datasets from a real-world clinical setting (as opposed to a controlled experiment) due to the following issues: (1) different FOVs in FA videos in the same clinical practice (e.g., 30°, 35°, and 55° FOVs); (2) severe distortion of images due to eye movement and blinking; and (3) obstructed view or high levels of noise in a selected number of frames (Fig. 2).

To address these problems, several algorithms with varied levels of success have been proposed through the years. In our method, to accurately register the relatively low-quality clinical FA images, we utilize a two-step nonrigid registration approach: a robust global vessel-based registration method based on the RANdom SAMpling & Consequence (RANSAC) algorithm, followed by a more accurate nonrigid intensity multisresolution registration of FA images.

Frame Selection. The first step of our registration algorithm is removing corrupted frames (especially due to eyelid twitching, blinking, and exceptionally high noise levels) from the registration process (Fig. 2). We achieve this by removing frames with a correlation less than 0.7 with the last frame from the registration process (Fig. 3).

Global Rigid Registration. Once the FA sequence is pruned of the outlier frames, we find a pilot global transform that registers the remaining frames. Our global registration algorithm is based on finding a geometric transformation corresponding to the matching point pairs using a variant of the RANSAC method called the statistically robust M-estimator Sample Consensus (MSAC) algorithm. The iterative RANSAC method estimates parameters of a mathematical model from a set of observed data that are contaminated with outliers. In MSAC (the cost function is modified, whereas inliers are scored according to their fitness to the model while the outliers are given a constant weight. In order to find the matching point pairs, we first roughly segment the vessels in each image. While virtually any vessel detection algorithm can be employed for this task, in this paper we use the exploratory Dijkstra forest algorithm of Estrada et al. In this method, after preprocessing, in each iteration the best unvisited vessel pixel in the image is chosen as a starting point for a dynamic-programming exploration of the unvisited part of the image, which results in a new tree in the growing forest of vessels. A threshold is chosen as stop criterion, which stops forest growth when the best unvisited vessel pixel is worse than this threshold.

After this pilot vessel detection step, we utilize the scale and rotation-invariant interest point detector/descriptor Speeded-Up Robust Features (SURF) on the binary vessel map to extract blob features. Finally, a threshold is chosen as stop criterion, which stops forest growth when the best unvisited vessel pixel is worse than this threshold.

In our method, to accurately register the relatively low-quality clinical FA images, we utilize a two-step nonrigid registration approach: a robust global vessel-based registration method based on the RANdom SAMpling & Consequence (RANSAC) algorithm, followed by a more accurate nonrigid intensity multisresolution registration of FA images.
reference and registered images. We use the intensity multi-resolution registration method (implemented utilizing MATLAB’s imregister function) on the corresponding local patches. To achieve optimal results, in each patch we utilized a multiresolution decomposition approach, with three resolution scales, and iterated 100 times in each pyramidal scale. This procedure can be repeated to obtain the registration parameters of all pixels. However, we empirically found out that for faster registration, we needed to register only one out of every 20 pixels and used the nearest neighbor coefficients for the

FIGURE 2. Example individual frames of an FA video in our dataset demonstrating the variability of image quality and frequent outliers of FA images captured in a real-world clinical setting. Outlier frames can appear at any time point, complicating development of fully automated software for leakage quantification. (a) A low-intensity frame at time point 8°. (b) A frame with acceptable quality at time point 35°. (c–e) Completely unusable (outlier) frames at time points 39°, 40°, 41°. (f) A frame with acceptable quality at time point 56°. The correlations of these six frames to the last frame are 0.61, 0.84, 0.43, 0.44, 0.46, 0.99.

FIGURE 3. Correlation of the 500 frames in the FA sequence (start point is second 11 and end point is second 65) of Figure 2 with the last frame of that sequence. Corrupted frames (corresponding to orange circle) with low-correlation values are treated as outliers and are excluded from analysis.
rest of the pixels. Figures 5b and 5d show the effectiveness of the proposed technique in correcting the slight misalignments in the rigid registration step.

Background Normalization. Following injection of the fluorescent dye, vessels appear in the earlier frames of the FA sequence, followed by MAs, and then leakage areas. In later FA frames, leakage areas are amplified while vessel and MA luminance are attenuated (i.e., early frames show vessels; middle frames show vessels and MAs; and late frames show vessels, MAs, and leakages). Thus, by comparing the FA images captured at different time points, leakage areas can be distinguished from other bright areas in the image. We implement such a background normalization process in the following three steps.

Pilot Background Normalization. Imaging conditions often vary during acquisition of a single FA sequence, which can take several minutes. For example, the incident angle of the laser beam may be different at different time points. Alternately, features such as vessels are attenuated in the later frames as compared to the frames appearing in the middle of the sequence. Thus, the background intensity of the image at local and global scales might be different for different images in a sequence, requiring intensity normalization across all frames. An initial step for intensity normalization is to estimate and subtract the background of each frame. We achieve this by subtracting a morphologically opened variant of each image from itself. Opening in grayscale images is defined as the erosion of image $f(x, y)$ by the structuring element b followed by the dilation of $f(x, y)$. The resulting image is $b = f(x, y)$.

![Figure 4](image1.png)

FIGURE 4. An illustrative example of the global (rigid) registration steps for averaged early and late frames of a DME patient. (a) Mean early FA frame. (b) Late FA frame. (c) Unregistered images overlaid. (d) Unregistered vessels overlaid. (e) Initial SURF features of the two frames overlaid. (f) Strongest SURF features overlaid. (g) Rigidly registered vessels. (h) Rigidly registered images. Perfectly registered vessels appear in white in (g) and (h).

![Figure 5](image2.png)

FIGURE 5. Comparison between the results of global rigid registration and nonrigid registration for the image in Figure 4. (a) Overlay of the rigidly registered images. (b) Overlay of the nonrigidly registered images. (c, d) Segmented vessels in the yellow square section of (a, b), respectively, where white indicates better matching.
the result with \(b \). In our implementation, the erosion and dilation operators are defined as
\[
\min_{x \in \mathbb{Z}} f(x + s, y + t) \quad \text{and} \quad \max_{x \in \mathbb{Z}} f(x - s, y - t),
\]
respectively, where \(b \) is a flat, disk-shaped structuring element with a radius of 20 pixels. Such a relatively large structuring element decreases the intensity of bright features (e.g., vessels and leakage) in our FA images while having a relatively negligible effect on dark features (e.g., FAZ). Thus, by subtracting the opened version of an image from itself, we improve the background intensity uniformity across all images in a sequence. To further improve background uniformity, after background removal we adjust the gray level of each image by local histogram equalization.62 As an example, Figure 6a is the background-normalized version of Figure 4a.

Pilot Vessel and MA Removal. We accentuate the leakage area in the late FA images by subtracting other fluorescing features, which appear more prominently in earlier frames, such as vessels and MAs. However, individual early FA images are often dominated by image acquisition noise. Thus, instead of subtracting individual frames, we use two representative frames: the averaged early and late frames. The averaged early frame is created by averaging frames 70 to 140. By subtracting mean early FA from late FA image, vessels and MAs in most regions will be significantly attenuated, while leakage areas will be less affected (Fig. 6, first row).

Vessel Masking and Postprocessing. While the previous step eliminates larger vessels, it occasionally fails to remove smaller ones. Moreover, removing vessels located inside a leakage region partitions a continuous leakage area into critically smaller (and undetectable) regions (Fig. 6c). We address this problem by creating an auxiliary image in a two-step set of morphologic operations:

- Removing small objects (e.g., small vessel branches) by applying an opening operation utilizing a disk-shaped structuring element with a radius of 2 pixels; and
- Inpainting the removed vessels by dilating, followed by eroding the image utilizing disk-shaped structuring elements with radii of 5 and 3 pixels, respectively.

Then, we substitute the grayscale values of the pixels in the subtracted image, which correspond to vessels (attained in the registration step) with corresponding values in the auxiliary image (Fig. 6d). Thus, only vessels overlying areas of leakage are filled, without reducing the specificity of the algorithm by filling other dark areas such as FAZ. We remove the remaining small outlier objects by applying an opening morphologic operator utilizing a disk-shaped structuring element with a radius of 2 pixels (Fig. 6e).

Leakage Segmentation. We deem all pixels with positive gray-level values in the resulting image as pilot estimates of the leakage area. We then utilize the contour of these pilot leakage regions to initialize Chan-Vese’s active contour segmentation algorithm.42 We empirically chose the parameters of the Chan-Vese algorithm (500 iterations and 0.8 for the smoothing parameter).

Detection of the Region of Interest (ROI) for Quantitative Analysis. We focused our quantitative analysis on a 1500-μm-radius circle around the fovea, which is of most significance for clinical diagnosis and treatment. Automatic designation of this region required detection of the fovea. Foveal identification on FA, regardless of utilization of automatic or manual methods, is a challenging problem especially in noisy real-world clinical data. We have developed an objective automatic algorithm to segment the fovea based on early FA frames, which are less affected by capillary nonperfusion and leakage compared to later frames. We utilized this objective method only to determine the ROI for quantitative comparison of manual versus automatic grading. Indeed, better estimates for the center of the fovea can be attained by using alternative imaging modalities such as OCT.

Our automatic detection of fovea based on early FA frames was accomplished in the following steps: (1) applying an opening operation utilizing a disk-shaped structuring element with a radius of 50 pixels and (2) attaining the location of the fovea by averaging the coordinates of the darkest pixels in the central region of the image (defined as pixels with gray-level values less than 0.04 of the maximum intensity pixel in the region). Figure 6f illustrates the final extracted leakage area after applying the Chan-Vese algorithm on Figure 6e.

Figure 6. Background normalization steps for the image in Figure 4. (a) Pilot background normalized mean early frame. (b) Pilot background normalized late FA frame. (c) Pilot vessel and MA removed frame attained by subtracting (b) from (a). (d) Vessel inpainted frame. (e) Removing small objects. (f) Automatically segmented leakage in the 1500-μm-radius ROI.
Manual Segmentation. Total leakage was segmented in the late-phase FA images by two independent expert graders (MJA and PSM, both expert medical retina specialists) using the DOCTRAP software.64 DOCTRAP has a graphic user interface (GUI) for manual segmentation extensively used and validated in previous studies.64 Before commencing to grade the test dataset, manual graders met and agreed upon similar leakage definition and segmentation protocol defined by the senior clinician (SWC). To define intraobserver reliability, one manual grader repeated his grading on the same images at least 6 weeks after the initial grading. While grading, both early- and late-phase FA images were available to the reviewers on separate computer screens. Graders identified leakage as increased hyperfluorescence above the general choroidal background level present in the late but not the early phase. Early hyperfluorescent structures that did not leak, such as staining laser scars and nonleaking MAs, were not segmented as leakage. Similarly, preretinal neovascularization, identified as early bright hyperfluorescence with extensive, bright late leakage, was not considered leakage due to DME.

Quantitative Measures of Performance. In order to evaluate the performance of our algorithm, we calculated the specificity and sensitivity as follows. True positive (TP) was defined as the common segmented area (the number of corresponding pixels in the ROI) by both the algorithm and the ophthalmologist. False positive (FP) was defined as an automatically segmented leakage area that does not belong to the leakage region as determined by the ophthalmologist. True negative (TN) is the area that does not belong to the detected leakage areas as determined by both the ophthalmologist and our algorithm. False negative (FN) is the area that was marked as a leakage region by the ophthalmologist but was missed by our algorithm. Sensitivity (TP/[TP+FN]), specificity (TN/[TN+FP]), and accuracy ([TP+TN]/[TP+TN+FP+FN]) for all data were calculated and compared to inter- and intraobserver errors.

Reproducibility Analysis. To test the reproducibility of the proposed algorithm, we divided each FA sequence into two separate sequences. One sequence included only the odd-numbered frames and the other included only the even-numbered frames of the original sequence. We compared the performance of the automatic algorithm in segmenting leakage area in these two sets of images from the same patient.

RESULTS
Figure 7 qualitatively compares the performance of our algorithm to the segmentation of manual graders. Table 2 lists the sensitivity, specificity, and accuracy of the automatic and manual grading for all datasets. The interobserver columns...
compare the performance of the two manual graders, while the intraobserver columns compare the performance of the same grader at two different time points at least 6 weeks apart. In our dataset, two subjects had evidence of prior macular hemorrhage within the ROI, and seven subjects had definite foci of irregular FAZs, two subjects had extrafoveal nonperfusion photocoagulation (laser), five subjects had enlarged or mixed FAVs, and 8 subjects had areas of diffuse leakage. In our dataset, two subjects had evidence of prior macular hemorrhage within the ROI. The mean area of leakage was 2.29 mm² in the ROI.

Table 2. Quantitative Analysis of the Performance of the Proposed Automated Segmentation and Manual Grading of the Leakage Area in FA Images

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Focal 1</td>
<td>0.62 ± 0.95 ± 0.87</td>
<td>0.87 ± 0.79 ± 0.81</td>
<td>0.65 ± 0.97 ± 0.90</td>
</tr>
<tr>
<td>Focal 2</td>
<td>0.60 ± 0.97 ± 0.96</td>
<td>0.99 ± 0.85 ± 0.85</td>
<td>0.88 ± 1 ± 0.99</td>
</tr>
<tr>
<td>Focal 3</td>
<td>0.73 ± 0.77 ± 0.77</td>
<td>0.93 ± 0.91 ± 0.91</td>
<td>0.64 ± 0.99 ± 0.96</td>
</tr>
<tr>
<td>Focal 4</td>
<td>0.55 ± 0.92 ± 0.75</td>
<td>0.89 ± 0.81 ± 0.85</td>
<td>0.61 ± 0.97 ± 0.81</td>
</tr>
<tr>
<td>Focal 5</td>
<td>0.35 ± 0.99 ± 0.97</td>
<td>0.95 ± 0.95 ± 0.95</td>
<td>0.78 ± 0.99 ± 0.99</td>
</tr>
<tr>
<td>Focal 6</td>
<td>0.77 ± 0.88 ± 0.87</td>
<td>0.97 ± 0.90 ± 0.91</td>
<td>0.77 ± 0.99 ± 0.97</td>
</tr>
<tr>
<td>Focal 7</td>
<td>0.82 ± 0.91 ± 0.90</td>
<td>0.95 ± 0.92 ± 0.92</td>
<td>0.64 ± 1 ± 0.98</td>
</tr>
<tr>
<td>Focal 8</td>
<td>0.82 ± 0.98 ± 0.97</td>
<td>0.98 ± 0.94 ± 0.95</td>
<td>0.88 ± 0.98 ± 0.97</td>
</tr>
<tr>
<td>Focal 9</td>
<td>0.62 ± 0.95 ± 0.89</td>
<td>0.98 ± 0.70 ± 0.74</td>
<td>0.82 ± 0.93 ± 0.91</td>
</tr>
<tr>
<td>Focal 10</td>
<td>0.66 ± 0.97 ± 0.94</td>
<td>0.94 ± 0.93 ± 0.93</td>
<td>0.85 ± 0.96 ± 0.95</td>
</tr>
<tr>
<td>Mixed 1</td>
<td>0.70 ± 0.95 ± 0.82</td>
<td>0.84 ± 0.69 ± 0.76</td>
<td>0.73 ± 0.74 ± 0.74</td>
</tr>
<tr>
<td>Mixed 2</td>
<td>0.39 ± 0.87 ± 0.85</td>
<td>0.91 ± 0.97 ± 0.96</td>
<td>0.76 ± 0.99 ± 0.98</td>
</tr>
<tr>
<td>Mixed 3</td>
<td>0.80 ± 0.98 ± 0.90</td>
<td>1 ± 0.59 ± 0.78</td>
<td>0.92 ± 0.97 ± 0.95</td>
</tr>
<tr>
<td>Mixed 4</td>
<td>0.78 ± 0.95 ± 0.93</td>
<td>0.99 ± 0.86 ± 0.87</td>
<td>0.79 ± 0.98 ± 0.96</td>
</tr>
<tr>
<td>Mixed 5</td>
<td>0.56 ± 0.92 ± 0.82</td>
<td>0.99 ± 0.55 ± 0.68</td>
<td>0.81 ± 0.85 ± 0.84</td>
</tr>
<tr>
<td>Mixed 6</td>
<td>0.56 ± 0.95 ± 0.81</td>
<td>0.98 ± 0.38 ± 0.59</td>
<td>0.87 ± 0.86 ± 0.86</td>
</tr>
<tr>
<td>Mixed 7</td>
<td>0.67 ± 0.97 ± 0.80</td>
<td>0.97 ± 0.27 ± 0.58</td>
<td>0.86 ± 0.89 ± 0.88</td>
</tr>
</tbody>
</table>

Mean ± SD: 0.69 ± 0.16, 0.91 ± 0.09, 0.86 ± 0.08, 0.95 ± 0.05, 0.73 ± 0.27, 0.83 ± 0.16, 0.78 ± 0.09, 0.94 ± 0.08, 0.90 ± 0.08

SD, standard deviation.

DISCUSSION

We have presented a novel fully automatic algorithm for segmentation of leakage area on real-world clinical FA images, which was congruent with expert manual segmentation. Noting the quantitative results of Table 2, illustrated visually in Figure 7, although both graders followed the same protocol in identifying leakage, it is noteworthy that the interobserver accuracy was lower than for our automatic method. Moreover, the accuracy of our algorithm was close to the intraobserver accuracy (one grader versus himself), which is the highest practical value for accuracy (it is meaningless for an automatic algorithm to have higher accuracy than the gold standard of human grading, to which it is being compared). These results were achieved despite the fact that our (non-“cherry-picked”) dataset suffered from noise and other distortions common in real-world clinical imaging. Figure 8 shows that in these situations, even intraobserver accuracy decreased greatly. We used the exact same algorithmic parameters for all experiments even though there was significant difference between imaging conditions (e.g., FOV) of different subjects. Indeed, we expect that we could have achieved better performance if we had selected images from a strict imaging protocol. However, our goal was to develop an algorithm that is useful for real-world clinical data, which are often far from the ideal situations considered in some clinical trials.

The main limitation of our algorithm is its inaccuracy in segmentation of relatively small leakage areas (e.g., Focal 5 and Mixed 2), resulting in lower reported sensitivity in subjects with relatively small leakage areas. However, as expected, the specificity values for these subjects are equal to or better than the average specificity values across all subjects. Another problem, which can be solved using high-speed computers, is the computational time of our algorithm due to registration of frames (which is around 2 minutes using

Downloaded from iovs.arvojournals.org on 04/26/2019
only a few papers have addressed automatic leakage imaging conditions.

We also note that despite the robustness of our method to various sources of outliers, naturally the performance of our algorithm is negatively affected when dealing with significantly lower signal-to-noise ratio images. As part of our future work, to improve the signal-to-noise ratio of captured images, we will adapt a novel sparsity-based image enhancement algorithm, which has already demonstrated to be effective in enhancement of OCT images.

Although FA provides additional information about DME that is complementary to OCT, change in leakage in FA is considered by many to be a more valuable metric than the absolute leakage at a single time point. This is in part because quantification of features on FA is typically not as reproducible compared to other imaging modalities such as OCT. The current study can be considered the first step toward automatic quantification of change in leakage over time.

Although several studies have been performed on quantitative analysis of various pathologies in FA images (and other modalities including color fundus images and OCT), only a few papers have addressed automatic leakage detection for DME using FA. Robust segmentation of leakage in clinical-grade data is a very difficult proposition, in part because of the challenging problem of FA sequence registration. This registration problem is challenging because (1) the deformation model is nonrigid, (2) the intensity of the images both locally and globally changes through time, (3) different sources of outliers locally (e.g., eye lashes) and globally (eye blinking) occlude the FOV, (4) the dynamic scene changes (e.g., leakage appears in the later frames). While each of these problems individually has been addressed in literature, a unique feature of our algorithm is its capability to fully automatically register FA images in the presence of outliers and significant leakage.

Achieving an appropriate dataset for evaluating the reproducibility of our leakage detection algorithm was a challenging problem. Because FA imaging is invasive, repeated injection of fluorescein dye for research purposes was not permitted by the IRB. Moreover, even if repeated imaging of subjects was possible, repeatability in FA imaging is more an issue of variability in the imaging condition at two different time points (e.g., angle of incident of the laser) than of the robustness of the segmentation technique. To address this issue, we divided the images from the same imaging session into two nonoverlapping groups to demonstrate the repeatability of the algorithm without significant variability in imaging conditions.

In summary, here we introduce a new algorithm for automatic quantification of leakage in FA images of DME patients. The algorithm was based on nonrigid registration of FA frames, producing mean early FA and late FA images, obtaining the difference image, vessel filling and postprocessing, thresholding for obtaining the initial contour of the active contour, and leakage extraction in ROI using the Chan-Vese algorithm. While some of the algorithmic steps developed here were previously described by others, the overall algorithm is unique and novel, and shows unparalleled performance for segmenting leakage from real-world clinical FA images. This algorithm is implemented as MATLAB-based, user-friendly software, which has the potential to replace or aid subjective and time-consuming manual segmentation. Evaluation of usability and validation of this software for automatic classification of DME patients into focal, diffuse, and mixed categories in a clinical trial is part of our ongoing work. This novel, computer-aided technology will ultimately help us better understand the underlying mechanisms of diabetic retinopathy, which in turn may facilitate the optimal therapeutic strategy personalized for an individual’s particular DME disease.

Acknowledgments

We thank Leon Kwark for his help in preparation of data and the manuscript.

Supported in part by National Institutes of Health Grants R01-EY022691 and K12-EY016333-08. The sponsor or funding organization had no role in the design or conduct of this research.

Disclosure: H. Rabbani, None; M.J. Allingham, None; P.S. Mettu, None; S.W. Cousins, None; S. Farshi, None

References

