Assessing Suppression in Amblyopic Children With a Dichoptic Eye Chart

Eileen E. Birch,1,2 Sarah E. Morale,1 Reed M. Jost,1 Angie De La Cruz,1 Krista R. Kelly,1 Yi-Zhong Wang,1,2 and Peter J. Bex3

1Crystal Charity Ball Pediatric Vision Laboratory, Retina Foundation of the Southwest, Dallas, Texas, United States
2Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
3Department of Psychology, Northeastern University, Boston, Massachusetts, United States

Converging evidence from animal models and clinical research suggests that interocular suppression has a key role in the etiology of amblyopia (see reviews by Birch,3 Hess and Thompson,4 and Wong5) and that the severity of suppression is correlated with the severity of amblyopia.6–9 When suppression is alleviated by reducing the contrast of the fellow eye image to rebalance the effective contrast in the two eyes, suppression can be overcome and binocular vision reinstated.10–13 Treatment regimens designed to alleviate suppression via repeated exposure to contrast-balanced binocular stimuli improve visual acuity in amblyopic adults12 and amblyopic children.13–16 Thus, severity of suppression may be a useful baseline and outcome measure in clinical amblyopia research.

Several protocols for determining severity of suppression in amblyopic adults have been described, including dichoptic global motion coherence,11,17,18 binocular phase,19–21 and binocular contrast summation.10,19,20 There have been attempts to apply these tests to amblyopic children, but success has been limited because the protocols rely on equipment that is cumbersome for children (virtual reality goggles, shutter glasses, haploscopic optical systems) coupled with the challenges posed by subtle psychophysical judgments and large numbers of trials.15

Our goal was to evaluate the feasibility of a novel, eye chart-based method to assess severity of suppression in children. Eye charts are familiar tests for children as young as 3 years, and have been standardized for electronic display to routinely provide quick and reliable outcome measures for multicenter randomized clinical trials in pediatric ophthalmology.22–25 The approach of using a dichoptic eye chart to assess severity of suppression, along with pilot data from mildly amblyopic adults, was published recently by Kwon et al.26 They used stereo shutter glasses to separate the images to each eye. Here, we adapted their method for use in children by presenting on a passive 3-D display that eliminated the need for bulky shutter glasses. Specific aims of the present study were to determine whether amblyopic children exhibited significantly more severe suppression than nonamblyopic children with strabismus and/or anisometropia or controls, whether severity of amblyopic visual acuity deficit was correlated with severity of suppression, and whether changes in visual acuity as a result of treatment or regression were associated with changes in the severity of suppression.

METHODS

Participants

We enrolled 100 children (7–12 years old) in the primary cohort: 63 amblyopic children with strabismus (n = 10),...
anisometropia (n = 26), or both (n = 27); 25 nonamblyopic
with strabismus (n = 13), anisometropia (n = 8), or both (n = 4);
and 12 normal control children. In addition, 22 younger
children (3–6 years old) with strabismus and/or anisometropia
were enrolled in a secondary pilot study: 13 amblyopic and 8
nonamblyopic children.

For this study, amblyopia was defined as a best-corrected
visual acuity of ≥0.2 logMAR and an interocular difference of
≥0.2 logMAR associated with the presence or history of
strabismus, and/or anisometropia in an otherwise healthy child
who had been wearing spectacle correction for a minimum of
3 months. Strabismic amblyopia was defined as amblyopia in
the presence of a heterotropia at distance and/or near fixation,
a history of strabismus surgery, or resolution of misalignment
following hyperopic spectacle correction, with a spherical
equivalent interocular difference of ≤1.00 diopter (D) and
≤1.50 D interocular difference in astigmatism in any meridian.
Anisometric amblyopia was defined as amblyopia in the
presence of a spherical equivalent interocular difference of
≥1.00 D or ≥1.50 D interocular difference in astigmatism in
any meridian with no measurable heterotropia at distance or
near fixation. Combined mechanism amblyopia was defined as
amblyopia in the presence of the strabismus and anisometric
amblygenic factors.

Written informed consent was obtained from a parent after
explanation of the nature and possible consequences of the
study. In addition, written informed assent was obtained from
children age 10 to 12 years. All procedures and the protocol
were approved by the Institutional Review Board of UT
Southwestern Medical Center and followed the tenets of the
Declaration of Helsinki.

The medical record from this examination provided diagnosis,
refractive error as determined by cycloplegic retinoscopy,
ocular motility, and measurements of heterotropia or hetero-
phoria by simultaneous prism-and-cover test at near and
distance fixation. Strabismic children were only eligible to
participate if misalignment of the visual axes due to infantile
esotropia, accommodative esotropia, or acquired nonaccom-
mmodative esotropia had been treated successfully with glasses
and/or surgery (≤5 pd residual strabismus). Exclusion criteria
were congenital malformation or infection, concurrent treat-
ment with atropine penalization, prematurity ≥8 weeks,
developmental delay, and coexisting ocular or systemic disease.

Stimuli

For the primary cohort of 7- to 12-year-old children, the 11
Sloan font letters used in the electronic visual acuity Early
Treatment of Diabetic Retinopathy Study (EVA e-ETDRS)
protocol22 were used for measuring contrast balance (suppres-
sion), with the exception that the letter O was replaced with X
(Fig. 1). The O was replaced because, in pilot work, it was
found to be much more salient than the other 10 letters. To be
able to examine potential spatial frequency dependence of
suppression,26 3 letter sizes were tested (1.25, 2.5, and 5 c/
deg). Letters were spatially band-pass filtered with a cosine log
filter (bandwidth = 1 octave; radially symmetric) with peak
object spatial frequency of 3 cycles per letter.26 The object
spatial frequency of 3 cycles per letter was chosen because
the optimal spatial frequency for recognizing a letter lies between
1 and 7 cycles per letter, depending on letter size.27–32

Letters were presented on a passive 3-dimensionnal (3D)
display (LG D2343P-BN; 23 in; 1920 × 1080 pixel), with 5
letters per line. Because odd and even lines had opposite
polarization, the passive 3D display allowed for dichoptic
stimulation with different lines of letters for each eye when
children wore LG Cinema 3D polarized glasses. At each
position, the identity of the letter and its contrast varied
independently for each eye. Letter choice for each of the 5
positions for each eye was random with the exceptions that
the same letter could not be repeated with the line of 5 letters,
the same letter could not be presented to both eyes in the
same position, and presentation of letters to each eye that might
form another letter if perceived simultaneously was not
allowed to occur (e.g., H and V, which might be perceived
binocularly as M). The sum of the left and right eye contrasts
always was 100%; for example, when the contrast of the left
eye letter was 30%, the contrast of the right eye letter was 70%.
The relative contrast of the letters in each eye was determined
by an adaptive algorithm.26 The proportion correct for each
contrast ratio was computed and these data were used to
estimate the balance point ratio. The estimate was updated
each time the child completed reading a line of 5 letters and
the updated balance point ratio was used to guide the range
of contrast ratios presented on the subsequent line of letters,
gradually converging on the balance point ratio.

For the secondary pilot study of 3- to 6-year-old children,
the HOTV letter set in the EVA-Amblyopia Treatment Study (ATS)
visual acuity protocol25 was used, with the exception that the
O was replaced with X. Because there were only four available
letter choices (HVTX), a randomly chosen letter always
occurred in two positions in each line of 5 letters.

Procedure

Children wore optical correction, if needed, prescribed by
their pediatric ophthalmologist in accordance with American
Association for Pediatric Ophthalmology and Strabismus
(AAPOS) guidelines (AAPOS Policy Statement, “Medical Need
for Glasses,” available in the public domain at www.aapos.org). Best-corrected visual acuity was obtained for each eye with an opaque occluder patch and either the e-ETDRS (age 7–12 years) or ATS-HOPTV (for 3–6 years) method.

For the suppression protocol, children were instructed to read the 5 letters left to right and completed 8 lines (40 letter/contrast combinations) for each of 3 letter sizes (1.25, 2.5, and 5 c/deg). Contrast balance was defined as the contrast ratio (amblyopic eye contrast/fellow eye contrast) at which 50% of amblyopic eye letters and 50% of fellow eye letters were reported. For children who did not have amblyopia, contrast balance was defined as the contrast ratio (right eye contrast/ left eye contrast) at which 50% of right eye letters and 50% of left eye letters were reported. If the child was unable to report any letters with 100% contrast for the amblyopic eye, the contrast balance ratio was arbitrarily assigned a value of 10.0.

Statistical Analyses

In analyses conducted with the primary 7- to 12-year-old cohort, amblyopic, nonamblyopic, and normal control contrast balance ratios were compared using 1-way ANOVA and post hoc Bonferroni pairwise comparisons. For amblyopic children in the primary cohort, the main effects of amblyopia and its etiology, and the interaction between these factors were evaluated using 2-way ANOVA and post hoc Bonferroni pairwise comparisons. The association between severity of suppression and effectiveness of amblyopic visual acuity deficit was evaluated using Pearson Product Moment correlation coefficient. The association between changes in the severity of suppression and changes in the severity of amblyopic visual acuity deficit with treatment or amblyopia recurrence was evaluated using the Pearson Product Moment correlation coefficient. For the secondary pilot study of 3- to 6-year-olds, only success rate and descriptive statistics (means and standard errors) were calculated, due to the small sample size.

RESULTS

Amblyopic children had significantly more severe suppression than nonamblyopic children and normal controls ($F_{2,97} = 62.26$, $P < 0.0001$; Fig. 2). Amblyopic children required 4.6 to 5.6 times more contrast in the amblyopic eye than in the fellow eye to overcome suppression and identify the amblyopic eye letters (e.g., 83% amblyopic eye contrast and 17% fellow eye contrast). Nonamblyopic children who had been treated for strabismus and/or anisometropia required only 1.3 to 1.5 times more contrast to overcome suppression; significantly less than for amblyopic children ($P < 0.0001$), but significantly more than the normal controls’ mean contrast balance ratio, which was near 1.0 for all three letter sizes ($P < 0.0001$). Neither the main effect of letter size nor the interaction was significant.

Among amblyopic children, visual acuity was correlated with severity of suppression (Fig. 5). Correlation coefficients ranged from 0.49 to 0.57 ($P = 0.008, 0.025$, and 0.016 for the large, medium, and small letter sizes, respectively). For 30 of the amblyopic participants, contrast balance ratio was measured on two visits so that the relationship between visual acuity change and contrast balance ratio change could be examined. Contrast balance ratio changes were correlated with changes in visual acuity due to regression or improvement with treatment (Fig. 6). Correlation coefficients ranged from 0.43 to 0.62 ($P =$...
Assessing Suppression in Amblyopic Children

Assessing Suppression in Amblyopic Children

DISCUSSION

Although the classical view is that interocular suppression arises as a secondary compensatory response to conflicting monocular visual inputs, recent evidence suggests that suppression may instead be the primary progenitor of amblyopia and that treatment aimed at reducing interocular suppression is effective in improving visual acuity in amblyopic children and adults.\(^1\-\text{5,6,8,13-16,20,25}\) With this new emphasis on suppression and the importance of its remediation during treatment, the inadequacy of current clinical suppression tests that provide only binary outcomes is conspicuous. To address the need for quantitative assessment of severity of suppression and response to treatment, we developed a novel dichoptic eye chart, adapted from a protocol originally described by Kwon et al.\(^26\) that can be used to quantify severity of suppression in amblyopic children as young as 3 years old.

We chose to use a letter chart format because children as young as 3 years are familiar with letter chart tests, making the test easy to administer. Also, previous studies have used similar bandpass filtered letters successfully to measure adult contrast sensitivity in clinical settings.\(^34-36\) A third rationale for the letter chart is that some amblyopic children exhibit greater visual acuity deficits with optotype visual acuity than with grating acuity, perhaps related to abnormal binocular function.\(^1\) Finally, letter charts have a low chance level, and so are likely to provide more accurate and reliable estimates of suppression than two-alternative tests with a limited number of trials, especially for children.

The validity of the dichoptic eye chart as an outcome measure for severity of interocular suppression was supported by three results. First, amblyopic children exhibited significantly more severe suppression than nonamblyopic children with strabismus and/or anisometropia or normal controls, and normal controls had a contrast balance ratio near 1.0. The approximate 5:1 contrast ratio found in amblyopic children in the present study is similar to that reported by a number of previous studies of interocular suppression in amblyopic adults that used a variety of dichoptic tasks, including the dichoptic eye chart protocol of Kwon et al.,\(^26\) dichoptic phase discrimination,\(^21,37\) and dichoptic global motion coherence.\(^38\) Two recent studies have reported that the contrast ratio was dependent on spatial frequency,\(^20,26\) for example, Kwon et al.\(^26\) reported a significantly lower contrast ratio for very large letters (0.5 c/deg) than for 2.5 or 5.0 c/deg letters. Very large (0.5 c/deg) letters were not included in the present study due to constraints of the passive 3D display size. Nonetheless, when the analysis was limited to amblyopic children, we did observe significantly higher contrast balance ratios for the smallest letter size compared to the other two letter sizes.

We found no significant difference in contrast balance ratio between nonamblyopic children and controls. Others have reported that strabismus, in the absence of amblyopia, is associated with suppression.\(^21,39\) However, some or all of the adult patients studied were exotropic, many with exotropia ≥ 5 pd. Our nonamblyopic cohort on the other hand, included only strabismic children who had been corrected to <5 pd as well as anisometropic children. Longstanding exotropia ≥ 5 pd may be associated with suppression.

Second, severity of amblyopia was correlated with severity of interocular suppression; that is, we found a direct relationship between the strength of suppression and the depth of amblyopia. Similar results have been reported in studies of amblyopic adults using a dichoptic global motion coherence task,\(^5,6,8,38\) dichoptic phase discrimination,\(^8\) and global orientation discrimination\(^8\) to measure the severity of suppression. Support for a direct relationship between severity of suppression and depth of amblyopia also comes from a study that used an adaptation of the global motion task to quantify suppression in amblyopic children\(^7\) and a study of amblyopic children and adolescents that used an interocular phase task quantify suppression.\(^21\) In addition, animal models of amblyopia also argue for a direct relationship between the degree of suppression and the degree of amblyopia in neuronal populations in V1 and V2 areas of visual cortex.\(^9,40\)

Third, changes in contrast ratio balance were correlated with changes in visual acuity. Most of the children in the present study who showed visual acuity improvement with treatment were participants in an ongoing study of a binocular amblyopia treatment based on the protocol originally described by Hess et al.\(^2,15,17-33,41\) Previous reports of amblyopic adults who participated in similar binocular treatment protocols reported correlated improvements in contrast ratio balance and amblyopic eye visual acuity.\(^2,12,33,38,42-45\) However, prior studies of amblyopic children who participated in

- **Figure 4.** Contrast balance ratios (mean \pm SEM) of 3- to 6-year-old amblyopic children and nonamblyopic children who had been treated for strabismus and/or anisometropia.

- **Figure 5.** Amblyopic eye visual acuity as a function of contrast balance ratio (amblyopic eye/fellow eye).
binocular treatment have consistently failed to show improvement in contrast ratio balance despite improvements in visual acuity.[13,14,16,46] These earlier studies in amblyopic children relied on the dichotic global motion coherence task to quantify severity of suppression. The combination of virtual reality goggles, subtle psychophysical judgments, and large numbers of trials may have been difficult for children, leading to noise in the data and low sensitivity to changes with treatment. The ability of the dichotic eye chart protocol to detect changes in contrast ratio balance that are correlated with changes in visual acuity during amblyopia treatment supports its validity as an outcome measure for severity of interocular suppression in amblyopic children. This quantitative measure of interocular suppression may provide an important outcome measure for clinical trials of amblyopia treatment.

Acknowledgments

Presented, in part, at the Annual Meeting of the American Association for Pediatric Ophthalmology & Strabismus, Vancouver, British Columbia, Canada, April 6 through 10, 2016.

Supported by a grant from the National Eye Institute (EY022313).

Disclosure: E.E. Birch, None; S.E. Morale, None; R.M. Jost, None; A. De La Cruz, None; K.R. Kelly, None; Y.-Z. Wang, None; P.J. Bex, P

References

