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PURPOSE. Previously, we showed that microRNA-146 (miR-146) is a pivotal negative feedback
regulator of multiple nuclear factor kappa-B (NF-jB) activation pathways in retinal endothelial
cells (RECs). We hypothesized that miR-146 plays an important role in diabetic retinopathy
(DR) by inhibiting diabetes-induced inflammatory response in the retina. The purpose of the
current study is to test this hypothesis in vivo.

METHODS. Lentiviruses expressing rno-miR-146a, lenti-miR-146a, and negative control
oligonucleotide with scrambled sequence, lenti-miR-neg ctl, were produced. Young male
Sprague-Dawley rats were injected with a single dose of streptozotocin ([STZ] 65 mg/kg) to
induce diabetes. One week after diabetes, animals were injected with lentivirus intravitreally
(4 ll, ~106 CFU/mL). Three months after diabetes, retinal microvascular leakage was tested
by Evans blue assay; retinal function by electroretinogram (ERG). Total RNA and protein lysate
were isolated from the retina for quantitative (q)RT-PCR and Western blot analyses.

RESULTS. Lenti-miR-146a robustly transduced human retinal endothelial cells (HRECs) and
increased the expression of miR-146a in vitro. In vivo, intravitreal injection of lenti-miR-146a
increased the expression of miR-146a in the retina, while its key downstream target genes,
including CARD10, IRAK1, and TRAF6, were downregulated. Intravitreal delivery of miR-146
inhibited diabetes-induced upregulation of NF-jB downstream gene, Intercellular Adhesion
Molecule 1 (ICAM1), as well as microvascular leakage and retinal functional defects.

CONCLUSIONS. Intravitreal delivery of miR-146 inhibited diabetes-induced NF-jB activation and
retinal microvascular and neuronal functional defects in a diabetic rat model.

Keywords: microRNA-146, diabetic retinopathy, NF-jB, retinal endothelial cell, microvascular
leakage

Diabetic retinopathy (DR) is the leading cause of blindness
in people between ages of 25 and 74 in the industrialized

world.1 Diabetes affects 200 million people worldwide, and 20
million in the United States alone.2 Nearly all individuals who
have had type I diabetes (T1D) for more than 15 years develop
DR; approximately 50% to 80% of type II diabetic (T2D)
patients also develop retinopathy after 20 years of diabetes.3

Diabetic retinopathy is a result of multiple pathogenetic
processes caused by hyperglycemia and abnormalities of insulin
signaling pathways,4,5 leading to retinal microvascular defects6

and neuroretinal dysfunction and degeneration.7 Although
significant progress has been made, especially with recent
advances involving blocking VEGF pathway,8–10 there is still no
efficient treatment. Development of novel therapy to prevent
and treat DR is of great urgency to improve the quality of life of
patients and alleviate mounting economic burden.11

MicroRNAs (miRNAs) are small, noncoding, regulatory
RNAs.12 Since their discovery in 1993, miRNAs have been
proven to be an important mechanism of fine-tuning of gene
expression12–15 and play regulatory roles in almost all aspects
of normal biological functions14–34 and diseases.35 However,
roles of miRNAs in DR and its treatment are still largely
unknown. Previously, we reported one of the first miRNA
transcriptomes of the retina and retinal endothelial cells (RECs)
of diabetic rats, and identified a series of miRNAs involved in

early DR.36 Among DR-related miRNAs, we demonstrated that

miR-146 is a pivotal negative feedback regulator of nuclear

factor kappa-B (NF-jB) activation.36,37 Nuclear factor kappa-B is

a master regulator of inflammatory responses, and plays critical

roles in inflammatory damages to RECs and retinal microvas-

culature during development of DR.38–44 Nuclear factor kappa-
B induces expression of proinflammatory molecules, including

intercellular adhesion molecule 1 (ICAM1),45 a key endothelial

adhesion molecule to recruit leukocytes onto endothelial cell

surface, and facilitate leukostasis and propagation of inflamma-

tory responses, contributing to REC cell death and DR

development.46–49 We showed that miR-146 inhibited IL-1R/

Toll-like receptor (TLR)-mediated NF-jB activation pathway by

targeting key adaptor molecules, interleukin-1 receptor-associ-
ated kinase 1 (IRAK1) and TNF receptor-associated factor 6

(TRAF6),36,50 and prevented IL-1b–induced damage to retinal

endothelial barrier function in vitro.37 Furthermore, we

showed that miR-146 also inhibited G protein-coupled receptor

(GPCR)-mediated NF-jB activation pathway by targeting a key

adaptor molecule, Caspase Recruitment Domain Family, Mem-

ber 10 (CARD10),37,51 and decreased thrombin-induced leuko-
cyte adhesion to HRECs in vitro.37 These data suggest that miR-

146 plays an important role in DR through modulating NF-jB

activation and inflammatory responses.
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Therefore, we hypothesize that overexpression of miR-146
in retinal microvasculature inhibits diabetes-induced NF-jB
activation and prevents and/or slows down DR development.
To test this hypothesis in vivo, we produced lentivirus
expressing rno-miR-146a, lenti-miR-146a, and performed intra-
vitreal injection of lentivirus in diabetic rats 1 week after
streptozotocin (STZ)-induced diabetes. Here, we provide
evidence that intraocular delivery of miR-146a inhibited
diabetes-induced retinal microvascular and neuronal functional
defects in vivo.

MATERIALS AND METHODS

Lentiviral Production

Lenti-miR-146a and negative control construct expressing an
oligonucleotide with scrambled sequence (lenti-miR-neg ctl;
Fig. 1A) were purchased from Genecopoeia (Rockville, MD,
USA). These constructs are built in the pEZX-MR03 vector (in
the public domain, http://www.genecopoeia.com), a third
generation HIV-based lentiviral vector system.52,53 Lentivirus
was packaged and titered following manufacturer’s instruc-
tions. Briefly, 1.5 3 106 of the lentiviral packaging cells, 293Ta
(Genecopoeia), were plated in a 10-cm dish in Dulbecco’s
Modified Eagles Medium (DMEM; HyClone Laboratory, Logan,
UT, USA) supplemented with 10% fetal bovine serum (FBS;
HyClone). When the cells were 70% to approximately 80%
confluent, 2.5 lg of plasmid DNA of lentiviral construct mixed
with Lenti-Pac HIV and EndoFectin Lenti (Genecopoeia) was
added to the medium. Twenty-four hours later, the medium
was replaced with fresh DMEMþ 5% FBSþ penicillin (100 IU/
mL) and streptomycin (100 lg/mL; HyClone). Then, 1/500
volume of the TiterBoost reagent (Genecopoeia) was added to
the culture medium to enhance viral production. Subsequently,
the medium was collected 48 hours posttransfection, and
centrifuged at 500 g for 10 minutes to get rid of cell debris. The
supernatant (lentiviral solution) was filtered through 0.45-lm
polyethersulfone low protein-binding filters (Research Prod-
ucts International, Mt. Prospect, IL, USA), and stored in 100-lL
aliquots at �808C.

The lentivirus was titered in human primary retinal
endothelial cells (Passage 4-6; Cell Systems, Kirkland, WA,
USA). Briefly, 2 3 104 HRECs/well were plated in a 24-well
plate in 500 lL of Endothelial Basal Medium-2 (EBM-2; Lonza,
Basel, Switzerland) with 5% FBS and penicillin-streptomycin.
Before infection, fresh media with 4 lg/mL of polybrene
(Sigma-Aldrich Corp., St. Louis, MI, USA) was added. Then, 10
or 50 lL of lentivirus was used to infect HRECs. The plate was
incubated at 378C, 5% CO2 for 5 days, with the medium
changed every other day. The numbers of total and GFP-
positive cells were counted in five random fields of view under
fluorescent microscope. The titer of the lentiviral production
was calculated as the number of colony forming units per
milliliter of lentiviral solution.

Rats

Male Sprague-Dawley rats (~250 g) were purchased from
Harlan Laboratory (Indianapolis, IN, USA). All animal proce-
dures were approved by the Institutional Animal Care and Use
Committee (IACUC) and adhered to the ARVO Statement for
the Use of Animals in Ophthalmic and Vision Research. A single
dose of STZ (65 mg/kg in 50 mM citrate buffer [pH 4.0]; Sigma-
Aldrich Corp.) was injected intraperitoneal injection to induce
diabetes as we described previously.36 Nondiabetic control rats
were injected with equal amount of citrate buffer. Blood
glucose level was detected using a FreeStyle Lite glucose meter

(Abbott Diabetes Care, Inc., Alameda, CA, USA). Rats with
blood glucose level greater than 250 mg/dL were deemed as
diabetes (diabetes mellitus, DM).

One week after diabetes, rats were anesthetized with a
ketamine (80 mg/kg)/xylazine (10 mg/kg) cocktail (Butler
Schein, Dublin, OH, USA). Then, 4 lL of lenti-miR-146a (1.0 3

106 cfu/mL) was injected intravitreally into one eye; and 4 lL
of lenti-miR-neg ctl (1.3 3 106 cfu/mL) into the other eye. For
non-DM control rats, 4 lL of lenti-miR-neg ctl was injected
intravitreally to serve as negative controls.

Body weight and blood glucose levels of the rats were
checked biweekly. One-third Linplant (LinShin Canada, Toron-
to, Ontario) was implanted to the rats subcutaneously when
their blood glucose levels were higher than 500 mg/dL so as to
keep their blood glucose level at 300 to 500 mg/dL to avoid
severe weight loss and ketoacidosis. Three months after
lentiviral injection, electroretinogram (ERG) and Evans blue
assays were performed to determine retinal function and the
integrity of retinal microvasculature. The retina was harvested
for RNA and protein preparation.

FIGURE 1. Lenti-miR-146a robustly infected and delivered miR-146a in
HRECs in vitro. (A) Lentiviral construct. (B) Five days after transduction
with 50 lL of lentivirus, HRECs were robustly infected and expressed
GFP. Upper row: Lenti-miR-neg ctl (1.3 3 106 cfu/mL); lower row: lenti-
miR-146a (1.0 3 106 cfu/mL). Scale bar: 100 lm. (C) Quantitative RT-
PCR of miR-146a in HERCs 5 days after viral transduction. LM, light
microscopy; FM, fluorescent microscopy.
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RNA Preparation and Quantitative RT-PCR

Total RNA from HRECs and the retina was prepared using
miRVana miRNA isolation kit (Life Technologies, Carlsbad, CA,
USA) as described previously.36,37,54,55 Quantitative (q)RT-PCR
of miRNAs was performed using TaqMan microRNA assays
(Applied Biosystems, Foster City, CA, USA), with small nuclear
(sn)RNA U6 as a normalization control. Quantitative RT-PCR of
mRNAs was performed using QuantiTect primer assays and
QuantiFast SYBR Green RT-PCR kit (Qiagen, Germantown, MD,
USA), with 18s rRNA as a normalization control as described
previously.36,37,54,55

Antibodies and Western Blot Analysis

The protein lysate from the retina was homogenized using a
pellet pestle motor (Fisher Scientific, Chicago, IL, USA) in RIPA
buffer with a protease inhibitor cocktail, including 0.5 lM 4-(2-
aminoethyl) benzenesulfonyl fluoride hydrochloride (AEBSF);
0.4-lM aprotinin, 10-lM leupeptin, 20-lM bestatin, 7.5-lM
pepstatin A, and 7.0-lM E-64 (Sigma-Aldrich Corp.). Western
blot was performed following a standard protocol as we
described previously.36,56,57 Antibodies against rat CARD10
(1:200), TRAF6 (1:200), IRAK1 (1:200), and b-actin (1:500)
were purchased from Santa Cruz Biotechnology (Dallas, TX,
USA). Horseradish Peroxidase (HRP)-conjugated secondary
antibodies (1:5000) and enhanced chemiluminescence (ECL)
detection reagents (GloBrite ECL Reagent Kit PLUS) were
purchased from Detroit R&D (Detroit, MI, USA). Enhanced
chemiluminescence signals were detected using a FluorChemE
detector (ProteinSimple, San Jose, CA, USA). ImageJ 1.50e
software (http://imagej.nih.gov/ij/; provided in the public
domain by the National Institutes of Health, Bethesda, MD,
USA) was used to quantify the intensity of the bands. Relative
quantity of protein of interest was normalized to b-actin.

ELISA Assay

The expression of ICAM1 was detected using ELISA kit (Cloud-
Clone Corp, Houston, TX, USA) per manufacturer’s instruction.
Twenty micrograms of protein lysate of each sample was added
to the precoated well. The detection range of the kit is 0.312 to
20 ng/mL.

Electroretinogram

Electroretinogram was performed using a hmsERG machine
(OcuScience, Henderson, NV, USA) as we described previously54

with modifications. Rats were dark-adapted overnight. Before
the test, rats were anesthetized with ketamine (80 mg/kg)/
xylazine (10 mg/kg; Butler Schein) and kept on a heat pad
during the entire procedure to maintain body temperature. One
percent tropicamide (Bausch & Lomb, Rochester, NY, USA) was
applied to both eyes for 5 to 10 minutes for pupil dilation before
ERG tests. Electroretinogram thread electrodes (OcuScience)
were used for ERG recording. Electroretinogram tests were
carried out sequentially at 10, 100, 1000 mcd s/m2 with 5-
minute interval between different intensities. Each response was
recorded for 500 ms. Responses to 20 light flashes were
averaged to produce one ERG recording at each light intensity.

Evans Blue Assay

Evans blue assay was performed as described previously.58

Briefly, the animals were anesthetized with ketamine (80 mg/
kg)/xylazine (10 mg/kg; Butler Schein), and injected with
Evans blue (45 mg/kg body weight; Sigma-Aldrich Corp.)
through the tail vein. Peripheral blood was drawn at 0.1 mL
from the carotid artery every 20 minutes up to 2 hours after

injection to obtain the time-averaged Evans blue plasma
concentration. Two hours after Evans blue injection, the rats
were perfused via the left ventricle with 0.05 M citrate buffer
(pH 3.5) for 2 minutes. Eyes were enucleated after the
perfusion; and the retinas were carefully dissected. The weight
of each retina was measured after drying for 4 hours in a
Vacufuge (Eppendorf, Hamburg, Germany). Evans blue in the
retina was extracted by incubating the retina in 50 lL of
formamide for 18 hours at 728C. The extract was filtered
through a 30-kDa Nanosep centrifugal filter (VWR Internation-
al, Radnor, PA, USA) at 12,000 g for 120 minutes at 48C. The
absorbance of the filtrate was measured with a Nanodrop
(Themo Scientific, Waltham, MA, USA) at 620 and 740 nm as
the absorption maximum and minimum for Evans blue in
formamide. Retinal microvascular permeability was calculated
as nanograms of Evans blue per gram of retinal dry weight per
hour, (ng/g retinal dry wt/hr) using the following formula:

Concentration of Evans blue in retina=

time-averaged Evans blue concentration in the plasmað

3 retinal dry weight 3 circulation timeÞ: ð1Þ

Statistical Analysis

All data are shown as mean 6 SEM. The statistical analysis
between nondiabetic animals and diabetic animals was
performed using 2-way ANOVA followed by Bonferroni
posttest as appropriate; t-test was used to analyze the
difference between the eyes injected with lenti-miR-146a and
the ones injected with lenti-miR-neg ctl of the diabetic rats.
Pearson correlation coefficient was used to analyze the
correlation between Evans blue results and ERG results.

RESULTS

Lenti-miR-146a Robustly Infected and Delivered
rno-miR-146a in HRECs

To test whether the lentivirus that we produced can effectively
transduce retinal endothelial cells, we first infected HRECs
with lenti-miR-146a as well as negative control lentivirus in
vitro. Five days after transduction, greater than 75% HRECs are
infected with lentivirus, which coexpresses green fluorescent
protein (GFP; Figs. 1A, 1B). To determine whether lenti-miR-
146a delivered miR-146a in infected HRECs, we harvested RNA
and performed qRT-PCR. The results showed that miR-146a
was significantly upregulated in cells infected with lenti-miR-
146a in a dosage-dependent manner, compared with the ones
infected with lenti-miR-neg ctl (Fig. 1C).

Intravitreal Injection of Lenti-miR-146a Increased
the Level of miR-146a Expression in Rat Retina

To test whether lenti-miR-146a can deliver miR-146a in the
retina in vivo, we performed intravitreal injection of lenti-miR-
146a in one eye and lenti-miR-neg ctl in the other eye of STZ-
induced diabetic rats and non-DM negative control animals 1
week after STZ injection. Three months later, we harvested
their retina and performed qRT-PCR analysis. Our result
showed that, like we reported previously,36 miR-146a is
upregulated in the retina of diabetic rats injected with lenti-
miR-neg ctl, compared with non-DM rats injected with negative
control lentivirus (Fig. 2), suggesting that diabetes induced
moderate upregulation of endogenous miR-146a. More impor-
tantly, our result showed that lenti-miR-146a injection resulted
in a further increase of miR-146a expression in the retina of
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diabetic rats, compared with lenti-miR-neg ctl–injected diabetic
rats, suggesting that intravitreal injection of lenti-miR-146a
delivered miR-146a in the retina in vivo for at least 3 months
after viral injection.

Overexpression miR-146 Downregulated Key
Downstream Target Genes in NF-jB Activation
Pathways in the Retina of Diabetic Rats

Previously, we and others showed that miR-146 is a negative
feedback regulator of IL-1R/TLR- and GPCR-mediated NF-jB
activation pathways by targeting key adaptor molecules in
these pathways, including IRAK1, TRAF6,36,50 and
CARD10.37,51 To test whether lentivirus-delivered miR-146a
regulates the expression of these molecules in vivo, we
harvested retinal protein lysate 3 months after lentiviral
injection. Western blot analysis showed that IRAK1, TRAF6,
and CARD10 were increased in the retina in lenti-miR-neg ctl–
injected diabetic animals compared to negative control
lentivirus-injected non-DM control rats (Fig. 3), consistent
with NF-jB activation in diabetic retina. However, in the eyes
injected with lenti-miR-146a, IRAK1 and CARD10 were
significantly decreased compared with the eyes of diabetic
rats injected with negative control lentivirus, suggesting that
lentivirus-delivered miR-146a inhibited the expression of
endogenous target genes.

Overexpression of miR-146 Inhibited Diabetes-
Induced NF-jB Downstream Proinflammatory
Factor ICAM1

Nuclear factor kappa-B, a key regulator of inflammatory
responses, is known to be activated in the retina as early as
2 months after the onset of diabetes and plays important roles
in the pathogenesis of DR through its downstream proin-

FIGURE 2. Intravitreal injection of lenti-miR-146a resulted in increased
expression of miR-146a in the retina 3 months after diabetes. *P < 0.05
versus non-DM rats injected with lenti-miR-neg ctl. n¼ 4/group.

FIGURE 3. Intravitreal delivery of miR-146a prevented diabetes-induced increased expression of its downstream target genes, CARD10 (A, B),
IRAK1 (A, C) and TRAF6 (A, D) in the retina by Western blot analysis. n¼ 3/group. *P < 0.05; **P < 0.01.
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flammatory factors.38,39,41 Nuclear factor kappa-B downstream
gene, ICAM-1, is a key adhesion molecule to recruit leukocytes
onto endothelial-cell surface to facilitates leukostasis and
propagate inflammatory responses, contributing to subsequent
REC cell death, microvascular defects, and DR develop-
ment.45–49 To test whether lentivirus-delivered miR-146a
inhibits NF-jB activation-induced inflammatory response, we
performed qRT-PCR and ELISA assays on ICAM-1. Our results
showed that intravitreal injection of lenti-miR-146a significant-
ly inhibited diabetes-induced increased expression of ICAM1 in
the retina at both mRNA and protein levels (Fig. 4), suggesting
that lentivirus-delivered miR-146a limited diabetes-induced NF-
jB activation in the retina.

Overexpression of miR-146 in the Retina Is

Protective From Diabetes-Induced Microvascular

and Neuroretinal Functional Defects

To test whether intraocular delivery of miR-146a protects the
retina from diabetes-induced damages, we performed scotopic
ERG 3 months after lentiviral injection. Our result showed that
the b-wave amplitude was significantly decreased in diabetic
rats compared with non-DM control rats, with approximately
42%, 40%, and 38% decrease at 10, 100, and 1000 mcd s/m2

light intensities, respectively (Figs. 5A, 5B), suggesting
diabetes-induced functional defect of the retina. Intravitreal
injection of lenti-miR-146a partially rescued diabetes-induced
decrease of b-wave amplitude (Figs. 5A, 5B).

To test the effect of overexpression of miR-146a on the
integrity of retinal microvasculature, we performed Evens blue
assays. Our result showed that, in negative control lentivirus-
injected eyes, the leakage of Evens blue was significantly
increased by approximately 64% after 3 months of diabetes,
compared with nondiabetic control rats (Fig. 5C). Lenti-miR-
146a injection prevented diabetes-induced increase of Evans
blue leakage (Fig. 5C); no significant difference was detected
between nondiabetic rats (14.96 6 1.98 ng/retina dry wt/hr)
and the eyes of diabetic animals injected with lenti-miR-146a
(18.25 6 0.99 ng/retina dry wt/hr; Fig. 5C).

In the rats subjected to both Evans blue assay and ERG test,
correlation analysis showed that improved retinal neuronal
function is significantly correlated to the decreased retinal
microvascular leakage in lenti-miR-146a–injected eyes of
diabetic rats (Fig. 5D), suggesting that intraocular delivery of
miR-146a protected the retina from both diabetes-induced
microvascular and neuroretinal functional defects.

DISCUSSION

Nuclear factor kappa-B is a key regulator of immune and
inflammatory responses.59,60 Diabetes-induced NF-jB activa-
tion contributes to REC cell death, and plays an important role
in the pathogenesis of DR.38–44 Prevention of NF-jB activation
is a viable approach for treatment of DR.38,43 Previously, we
showed in vitro that miR-146 inhibited IL-1b- and thrombin-
induced NF-jB activation and prevented subsequent functional
defects, including compromised endothelial barrier function
and increased leukocyte adhesion.36,37 Here, we show that
intravitreal injection of lenti-miR-146a in diabetic rats resulted
in increased expression of miR-146a, decreased expression of
its key target genes, including IRAK1, TRAF6, and CARD10,
which are important adaptor molecules of NF-jB activation
pathways, and led to downregulation of NF-jB downstream
gene, ICAM1, a proinflammatory factor attracting leukocytes
docking on endothelial cells. More importantly, intraocular
delivery of miR-146a prevented diabetes-induced retinal
microvascular leakage, a key pathological changes during the
development of DR,61,62 and inhibited diabetes-induced retinal
functional defects. These data provides an in vivo proof-of-
principle evidence that overexpression of miR-146 in the retina
is protective from diabetes-induced retinal damage.

MiR-146a was originally identified as negative feedback
regulator of IL-1R/TLR-mediated NF-jB activation pathway in a
macrophage cell line.50 Increasing studies have shown that
miR-146a is expressed in a wide range of tissues and cell types,
and plays important roles in innate50 and adaptive immuni-
ty,63–66 and many tissue-specific functions in different cell
types and biological context.36,37,51,67,68 MiR-146a itself can be
regulated by different pathways in different cell types in

FIGURE 4. Intravitreal delivery of miR-146a inhibited diabetes-induced expression of NF-jB downstream inflammatory factor, ICAM1, in the retina 3
months after diabetes. (A) Quantitative RT-PCR analysis. n¼ 3/group. (B) ELISA analysis in retinas. All relative expression levels are normalized to
non-DM rats injected with lenti-miR-neg ctl. *P < 0.05, ***P < 0.001.
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response to different stimuli under various physiological as
well as pathological conditions.50,66–70 Under diabetic condi-
tion, numerous reports have showed that, at different disease
stages, miR-146a has different responses and functions in
different cell types, including endothelial cells, retinal and
renal tissues in both human and animal models. Wang and
colleagues71 showed that miR-146a expression in the retina
had a rhythmic oscillation in nondiabetic rats; however, the
rhythmic pattern was lost in diabetic rats 6 weeks after
diabetes. MiR-146a expression in HRECs from nondiabetic
donors exhibited circadian rhythm for up to 48 hours in
culture71; while the ones from diabetic donors lost this
rhythmicity.71 Intriguingly, in HRECs of diabetic donors in
culture, the levels of miR-146a expression appeared to be
decreased when compared with the ones of nondiabetic
donors.71 This seems to contradict our report that miR-146a
was increased in the RECs and/or the retina 3 months after
STZ-induced diabetes36 (Fig. 2). We speculate that the
decreased expression of miR-146a in HRECs of diabetic donors
in culture71 is possibly a result of loss of in vivo diabetic
environment, in which many proinflammatory factors activate
NF-jB and promote miR-146a expression. Our previous36 and
current observations (Fig. 2) were made on primary RECs and/
or retina acutely isolated from diabetic rats 3 months after
diabetes; and therefore, they reflected in vivo status of miR-

146a in the retina at this stage of disease development. Our
unpublished data in human retinas shows that miR-146a is
increased in the retina of diabetic donors, supporting our
findings in diabetic animal models (data not shown).

In contrast to our findings,36 Feng et al.72 reported that miR-
146a expression was downregulated in the retina, heart and
kidney of STZ-induced diabetic rats 1 month after diabetes, and
of T2D db/db mice 2 months after poorly controlled diabetes.
The difference in miR-146a expression in STZ-induced diabetic
rats compared with nondiabetic controls could be a result of
different durations of diabetes. At different time-points after
diabetes, different pathological pathways may dominate miR-
146a expression regulation in the retina and other tissues. As a
matter of fact, Feng et al.72 suggested that transcriptional
regulator, p300, played a major role in decreased expression of
miR-146a in RECs and the retina 1 month after diabetes; while
we demonstrated that increased NF-jB activation and proin-
flammatory factors in diabetic retina contributed to the
increased expression of miR-146a in RECs and the retina 3
months after STZ-induced diabetes.36,37 Therefore, these
seemingly contradictory results may not argue against one
another; rather, they underscore the dynamic changes of miR-
146a in the retina at different stages under diabetes.

Feng et al.72 also showed that, under high glucose culture
(HG; 25 mM), miR-146a was downregulated in human

FIGURE 5. Intraocular delivery of miR-146a inhibited diabetes-induced functional damages to the retina 3 months after diabetes. (A) Representative
scotopic ERG recording; (B) b-wave amplitudes of ERG at different light intensities. n¼ 8/group. (C) Evaluation of retinal microvascular leakage by
Evans blue assays. n¼4/group. **P< 0.01; ***P< 0.001 versus non-DM rat eyes injected with lenti-miR-neg ctl; ##P < 0.01; ###P < 0.001 versus DM
rat eyes injected with lenti-miR-neg ctl. (D) Correlation analysis between ERG b-wave amplitude and Evans blue leakage in the rats subjected to both
assays.
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umbilical-vein endothelial cells (HUVECs) and bovine retinal
microvascular endothelial cells (BRMECs) 24 hours after HG
culture. However, in a recent report on HUVECs, Kamali et
al.73 reported an opposite result that, under similar condition,
miR-146a expression was significantly upregulated in HUVECs,
when NF-jB activity was significantly increased. The down-
regulation of miR-146a in BRMECs under HG culture reported
by Feng et al.72 appears to contradict to our finding that miR-
146a was increased in RECs and retina of diabetic rats 3
months after diabetes.36 We speculate whether this difference
is a result of species difference (bovine versus rat) or their in
vitro condition, which could not simulate the complex
environment in diabetic retina in vivo. However, the result
reported by Feng et al.72 is also in contradiction to an
observation by Wang et al.71 on HRECs in which miR-146a
expression was not affected by HG culture in vitro.71 This
discrepancy may be arisen from different culture conditions
and possibly the purity of endothelial cells, because it has been
shown that pure HRECs do not have an inflammatory response
to HG culture in vitro.71,74

The complexities of the roles of miR-146a under diabetic
conditions are also reflected in studies of diabetic nephropathy
(DN). Similar to the report by Feng et al.,72 Lee et al.75 showed
that miR-146a expression was decreased in the glomeruli of
T2D patients and of a T2D mouse model, BTBR ob/ob mice.
However, several other groups reported opposite observa-
tions.76–78 Huang et al.76 showed that miR-146a was signifi-
cantly increased in kidney tissue from renal biopsy of DN
patients as well as in the renal cortex of STZ-induced T1D rats
(1, 4, and 8 weeks after diabetes), and a T2D rat model induced
by high-fat diet followed by multiple low dose of STZ (MLDS;
before and 8 and 16 weeks after diabetes induction). Alipour et
al.77 also reported increased expression of miR-146a in renal
tissue of STZ-induced diabetic rats 2 months after diabetes
when NF-jB activation was increased. Bhatt et al.78 showed
that miR-146a was significantly upregulated in renal cortex in
STZ-induced diabetic mice at 7 and 16 weeks after diabetes,
when many proinflammatory factors were induced. Further-
more, Bhatt et al.78 showed that miR-146a knockout mice had
significantly exacerbated signs of DN and increased proin-
flammatory cytokines in the kidney after STZ-induced diabetes,
compared with wild-type mice, suggesting that miR-146a
inhibits diabetes-induced inflammatory response in the kidney.
This is consistent with our observation in the diabetic retina36

and our hypothesis that, under physiological condition, miR-
146a maintains the homeostasis of NF-jB activation through its
negative feedback regulation; it protects diabetes-induced
damage by inhibiting NF-jB activation and subsequent
inflammatory responses.36,37 The difference between our
observation in diabetic retina and the ones in diabetic kidney
could be a result of different molecular pathways in different
tissues and cell types. However, we could not fully explain the
discrepancies among different reports in renal tissues of DN
patients and animal models. We speculate that different animal
models at different stages of disease development may have
contributed to these discrepancies. Experimental details (e.g.,
the timing of tissue harvesting) may also influence the
outcomes of the observation, as miR-146a expression may
have a circadian rhythm in the kidney, like in the retina.71

The lentiviral construct used in this study, lenti-miR-146a, is
a third generation HIV-based lentiviral vector system with
advanced safety features52,53 (in the public domain, http://
www.genecopoeia. com). HIV-based vectors are currently the
most popular lentiviral-based expression systems and can
effectively transduce genes into a wide variety of dividing and
nondividing mammalian cells.52,53 In the current report, a
single dose of lenti-miR-146a was administered one week after
STZ-induced diabetes; and the effect of intravitreal delivery of

miR-146a was studied 3 months after viral injection. Our data
suggests that lenti-miR-146a delivered functional miR-146a,
which sustained its function for at least 3 months in vivo. Using
similar lentiviral constructs, robust transgene expression in
vivo has been reported in RPE,79–81 photoreceptors,79,80,82

cornea endothelial cells,81,83 neurons in the brain,84,85 and so
on, as early as 4 days after viral injection,83 lasting as long as 3
months82,84; and the beneficial effect of the transgene can
persist as long as 7 months.80 Whether long-term delivery of
miR-146 can be achieved by a single injection of lenti-miR-146a
still needs to be determined in future studies. Therapeutic
effect may be further optimized by adjustment of the dosage
and frequency of injection. In addition, adeno-associated virus
(AAV) has been shown to efficiently deliver transgenes in the
retina for therapeutic purpose.86–91 Adeno-associated virus–
mediated delivery of miR-146 should also be explored to
improve the efficiency and therapeutic effect.

The lentiviral construct in the current study carries a GFP
cassette (Fig. 1A) to trace viral transduced cells. Although the
GFP cassette was expressed robustly in in vitro transduction of
HRECs (Fig. 1B), no apparent GFP expression was observed in
the retina and other ocular tissues, including the lens, ciliary
body and the iris, of lentivirus-injected eyes (data not shown).
This may be a result of unknown epigenetic mechanisms to
prohibit long-term expression of GFP in vivo; similar phenom-
enon has been reported in other gene therapy cases by viral
delivery.92–94 Intriguingly, in spite of the absence of GFP
expression, lenti-miR-146a did result in increased expression of
mature miR-146a in the retina, suggesting that the inhibition of
the GFP expression is possibly on a posttranscriptional level,
because pre-miR-146a is cotranscribed with the GFP cassette in
the construct (Fig. 1A). One of the hypotheses is that miR-146a
processing may have negative impact on the stability of the
transcript, leading to the absence of obvious GFP expression;
while miR-146a is successfully delivered. Nevertheless, the lack
of expression of GFP prevented us from directly observing the
cell types transduced in vivo; therefore, the current experi-
ment falls short to gain further insights into viral-transduced
cell types and their contribution to the apparent therapeutic
effect. In future studies, delivery of miR-146a in specific cell
types of the retina by employing cell type-specific expression
constructs or cell type-specific transgenic mice will shed new
lights into its roles in various cell types of the retina and their
contribution to its protective effects.

MiR-146a is widely expressed in various ocular tissues and
involved in a wide variety of disease processes in addition to
DR. MiR-146a was shown to be increased in the retina of
experimental autoimmune uveoretinitis.95 In the cornea, miR-
146a was reported to be enriched in human limbal corneal
epithelial cells (LECs)96,97 and upregulated in LECs from
diabetic patients. Overexpression of miR-146a in LECs resulted
in delayed cell migration and wound closure, and increased
expression of LEC-specific genes.96,97 These data suggest
important roles of miR-146a in LEC maintenance and wound
healing in diabetic cornea.96,97 MiR-146a was also reported to
be upregulated in RPE in response to proinflammatory
factors.98 It was shown that miR-146a was increased in RPE
and choroid during aging, but not in neuroretina, suggesting
age-related, tissue-specific regulation of miR-146.97,99 Overex-
pression of miR-146a in RPE inhibited VEGF-A and TNFa-
induced IL-6 expression.97,99 In human trabecular meshwork
(HTM) cells, miR-146a was shown to be involved in replicative
senescence.100 Overexpression of miR-146a appeared to
inhibit the expression of several proinflammatory cytokines,
senescence-associated b-galactosidase activity and the produc-
tion of intracellular reactive oxidative species.100 In an
experimental autoimmune anterior uveitis rat model, miR-
146a was decreased in the iris and ciliary body101 and
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suggested to contribute to NF-jB activation, helper T cell (Th)1
clonal expansion and intraocular inflammation.101 These data
suggest that miR-146a has tissue-specific functions in different
ocular tissues, and is involved in many disease processes
through different mechanisms. Therefore, when testing the
effect of overexpression of miR-146a on one tissue in one
disease process, its impact on other ocular tissues should be
evaluated to avoid unexpected off-target effects. In this regard,
tissue- or cell type–specific delivery may be a safer approach.

Nevertheless, our current study, together with our previous
reports,36,37 underscores important roles of miR-146a in DR. In
spite of the differences of its expression levels at different
stages of diabetes in different tissues of different species, the
consensus message from numerous studies is that miR-146a is
protective against diabetes-induced damages, however,
through different mechanisms. In retina, miR-146a protects
by inhibiting diabetes-induced increased expression of fibro-
nectin72 and NF-jB activation and subsequent inflammatory
responses36; while in the kidney, it limits diabetes-induced
increased expression of Notch-1 and Ergb4 and their down-
stream events,75 besides fibronectin.72 Additional independent,
well-controlled, longitudinal tissue-specific studies are warrant-
ed to fully uncover the roles of miR-146a in DR and other
diabetic complications, and its potential as a therapeutic target
for the treatment of DR and other ocular diseases.
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