Macular Perfusion in Healthy Chinese: An Optical Coherence Tomography Angiogram Study

Jian Yu,1,2 Chunhui Jiang,1,3 Xiaolei Wang,1,2 Li Zhu,1,2 Ruiping Gu,1,2 Huan Xu,1,2 Yali Jia,4 David Huang,4 and Xinghuai Sun1,2

1Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, People’s Republic of China
2Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, People’s Republic of China
3Department of Ophthalmology, People’s Hospital of Shanghai No. 5, Shanghai, People’s Republic of China
4Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States

Correspondence: Chunhui Jiang, Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, 85 Fenyang Road, Shanghai 200031, People’s Republic of China; chhjiang70@163.com.

Submitted: December 16, 2014
Accepted: April 5, 2015

DOI:10.1167/iovs.14-16270

PURPOSE. To investigate macular perfusion in healthy Chinese individuals and examine its dependence on age and sex.

METHODS. Healthy adult Chinese individuals were recruited. Macular perfusion was measured by spectral-domain optical coherence tomography (OCT) using the split-spectrum amplitude-decorrelation angiography (SSADA) algorithm. The parafoveal flow index and vessel area density as well as the area of the foveal capillary-free zone (CFZ) were quantified.

RESULTS. A total of 76 eyes in 45 subjects were included (20 males and 25 females, mean age 36 ± 11 years). The mean parafoveal flow index was 0.099 ± 0.013; the mean vessel area density was 0.891 ± 0.075; and the mean CFZ area was 0.474 ± 0.172 mm². All three parameters were significantly correlated with age (flow index: P = 0.00; vessel area density: P = 0.00; CFZ area: P = 0.02). The flow index and vessel area density decreased annually by 0.6% and 0.4%, respectively, and CFZ area increased by 1.48% annually. The CFZ area was larger in females than in males, while all three parameters seemed to change more rapidly with age in males than in females.

CONCLUSIONS. In healthy Chinese eyes, macular perfusion decreased with increasing age, and decreased more rapidly in males than in females. The application of OCT angiograms may provide a useful approach for monitoring macular perfusion, although caution must be exercised with regard to age- and sex-related variations.

Keywords: optical coherence tomography (OCT) angiogram, split-spectrum amplitude-decorrelation angiography (SSADA) algorithm, macular perfusion, capillary-free zone.

The retinal vascular system, especially the part that perfuses the macular area, is essential to normal visual function.1 Numerous factors (e.g., pathology, trauma) can cause severe and irreversible visual damage to the macula.1,2 Ophthalmologists have used a variety of different methods to observe the vasculature in the macular area, including fundus camera3 and fundus fluorescein angiography (FFA).4 While these methods provide important clinical information, their use in clinical settings is limited by their invasive nature or low resolution. Moreover, the monitoring of early and subtle changes in the macular capillary system in clinical settings has proven challenging. Thus, an effective and noninvasive method for monitoring macular perfusion would provide not only a means for early detection of changes related to various pathologies, leading in turn to early interventions, but also a more thorough understanding of the pathophysiology of macular vascular disease.

Recently, development of a new technique known as split-spectrum amplitude-decorrelation angiography (SSADA) has promised new insights for understanding ocular perfusion. The technique, based on optical coherence tomography (OCT), is able to rapidly and accurately quantify retinal and disc blood flow in a noninvasive manner.5,6 Previous research has demonstrated that OCT angiography (angio-OCT) with SSADA offers results with high intravisit repeatability and intervisit reproducibility.7,8 However, an understanding of the status in normal eyes is necessary before its application in clinical settings. Moreover, some previous studies have found that the thicknesses of the retinal nerve fiber layer (RNFL), the macula, and the choroid vary with both age and sex.9–13 Thus, we here report on macular perfusion in normal volunteer subjects to explore the potential effects of age and sex on macular retinal functions.

METHODS

Subjects
Normal volunteers were enrolled from April to June 2014. All underwent a complete ophthalmologic examination, which included the following components: determination of best-corrected visual acuity (BCVA); slit-lamp biomicroscopy; refraction measurement using autorefraction and refinement by an experienced optometrist; calculation of the spherical equivalence (SE) using the spherical diopter (D) plus one-half of the cylindrical dioptic power for later analysis; a dilated fundus...
Macular Perfusion in Healthy Chinese by Angio-OCT

OCT Data Acquisition and Processing

Optical coherence tomography angiography scans were obtained by the spectral-domain system RTVue-XR Avanti (software version 2.0.5.39; Optovue Inc., Fremont, CA, USA). This system has an A-scan rate of 70,000 scan per second, using a light source centered on 840 nm and a bandwidth of 45 nm. Both eyes of each participant were examined and scanned within the same visit. Three dimensional (3D) OCT angiography scans were acquired over 3-mm regions by using 5 repeated B-scans at 216 raster positions, each B-scan consisting of 216 A-scans. With a B-scan frame rate of 270 frames per second, each scan can be acquired in ~3.5 seconds. Four volumetric raster scans, including two horizontal priority (x-fast) and two vertical priority (y-fast), were obtained consecutively. The best x-fast and y-fast scans were processed by the SSADA algorithm, and motion artifact was removed by 3D orthogonal registration and merging of two scans. An en face retinal angiogram was created by projecting the flow signal internal to retinal pigment epithelium. All this processing can be achieved using the software included (version 2.0.5.39).

Macular Perfusion Measurement

In order to quantify macular circulation, en face retinal angiograms were output and processed by use of ImageJ software (Image J 2.x 2.1.4.6 u4i; Wayne Rasband, National Institutes of Health, Bethesda, MD, USA). The parafoveal flow index and the parafoveal vessel area density were calculated as previously described. In our study, the parafoveal region was defined as an annulus with an outer diameter of 2.86 mm and inner diameter of 1 mm (Supplementary Fig. S1). Briefly, the parafoveal flow index was defined as the average decorrelation value, given by:

\[
\frac{\int_A D \cdot VdA}{\int_A dA}
\]

(for vessel areas, \(V = 1\); for nonvessel areas, \(V = 0\)),

where \(A\) is the parafoveal area and \(D\) is the decorrelation value acquired by the SSADA algorithm.

The vessel area density was defined as the proportion of the total area occupied by vessels, calculated as:

\[
\frac{\int_A D \cdot VdA}{\int_A dA} = \frac{1}{\pi R^2} \int_A D \cdot VdA
\]

(for vessel areas, \(V = 1\); for nonvessel areas, \(V = 0\)).

The threshold decorrelation value used to judge the value of \(V\) as 0 or 1 was set at 0.08, which is two standard deviations above the mean decorrelation value in the noise region, that is, the central foveal capillary-free zone (CFZ).

Capillary-Free Zone Measurements

The CFZ was outlined and measured in images magnified six times (using ImageJ software) (Supplementary Fig. S2).

Repeatability and Reproducibility

Repeatabilities of the flow index, vessel area density, and CFZ area measurements were calculated from two sets taken from each eye during a single visit by a single operator; 15 eyes were included. For CFZ area measurements, intraobserver repeatability and interobserver reproducibility were evaluated on all 76 images by two observers, who each measured the same scan from each eye twice. Intraclass correlation (ICC) and Bland–Altman plots were used to assess repeatability and reproducibility.

Statistical Analyses

Statistical analyses were performed using SPSS, version 20.0 (SPSS Inc., Chicago, IL, USA) and MedCalc, version 11.4 (MedCalc Software, Ostend, Belgium). Linear mixed model was performed to determine the effects of IOP, SE, OPP, heart rate (HR), sex, and age on the flow index, vessel area density, and CFZ area, as well as the difference of flow index, vessel area density, and CFZ area between sexes. Student’s \(t\)-tests were used to compare the difference of age, IOP, SE, OPP, and HR between sexes and the difference of flow index, vessel area density, and CFZ area between left and right eyes. Intraclass correlation and Bland–Altman plots were used to assess repeatability and reproducibility (ICC values of 0.81–1.00 indicate almost perfect agreement between repeated measurements; values less than 0.40 indicate poor to fair agreement). The Bland–Altman analysis tested for proportional biases between repeated measurements. For all tests, values of \(P < 0.05\) were considered statistically significant.

RESULTS

A total of 76 eyes from 45 normal Chinese subjects were included in the study. Demographically, the sample (summarized in Supplementary Table S1) included 20 males (35 eyes) and 25 females (41 eyes); the mean age was 36 ± 11 years (range, 24–59 years). Examination results yielded the following: mean IOP 14.6 ± 2.5 mm Hg (range, 9.9–21 mm Hg); mean SE, −1.2 ± 1 D (range, −3 to 1 D); mean flow index for the parafoveal area, 0.099 ± 0.013 (range, 0.071–0.127); mean vessel area density, 0.891 ± 0.073 (range, 0.691–0.997); and mean CFZ area, 0.474 ± 0.172 mm² (range, 0.128–0.976 mm²).

The mean ICC between two measurements from 15 eyes was 0.910 for vessel area density; 0.925 for the flow index, and 0.901 for CFZ area; a Bland–Altman plot showed good reliability (Supplementary Figs. S3A–C). The mean ICC for measurement of CFZ area was 0.989 and 0.971 for intra-
TABLE 1. Linear Mixed Model Analysis of the Relationships Between Age, IOP, SE, HR, and OPP (Independent Variables) and Parafoveal Flow Index, Parafoveal Vessel Area Density, and Area of the CFZ (Dependent Variables)

<table>
<thead>
<tr>
<th>Facts</th>
<th>Flow Index</th>
<th>Vessel Area Density</th>
<th>Capillary-Free Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t</td>
<td>P Value</td>
<td>t</td>
</tr>
<tr>
<td>Age</td>
<td>−6.208</td>
<td>0.000*</td>
<td>−6.103</td>
</tr>
<tr>
<td>SE</td>
<td>−1.446</td>
<td>0.152</td>
<td>−1.565</td>
</tr>
<tr>
<td>IOP</td>
<td>1.131</td>
<td>0.262</td>
<td>0.309</td>
</tr>
<tr>
<td>HR</td>
<td>1.828</td>
<td>0.071</td>
<td>1.126</td>
</tr>
<tr>
<td>OPP</td>
<td>−0.104</td>
<td>0.917</td>
<td>0.543</td>
</tr>
</tbody>
</table>

* P < 0.05.

doctor's note: The values in Table 1 represent coefficients from a linear mixed model analysis. The table includes the effects of age, IOP, SE, HR, and OPP on parafoveal flow index, vessel area density, and capillary-free zone area. The coefficients (t values) and their associated p-values are provided for each factor. The data suggest that age has a significant effect on all three measures, with a greater increase in the capillary-free zone area in males compared to females. Other factors such as IOP, SE, and OPP also show significant effects, with IOP and OPP having a notable impact on vessel area density.

DISCUSSION

We examined the perfusion of the macular area in normal Chinese subjects using an OCT angiogram, based on measurements of the parafoveal flow index and vessel area density, as well as CFZ area. Results showed a significant negative correlation between age and parafoveal flow index and vessel area density. Also, the flow index and vessel area density decreased with age more rapidly in males than in females. The CFZ area was larger in males than in females (male mean, 0.42 mm²; female mean, 0.52 mm²; P = 0.012; Table 2); however, no difference was found between left and right eyes. A significant correlation between age and CFZ area was found, but not between IOP, SE, or other measures and CFZ area. The decrease in both the flow index and vessel area density with age were greater in males than in females subjects. The average annual reduction in the flow index was 0.68% in males (slope, −0.000915/year) and 0.58% in females (slope, −0.000722/year; Supplementary Table S2); the average annual increase in vessel area density was 0.46% in males (slope, −0.005041/year) and 0.38% in females (slope, −0.003932/year; Supplementary Table S2).

The CFZ area was larger in females than in males (male mean, 0.42 mm²; female mean, 0.52 mm²; P = 0.012; Table 2); however, no difference was found between left and right eyes. A significant correlation between age and CFZ area was found, but not between IOP, SE, or other measures and CFZ area. The CFZ area increased with increasing age (P = 0.02; Table 1; Fig. C), showing an average annual increase of 1.48%. The increase in the CFZ area with age was greater in males than in females (males, 2.04%; females, 1.28%; Supplementary Table S2).

TABLE 2. Comparison of Results by Sex Analyzed by Linear Mixed Model

<table>
<thead>
<tr>
<th>Age, y</th>
<th>IOP, mm Hg</th>
<th>SE, D</th>
<th>HR</th>
<th>OPP, mm Hg</th>
<th>Flow index</th>
<th>Vessel area density</th>
<th>Capillary-free zone, mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>36</td>
<td>14</td>
<td>−1.1</td>
<td>78</td>
<td>0.101</td>
<td>0.906</td>
<td>0.42</td>
</tr>
<tr>
<td>Female</td>
<td>37</td>
<td>15</td>
<td>−1.3</td>
<td>73</td>
<td>0.098</td>
<td>0.878</td>
<td>0.52</td>
</tr>
<tr>
<td>P Value</td>
<td>0.515</td>
<td>0.403</td>
<td>0.378</td>
<td>0.024*</td>
<td>0.312</td>
<td>0.068</td>
<td>0.012*</td>
</tr>
</tbody>
</table>

* P < 0.05.
result, OCT angiography and the parameters it provides may be a good choice for studies of macular vascular disease.

In the present study, using SSADA we successfully measured macular perfusion: parafoveal flow index, and vessel area density, as well as CFZ area, in normal Chinese subjects. As both a previous study and our results showed a great variation in CFZ area, to avoid the impact of this variation, we measured only the flow index and the vessel area density at the parafoveal area (the annulus area between the inner 1-mm and outer 2.86-mm-diameter circles). All measurements and derived parameters were found to be correlated with age. The decrease in total retinal flow and increase in CFZ area with increasing age have been reported by Grunwald et al. and Laatikainen and Larinkari. Our findings are in agreement with theirs. As to the reason, Vandewalle et al. speculated that these changes in perfusion were the result of tissue loss and a corresponding reduction in oxygen and nutrient demand, thus resulting in a reduction in blood supply.

Previously Sung et al. and Girk et al. reported that macular thickness significantly decreased with increasing age; our finding of macular perfusion partially supports the theory of Vandewalle et al.

Our results show that the parafoveal flow index and vessel density decrease with increasing age at a rate of 0.6% and 0.4% per year, respectively. Sung et al. measured the thickness of the RNFL around the optic nerve head and reported that the thickness decreases with increasing age at a rate of 0.25% per year. As the overall average thickness of the RNFL was 100.8 ± 10.5 μm, the loss represents a decrease of approximately 0.25% per year. On the other hand, Leenders et al. reported that blood flow in the brain decreases at a rate of approximately 0.50% per year, which is comparable to our findings regarding blood flow in the parafoveal area.

Using FFA, Mansour et al. and Bresnick et al. found that the CFZ area was 0.35 to 0.41 mm² in normal eyes; these values are slightly smaller than those obtained in this study, which might be explained in the following way. The SSADA measurements are based on measurements of changes in reflections and backscattering of light. Previous studies have determined that not all capillaries are open at the same time. Thus, some of the capillaries around the CFZ might be closed.

Figure. Correlations between age and the parafoveal flow index, parafoveal vessel area density, and area of the capillary-free zone (CFZ) in normal subjects. Parafoveal flow index (A) and vessel area density (B) were negatively correlated with age, while CFZ area (C) was positively correlated.
during OCT scanning, which takes approximately 1 to 2 seconds (the fluorescence in the capillary persists for approximately 10 minutes),\(^4\) and this may account for the difference between the results of the different studies. The reduction in macular perfusion might account for other findings in older individuals. Reductions in perfusion might lead to relative ischemia in the fovea and might contribute to the etiology of macular entities that are triggered by ischemia. Previously, Ding et al.\(^3\) reported that the subfoveal choroid thickness is significantly reduced in people older than 60 years; also, Ito et al.\(^4\) reported that changes in choroidal circulation are more prominent in individuals older than 50 years. In the present study, a linear decrease in the parafoveal flow index and vessel area density, as well as an enlargement of the CFZ area, was found in the macula in younger individuals. Thus, while age-related changes in choroid might be involved in the etiology of age-related macular degeneration (ARMD), found mostly in elder individuals,\(^5\) the decreasing retinal perfusion observed in younger individuals may be related to the development of macular entities that are more common in slightly younger people, such as type 1 macular telangiectasia, for which the mean age at presentation is 40 years.\(^6\)

Our results showed that while the parafoveal flow index and vessel area density were not related to sex, the CFZ was larger in females than in males; this might be related to the thinner fovea found in females.\(^7\) In addition, in females the larger CFZ area was accompanied by a reduction in the decrease of the flow index, vessel area density, and enlargement of CFZ with age; it seems that the reduction in the rate of decrease in females effectively compensates for the large CFZ, such that flow in the macula is maintained. The mechanisms behind these patterns require further study.

The present study was a cross-sectional study involving a limited number of cases and including only Chinese subjects. Differences in retinal structure in subjects with different racial backgrounds have been reported\(^8\)\(^-\)\(^11\); thus, our results must be verified by other multicenter-based studies with larger numbers of cases from different racial backgrounds. In addition, the relationship between the change in macular perfusion and the function and structure of the macula should be examined further. Also, measurements of SSADA depend on the beam parameters of the OCT system, the scan pattern, the angiography algorithm used, and the threshold flow value to detect vessels. Therefore care must be taken to compare results even from the same system, especially given that the scan pattern and processing algorithms software are rapidly changing.

In this study, high-quality OCT angiograms of the macula were acquired using a commercially available OCT system. The flow index and vessel area density at the parafoveal area and CFZ area were found to be age and sex dependent. Thus, our results indicate that research on macular perfusion should take into account the possibility of age- and sex-related variations.

Acknowledgments

Supported in part by research grants from the National Major Scientific Equipment program (2012YQ120080) and the Shanghai Committee of Science and Technology (Grant 13430710500); National Institutes of Health (NIH) R01 EY023285 (DH, YJ); NIH 8UL1 TR000128 (DH, YJ); NIH R01 EY024544 (DH, YJ); DP5 DK104397 (YJ, DH); and Research to Prevent Blindness (DH, YJ).

Disclosure: J. Yu, None; C. Jiang, None; X. Wang, None; L. Zhu, None; R. Gu, None; H. Xu, None; Y. Jia, Optovue, Inc. (F); P. D. Huang, Optovue, Inc. (F, I); P. X. Sun, None

References

