Identification of Candidate miRNA Biomarkers for Glaucoma

Allyson G. Hindle,1 Robrecht Thoonen,2 Jessica V. Jasien,3 Robert M. H. Grange,1 Krishna Amin,4 Jasen Wise,4 Mineo Ozaki,5 Robert Ritch,3 Rajeev Malhotra,2 and Emmanuel S. Buys1

1Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, United States
2Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, United States
3Einhorn Clinical Research Center, New York Ear Eye and Ear Infirmary of Mount Sinai, New York, New York, United States
4Qiagen, Frederick, Maryland, United States
5Ozaki Eye Hospital, Miyazaki, Japan

Correspondence: Emmanuel S. Buys, Department of Anesthesia, Critical Care, and Pain Medicine, Anesthesia Center for Critical Care Research, Harvard Medical School, Massachusetts General Hospital, 55 Fruit Street, Thier 511B, Boston, MA 02114, USA; manbuys73@gmail.com.

ESB and RM contributed equally to the work presented here and should therefore be regarded as equivalent authors

Submitted: May 28, 2018
Accepted: October 23, 2018

OBJECTIVE. Glaucoma, a leading cause of blindness worldwide, often remains undetected until irreversible vision loss has occurred. Treatments focus on lowering intraocular pressure (IOP), the only modifiable and readily measurable risk factor. However, IOP can vary and does not always predict disease progression. MicroRNAs (miRNAs) are promising biomarkers. They are abundant and stable in biological fluids, including plasma and aqueous humor (AqH). We aimed to identify differentially expressed miRNAs in AqH and plasma from glaucoma, exfoliation syndrome (XFS), and control subjects.

METHODS. Plasma and AqH from two ethnic cohorts were harvested from glaucoma or XFS (often associated with glaucoma, n = 33) and control (n = 31) patients undergoing elective surgery. A custom miRNA array measured 372 miRNAs. Molecular target prediction and pathway analysis were performed with Ingenuity Pathway Analysis (IPA) and DIANA bioinformatical tools.

RESULTS. Levels of miRNAs in plasma, a readily accessible biomarker source, correlated with miRNA levels in AqH. Twenty circulating miRNAs were at least 1.5-fold higher in glaucoma or XFS patients than in controls across two ethnic cohorts: miR-4667-5p (P = 4.1 × 10⁻⁵), miR-99b-3p (P = 4.8 × 10⁻⁵), miR-637 (P = 5.1 × 10⁻⁵), miR-4490 (P = 5.7 × 10⁻⁵), miR-1253 (P = 6.0 × 10⁻⁴), miR-3190-3p (P = 3.1 × 10⁻⁴), miR-3173-3p (P = 0.001), miR-608 (P = 0.001), miR-4725-3p (P = 0.002), miR-4448 (P = 0.002), and miR-323b-5p (P = 0.002), miR-4538 (P = 0.003), miR-3913-3p (P = 0.003), miR-3159 (P = 0.003), miR-4463 (P = 0.003), miR-4767 (P = 0.003), miR-4724-5p (P = 0.003), miR-1306-5p (P = 0.003), miR-181b-3p (P = 0.004), and miR-453-3p (P = 0.004). miR-637, miR-1306-5p, and miR-3159, in combination, allowed discrimination between glaucoma patients and control subjects (AUC = 0.91 ± 0.008, sensitivity 85.0%, specificity 87.5%).

CONCLUSIONS. These results identify specific miRNAs as potential biomarkers and provide insight into the molecular processes underlying glaucoma.

Keywords: glaucoma, microRNA, aqueous humor, plasma, biomarker

Glauc

Glauc
miRNA Biomarkers for Glaucoma

Methods
Sample Collection
Matched plasma and AqH samples were harvested from consecutive patients as routine procedures during elective surgeries at the New York Eye and Ear Infirmary of Mount Sinai (Institutional Review Board #1217, PI RR: Cohort 1, Cauca-sian) and the Ozaki Eye Hospital (Institutional Review Board #12 and #13, PI MO: Cohort 2, Japanese) conducted in accordance with the Declaration of Helsinki (see Tables 1 and 2 for demographic and clinical variables of study subjects). Nine samples from Cohort 1 were included in initial miRNA selection, with all of Cohort 2, plus additional participants from Cohort 1 included in the complete analyses (Table 1). Samples were de-identified, shipped on dry ice, and studied at the Massachusetts General Hospital under approved Institutional Review Board #2013P002175 (PI ESB). Informed consent was obtained from patients undergoing glaucoma and cataract surgery, and samples from both cohorts were collected from patients who met the following inclusion criteria: (1) age >18 years; (2) patients with open-angle glaucoma or XFS undergoing a glaucoma filtering procedure, such as a tube shunt procedure, trabeculectomy, cataract removal, or a combined cataract removal and trabeculectomy procedure; (3) control patients undergoing a cataract removal with no diagnosis of glaucoma. Exclusion criteria included: (1) patients with closed-angle glaucoma, (2) patients who underwent a prior intraocular procedure, (3) pregnant women. Patients who underwent cataract surgery with no history of glaucoma were studied as control subjects. Patients’ most recent 24-2 SITA-Standard (Carl Zeiss Meditec, Inc., Jena, Germany) visual field mean deviation were assessed and included in Table 1. Some control patients did not have visual field testing completed, and one patient had completed a 10-2 SITA-Standard visual field (Table 1). In Cohort 1, mean deviation was $-7.8 \pm 5.8 DB$ and $-2.1 \pm 1.5 DB$ in glaucoma patients and controls, respectively (mean $\pm SD, P < 0.05$). In Cohort 2, mean deviation was $-3.5 \pm 4.8 DB$ and $-2.7 \pm 5.8 DB$ in glaucoma patients and controls, respectively (mean $\pm SD, P = NS$).

In Cohort 1, POAG eyes were defined by clinical findings consistent with glaucomatous optic neuropathy defined by vertical cup-to-disc ratio ≥ 0.6, asymmetry of cup-to-disc ratio ≥ 0.2 between eyes, and presence of localized retinal nerve fiber layer (RNFL) or neuroretinal rim defects in absence of any other abnormalities that could explain the findings on fundus examination and open anterior chamber angles. Exfoliation glaucoma (XFG) eyes had glaucomatous optic neuropathy as defined above but also had signs of exfoliation material deposition at the anterior lens capsule or pupillary margin. All glaucomatous eyes had glaucoma hemifield test (GHT) results outside normal limits on at least two consecutive reliable examinations or presence of at least three contiguous test points on pattern standard deviation (PSD) plot with $P < 1\%$, with at least one of $P < 0.5\%$, not including points at the edge of the field or those directly above or beneath the blind spot. All glaucoma patients underwent a comprehensive ophthalmic examination, including measurement of BCVA (Snellen), slit-lamp biomicroscopy, fundus examination with 90-D lens, IOP measurement using Goldmann applanation tonometry or rebound tonometry. In Cohort 2, the diagnosis of exfoliation syndrome (XFS), a major risk factor for glaucoma, was based on anterior segment findings of exfoliation material accompanied by an IOP of >21 mm Hg without treatment. XFG was diagnosed by the presence of the following findings: exfoliation material on the lens capsule or at the pupillary margin; an intraocular pressure of >21 mm Hg without treatment; typical glaucomatous optic nerve changes and field defects. Glaucomatous field defects were defined as a minimum presence of a cluster of three abnormal points in the same hemifield with a pattern deviation of $< 2\%$ in the probability map of the Humphrey automated perimeter with at least one point of $< 1\%$ or at least two adjacent points with a pattern deviation of $< 1\%$.

Blood was collected in the presence of the anticoagulant EDTA, and separated plasma was frozen in liquid nitrogen. AqH (up to 100 μl) was collected by paracentesis. A 30-gauge needle was surgically inserted to the anterior chamber at the limbus to withdraw AqH at the beginning of the elective procedures (glaucoma or cataract operation), without touching the iris or lens. Following harvest, AqH was immediately frozen in liquid nitrogen.

RNA Isolation and Initial miRNA Selection
miRNAs were evaluated from total RNA preparations using qPCR arrays. This method is simple and reliable, with very low intra-assay variability (3 samples re-run on the same array were highly correlated between runs, $r = 0.95-0.99$). Plasma RNA was isolated with miRNeasy Plasma/ Serum Kit (217184; Qiagen) to preserve the miRNA fraction, while small-volume AqH samples were extracted directly by Qiagen. Total RNA, including miRNA, was isolated using miRNeasy Serum/ Plasma Kit (217183; Qiagen) from 5 μl AqH for each sample. To normalize and monitor isolation efficiency, miRNeasy Serum/ Plasma Spike-In Control (C. elegans miR-39 miRNA mimic) was added to each sample before isolation. cDNA was synthesized using miScript II RT Kit (218161; Qiagen) using HiSpec buffer chemistry, which exclusively reverse transcribed mature miRNA to cDNA. A functional quality control was performed...
<table>
<thead>
<tr>
<th>Analysis Group</th>
<th>Study ID</th>
<th>Race</th>
<th>Sex</th>
<th>Age</th>
<th>Diagnosis</th>
<th>Co-Morbidity</th>
<th>Date of Diagnosis</th>
<th>Medications*</th>
<th>IOP (mm Hg)</th>
<th>Visual Acuity</th>
<th>Max IOP</th>
<th>Mean Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohort 1</td>
<td>Initial Selection 101</td>
<td>Caucasian</td>
<td>F</td>
<td>66</td>
<td>POAG</td>
<td>XFG</td>
<td>12/19/2012</td>
<td>16, 19, 22</td>
<td>25</td>
<td>20/50</td>
<td>48</td>
<td>-17.68</td>
</tr>
<tr>
<td></td>
<td>Initial Selection 105</td>
<td>Caucasian</td>
<td>F</td>
<td>77</td>
<td>Control</td>
<td>Cataract</td>
<td>12/8/2008</td>
<td>22</td>
<td>18</td>
<td>20/60</td>
<td>18</td>
<td>-2.28</td>
</tr>
<tr>
<td></td>
<td>Initial Selection 107</td>
<td>Caucasian</td>
<td>F</td>
<td>82</td>
<td>POAG</td>
<td>PVFL</td>
<td>12/10/1992</td>
<td>8, 19</td>
<td>16</td>
<td>20/20</td>
<td>20</td>
<td>-2.21</td>
</tr>
<tr>
<td></td>
<td>Initial Selection 108</td>
<td>Caucasian</td>
<td>F</td>
<td>80</td>
<td>POAG</td>
<td>Peripheral vision loss</td>
<td>1/20/2002</td>
<td>15, 16, 17</td>
<td>18</td>
<td>20/40</td>
<td>48</td>
<td>-14</td>
</tr>
<tr>
<td></td>
<td>Initial Selection 109</td>
<td>Caucasian</td>
<td>F</td>
<td>71</td>
<td>POAG</td>
<td>Narrow angle</td>
<td>11/19/2012</td>
<td>13</td>
<td>13</td>
<td>20/100</td>
<td>16</td>
<td>-7.53</td>
</tr>
<tr>
<td></td>
<td>Initial Selection 110</td>
<td>Caucasian</td>
<td>F</td>
<td>81</td>
<td>POAG</td>
<td>PVFL</td>
<td>8/12/2006</td>
<td>19</td>
<td>6</td>
<td>20/100</td>
<td>14</td>
<td>-7.87</td>
</tr>
<tr>
<td></td>
<td>Initial Selection 111</td>
<td>Caucasian</td>
<td>F</td>
<td>77</td>
<td>Control</td>
<td>Cataract</td>
<td>6/5/2013</td>
<td>0</td>
<td>17</td>
<td>20/40</td>
<td>17</td>
<td>N.D.</td>
</tr>
<tr>
<td></td>
<td>Complete Analysis 114</td>
<td>Caucasian</td>
<td>F</td>
<td>74</td>
<td>Control</td>
<td>Cataract</td>
<td>6/24/2013</td>
<td>0</td>
<td>16</td>
<td>20/50</td>
<td>19</td>
<td>-4.29</td>
</tr>
<tr>
<td></td>
<td>Initial Selection 115</td>
<td>Caucasian</td>
<td>F</td>
<td>75</td>
<td>POAG</td>
<td>PVFL</td>
<td>1/12/2012</td>
<td>18, 19</td>
<td>34</td>
<td>20/100</td>
<td>35</td>
<td>-15.16</td>
</tr>
<tr>
<td></td>
<td>Initial Selection 117</td>
<td>Caucasian</td>
<td>F</td>
<td>76</td>
<td>Control</td>
<td>Cataract</td>
<td>10/1/2005</td>
<td>16</td>
<td>14</td>
<td>20/60</td>
<td>17</td>
<td>-1.61</td>
</tr>
<tr>
<td></td>
<td>Complete Analysis 120</td>
<td>Caucasian</td>
<td>F</td>
<td>77</td>
<td>Control</td>
<td>Cataract</td>
<td>6/6/2006</td>
<td>0</td>
<td>14</td>
<td>20/20</td>
<td>17</td>
<td>-2.32</td>
</tr>
<tr>
<td></td>
<td>Complete Analysis 122</td>
<td>Caucasian</td>
<td>F</td>
<td>71</td>
<td>Control</td>
<td>Cataract</td>
<td>2/17/2011</td>
<td>0</td>
<td>17</td>
<td>20/30</td>
<td>19</td>
<td>-0.17</td>
</tr>
<tr>
<td></td>
<td>Complete Analysis 123</td>
<td>Caucasian</td>
<td>F</td>
<td>61</td>
<td>Control</td>
<td>Cataract</td>
<td>1/25/2011</td>
<td>0</td>
<td>18</td>
<td>20/40</td>
<td>20</td>
<td>N.D.</td>
</tr>
<tr>
<td></td>
<td>Complete Analysis 124</td>
<td>Caucasian</td>
<td>F</td>
<td>72</td>
<td>POAG</td>
<td>PVFL</td>
<td>8/4/2010</td>
<td>16, 18</td>
<td>19</td>
<td>20/25</td>
<td>34</td>
<td>-2.64</td>
</tr>
<tr>
<td></td>
<td>Complete Analysis 128</td>
<td>Caucasian</td>
<td>F</td>
<td>71</td>
<td>POAG</td>
<td>Peripheral vision loss</td>
<td>1/5/2005</td>
<td>20, 21</td>
<td>15</td>
<td>20/20</td>
<td>20</td>
<td>-4.4</td>
</tr>
<tr>
<td></td>
<td>Complete Analysis 150</td>
<td>Caucasian</td>
<td>F</td>
<td>77</td>
<td>POAG</td>
<td>PVFL</td>
<td>12/11/2007</td>
<td>6, 15, 19</td>
<td>15</td>
<td>20/20</td>
<td>15</td>
<td>-3.51</td>
</tr>
<tr>
<td></td>
<td>Complete Analysis 142</td>
<td>Caucasian</td>
<td>F</td>
<td>82</td>
<td>POAG</td>
<td>Peripheral vision loss</td>
<td>5/30/2014</td>
<td>8, 19</td>
<td>25</td>
<td>20/00</td>
<td>32</td>
<td>-18.79</td>
</tr>
<tr>
<td></td>
<td>Complete Analysis 143</td>
<td>Caucasian</td>
<td>F</td>
<td>63</td>
<td>POAG</td>
<td>Peripheral vision loss</td>
<td>7/25/1998</td>
<td>6, 15, 16</td>
<td>18</td>
<td>20/20</td>
<td>25</td>
<td>-1.89</td>
</tr>
<tr>
<td></td>
<td>Complete Analysis 146</td>
<td>Caucasian</td>
<td>F</td>
<td>71</td>
<td>Control</td>
<td>Anatomical narrow angle</td>
<td>10/26/2007</td>
<td>0</td>
<td>11</td>
<td>20/20</td>
<td>14</td>
<td>N.D.</td>
</tr>
<tr>
<td></td>
<td>Complete Analysis 147</td>
<td>Caucasian</td>
<td>F</td>
<td>77</td>
<td>POAG</td>
<td>Peripheral vision loss</td>
<td>12/15/2011</td>
<td>6, 16</td>
<td>14</td>
<td>20/40</td>
<td>17</td>
<td>-3.67</td>
</tr>
<tr>
<td></td>
<td>Complete Analysis 149</td>
<td>Caucasian</td>
<td>F</td>
<td>70</td>
<td>Control</td>
<td>Anatomical narrow angle</td>
<td>11/1/2011</td>
<td>0</td>
<td>14</td>
<td>20/20</td>
<td>27</td>
<td>N.D.</td>
</tr>
<tr>
<td></td>
<td>Complete Analysis 150</td>
<td>Caucasian</td>
<td>F</td>
<td>71</td>
<td>Control</td>
<td>Anatomical narrow angle</td>
<td>10/6/2007</td>
<td>0</td>
<td>12</td>
<td>20/20</td>
<td>13</td>
<td>N.D.</td>
</tr>
<tr>
<td></td>
<td>Complete Analysis 151</td>
<td>Caucasian</td>
<td>F</td>
<td>78</td>
<td>Control</td>
<td>Anatomical narrow angle</td>
<td>7/26/2007</td>
<td>0</td>
<td>12</td>
<td>20/25</td>
<td>21</td>
<td>N.D.</td>
</tr>
<tr>
<td></td>
<td>Complete Analysis 152</td>
<td>Caucasian</td>
<td>F</td>
<td>75</td>
<td>POAG</td>
<td>PVFL</td>
<td>4/10/2011</td>
<td>16, 18</td>
<td>14</td>
<td>20/20</td>
<td>16</td>
<td>-2.47</td>
</tr>
<tr>
<td>Cohort 2</td>
<td>Complete Analysis 202</td>
<td>Japanese</td>
<td>F</td>
<td>87</td>
<td>XFG</td>
<td>0</td>
<td>1/18/2014</td>
<td>1</td>
<td>14</td>
<td>20/66</td>
<td>16</td>
<td>N.D.</td>
</tr>
<tr>
<td></td>
<td>Complete Analysis 203</td>
<td>Japanese</td>
<td>F</td>
<td>85</td>
<td>XFG</td>
<td>0</td>
<td>12/19/2013</td>
<td>2</td>
<td>16</td>
<td>20/28</td>
<td>40</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>Complete Analysis 204</td>
<td>Japanese</td>
<td>F</td>
<td>72</td>
<td>XFS</td>
<td>0</td>
<td>4/8/2013</td>
<td>1</td>
<td>15</td>
<td>20/22</td>
<td>19</td>
<td>N.D.</td>
</tr>
<tr>
<td></td>
<td>Complete Analysis 205</td>
<td>Japanese</td>
<td>F</td>
<td>87</td>
<td>XFS</td>
<td>0</td>
<td>10/6/2010</td>
<td>3, 4</td>
<td>14</td>
<td>20/28</td>
<td>15</td>
<td>-3.69</td>
</tr>
<tr>
<td></td>
<td>Complete Analysis 206</td>
<td>Japanese</td>
<td>F</td>
<td>83</td>
<td>XFS</td>
<td>0</td>
<td>2/12/2014</td>
<td>1</td>
<td>19</td>
<td>20/100</td>
<td>20</td>
<td>N.D.</td>
</tr>
<tr>
<td></td>
<td>Complete Analysis 208</td>
<td>Japanese</td>
<td>F</td>
<td>84</td>
<td>XFS</td>
<td>0</td>
<td>3/4/2014</td>
<td>1, 5</td>
<td>14</td>
<td>20/25</td>
<td>21</td>
<td>0.66</td>
</tr>
<tr>
<td></td>
<td>Complete Analysis 209</td>
<td>Japanese</td>
<td>F</td>
<td>88</td>
<td>XFG</td>
<td>0</td>
<td>1/28/2013</td>
<td>2, 6, 7, 8</td>
<td>31</td>
<td>20/28</td>
<td>31</td>
<td>-16.95</td>
</tr>
<tr>
<td></td>
<td>Complete Analysis 212</td>
<td>Japanese</td>
<td>F</td>
<td>86</td>
<td>XFS</td>
<td>0</td>
<td>9/30/2013</td>
<td>1, 8, 9</td>
<td>24</td>
<td>20/66</td>
<td>30</td>
<td>-1.85</td>
</tr>
<tr>
<td></td>
<td>Complete Analysis 215</td>
<td>Japanese</td>
<td>F</td>
<td>77</td>
<td>XFS</td>
<td>0</td>
<td>10/5/2011</td>
<td>1</td>
<td>14</td>
<td>20/17</td>
<td>18</td>
<td>-2.26</td>
</tr>
<tr>
<td></td>
<td>Complete Analysis 219</td>
<td>Japanese</td>
<td>F</td>
<td>72</td>
<td>XFS</td>
<td>0</td>
<td>3/3/2014</td>
<td>1</td>
<td>19</td>
<td>20/66</td>
<td>20</td>
<td>-1.56</td>
</tr>
<tr>
<td></td>
<td>Complete Analysis 221</td>
<td>Japanese</td>
<td>F</td>
<td>92</td>
<td>XFS</td>
<td>0</td>
<td>11/18/2013</td>
<td>1</td>
<td>15</td>
<td>20/40</td>
<td>15</td>
<td>-3.47</td>
</tr>
<tr>
<td></td>
<td>Complete Analysis 222</td>
<td>Japanese</td>
<td>F</td>
<td>75</td>
<td>XFS</td>
<td>0</td>
<td>4/12/2014</td>
<td>1</td>
<td>13</td>
<td>20/28</td>
<td>16</td>
<td>N.D.</td>
</tr>
<tr>
<td></td>
<td>Complete Analysis 224</td>
<td>Japanese</td>
<td>F</td>
<td>82</td>
<td>XFS</td>
<td>0</td>
<td>7/8/2014</td>
<td>2</td>
<td>15</td>
<td>20/66</td>
<td>14</td>
<td>-4.54</td>
</tr>
<tr>
<td></td>
<td>Complete Analysis 225</td>
<td>Japanese</td>
<td>F</td>
<td>82</td>
<td>XFS</td>
<td>0</td>
<td>6/10/2014</td>
<td>1</td>
<td>12</td>
<td>20/130</td>
<td>16</td>
<td>-1.40</td>
</tr>
<tr>
<td></td>
<td>Complete Analysis 226</td>
<td>Japanese</td>
<td>F</td>
<td>80</td>
<td>XFS</td>
<td>0</td>
<td>9/10/2013</td>
<td>10</td>
<td>10</td>
<td>20/33</td>
<td>15</td>
<td>N.D.</td>
</tr>
</tbody>
</table>
Table 1. Continued

<table>
<thead>
<tr>
<th>Analysis Group</th>
<th>Study ID</th>
<th>Race</th>
<th>Sex</th>
<th>Age</th>
<th>Diagnosis</th>
<th>Co-Morbidity</th>
<th>Date of Diagnosis</th>
<th>Medications*</th>
<th>IOP (mm Hg)</th>
<th>Visual Acuity</th>
<th>Max IOP</th>
<th>Mean Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Analysis</td>
<td>228</td>
<td>Japanese</td>
<td>F</td>
<td>82</td>
<td>XFG</td>
<td>0</td>
<td>5/27/2008</td>
<td>1, 9, 11</td>
<td>20</td>
<td>20/25</td>
<td>25</td>
<td>-2.08</td>
</tr>
<tr>
<td>Complete Analysis</td>
<td>229</td>
<td>Japanese</td>
<td>F</td>
<td>75</td>
<td>Control</td>
<td>Cataract</td>
<td>3/26/2014</td>
<td>12</td>
<td>18</td>
<td>20/40</td>
<td>19</td>
<td>N.D.</td>
</tr>
<tr>
<td>Complete Analysis</td>
<td>230</td>
<td>Japanese</td>
<td>F</td>
<td>77</td>
<td>Control</td>
<td>Cataract</td>
<td>2/13/2014</td>
<td>2, 15</td>
<td>15</td>
<td>20/50</td>
<td>17</td>
<td>0.23</td>
</tr>
<tr>
<td>Complete Analysis</td>
<td>231</td>
<td>Japanese</td>
<td>F</td>
<td>73</td>
<td>Control</td>
<td>Cataract</td>
<td>6/19/2014</td>
<td>1</td>
<td>18</td>
<td>20/66</td>
<td>18</td>
<td>N.D.</td>
</tr>
<tr>
<td>Complete Analysis</td>
<td>232</td>
<td>Japanese</td>
<td>F</td>
<td>72</td>
<td>Control</td>
<td>Cataract</td>
<td>12/11/2011</td>
<td>1</td>
<td>19</td>
<td>20/17</td>
<td>19</td>
<td>-0.62</td>
</tr>
<tr>
<td>Complete Analysis</td>
<td>233</td>
<td>Japanese</td>
<td>F</td>
<td>65</td>
<td>Control</td>
<td>Cataract</td>
<td>4/24/2013</td>
<td>1</td>
<td>19</td>
<td>20/22</td>
<td>21</td>
<td>N.D.</td>
</tr>
<tr>
<td>Complete Analysis</td>
<td>234</td>
<td>Japanese</td>
<td>M</td>
<td>70</td>
<td>Control</td>
<td>Cataract</td>
<td>10/1/2014</td>
<td>1</td>
<td>16</td>
<td>20/28</td>
<td>18</td>
<td>-6.11</td>
</tr>
<tr>
<td>Complete Analysis</td>
<td>235</td>
<td>Japanese</td>
<td>M</td>
<td>79</td>
<td>Control</td>
<td>Cataract</td>
<td>12/1/2014</td>
<td>1</td>
<td>15</td>
<td>20/50</td>
<td>14</td>
<td>N.D.</td>
</tr>
<tr>
<td>Complete Analysis</td>
<td>236</td>
<td>Japanese</td>
<td>F</td>
<td>81</td>
<td>Control</td>
<td>Cataract</td>
<td>10/28/2014</td>
<td>1</td>
<td>16</td>
<td>20/40</td>
<td>19</td>
<td>-6.13</td>
</tr>
<tr>
<td>Complete Analysis</td>
<td>237</td>
<td>Japanese</td>
<td>M</td>
<td>67</td>
<td>Control</td>
<td>Cataract</td>
<td>12/4/2014</td>
<td>1</td>
<td>12</td>
<td>20/100</td>
<td>12</td>
<td>N.D.</td>
</tr>
<tr>
<td>Complete Analysis</td>
<td>238</td>
<td>Japanese</td>
<td>F</td>
<td>66</td>
<td>Control</td>
<td>Cataract</td>
<td>12/2/2013</td>
<td>1</td>
<td>17</td>
<td>20/20</td>
<td>22</td>
<td>-0.50</td>
</tr>
<tr>
<td>Complete Analysis</td>
<td>239</td>
<td>Japanese</td>
<td>F</td>
<td>74</td>
<td>Control</td>
<td>Cataract</td>
<td>12/3/2014</td>
<td>1</td>
<td>13</td>
<td>20/50</td>
<td>14</td>
<td>-0.83</td>
</tr>
<tr>
<td>Complete Analysis</td>
<td>240</td>
<td>Japanese</td>
<td>F</td>
<td>72</td>
<td>Control</td>
<td>Cataract</td>
<td>12/8/2014</td>
<td>2</td>
<td>17</td>
<td>20/50</td>
<td>17</td>
<td>-1.27</td>
</tr>
<tr>
<td>Complete Analysis</td>
<td>241</td>
<td>Japanese</td>
<td>F</td>
<td>72</td>
<td>Control</td>
<td>Cataract</td>
<td>2/14/2013</td>
<td>1</td>
<td>19</td>
<td>20/22</td>
<td>20</td>
<td>N.D.</td>
</tr>
<tr>
<td>Complete Analysis</td>
<td>242</td>
<td>Japanese</td>
<td>M</td>
<td>82</td>
<td>Control</td>
<td>Cataract</td>
<td>7/29/2014</td>
<td>1, 13</td>
<td>15</td>
<td>20/40</td>
<td>15</td>
<td>-19.06</td>
</tr>
<tr>
<td>Complete Analysis</td>
<td>243</td>
<td>Japanese</td>
<td>F</td>
<td>77</td>
<td>Control</td>
<td>Cataract</td>
<td>7/8/2009</td>
<td>1</td>
<td>13</td>
<td>20/17</td>
<td>17</td>
<td>-2.94</td>
</tr>
<tr>
<td>Complete Analysis</td>
<td>244</td>
<td>Japanese</td>
<td>M</td>
<td>75</td>
<td>Control</td>
<td>Cataract</td>
<td>8/19/2014</td>
<td>1</td>
<td>16</td>
<td>20/28</td>
<td>19</td>
<td>-1.92</td>
</tr>
<tr>
<td>Complete Analysis</td>
<td>245</td>
<td>Japanese</td>
<td>F</td>
<td>75</td>
<td>Control</td>
<td>Cataract</td>
<td>4/22/2014</td>
<td>1</td>
<td>14</td>
<td>20/66</td>
<td>16</td>
<td>N.D.</td>
</tr>
<tr>
<td>Complete Analysis</td>
<td>246</td>
<td>Japanese</td>
<td>F</td>
<td>75</td>
<td>Control</td>
<td>Cataract</td>
<td>7/7/2014</td>
<td>1</td>
<td>17</td>
<td>20/25</td>
<td>19</td>
<td>N.D.</td>
</tr>
<tr>
<td>Complete Analysis</td>
<td>247</td>
<td>Japanese</td>
<td>M</td>
<td>76</td>
<td>Control</td>
<td>Cataract</td>
<td>12/24/2014</td>
<td>1, 11</td>
<td>22</td>
<td>20/28</td>
<td>22</td>
<td>6.55</td>
</tr>
<tr>
<td>Complete Analysis</td>
<td>248</td>
<td>Japanese</td>
<td>F</td>
<td>80</td>
<td>Control</td>
<td>Cataract</td>
<td>9/6/2010</td>
<td>4, 14</td>
<td>15</td>
<td>20/17</td>
<td>16</td>
<td>-1.05</td>
</tr>
<tr>
<td>Complete Analysis</td>
<td>249</td>
<td>Japanese</td>
<td>F</td>
<td>64</td>
<td>Control</td>
<td>Cataract</td>
<td>1/26/2015</td>
<td>1</td>
<td>19</td>
<td>20/66</td>
<td>23</td>
<td>N.D.</td>
</tr>
<tr>
<td>Complete Analysis</td>
<td>250</td>
<td>Japanese</td>
<td>F</td>
<td>79</td>
<td>Control</td>
<td>Cataract</td>
<td>6/5/2007</td>
<td>1</td>
<td>20</td>
<td>20/17</td>
<td>22</td>
<td>-1.07</td>
</tr>
</tbody>
</table>

Demographics and clinical variables. Study ID (Cohort 1: 101-152; Cohort 2: 202-250), race (Cohort 1: Caucasian; Cohort 2: Japanese), sex (F: female; M: male), age (in years). Visual Field Mean Deviation (Carl Zeiss Meditec 24-2 SITA-Standard) and Mean Deviation were determined at the time of sampling. IOP and Visual Acuity were determined during diagnosis of the study eye. Max IOP is of the study eye. XFG, exfoliation glaucoma; XFS, exfoliation syndrome; POAG, primary open angle glaucoma; PFL, paracentral visual field loss.

† 10-2 SITA-Standard, in DB.
on all cDNA samples using miScript miRNA QC PCR array, which included RTC and positive PCR control (PPC) controls to monitor reverse transcription (RT) and PCR efficiencies as well as cel-miR-39 assay. qPCR was performed on an ABI7900 HT Real-Time PCR system (Thermo Fisher Scientific, Waltham, MA, USA). Threshold cycles (C) for PPC and RT control (miRTC) were examined to assess PCR and RT efficiencies, respectively. The expression of cel-miR-39 assay was also observed to confirm efficient RNA recovery. C values for all controls were within the manufacturer’s recommended range for a successful quality control (QC). Because of low starting amount, all AqH cDNA samples underwent PCR-based amplification using miScript PreAMP PCR kit (331452; Qiagen) and miScript PreAMP primer mix (MBHS-3218Z; Qiagen). Pre-amplified cDNA was used as the template for real-time PCR analysis using miScript miRNA PCR array miRbase v18 platform (MIHS-3218Z; Qiagen), and the miScript SYBR Green Kit (218073; Qiagen). ABI 7900HT Real-time PCR instrumentation was used to perform the quantification. SDS 2.4 (Applied Biosystems) was used to generate raw data (Ct values). The baseline was set from cycle 2 to 10 and threshold was set to 0.2. Raw data was normalized against a global Ct mean of expressed miRNAs for each sample.

As a discovery analysis, we evaluated miRNA expression in the AqH from 9 individuals (3 control, 6 glaucoma; described in Table 1) using the commercially available Qiagen miRNA PCR Array (miRBase v18 platform, MIHS-3218Z, 1800 miRNAs screened). These data were used to inform the subsequent development of a custom miR-Finder array.

Custom miRNA Array to Evaluate Glaucoma Biomarkers

As an analysis tool to target glaucoma biomarkers, the custom miR-Finder Array (CMHS-02263; Qiagen) included miRNAs identified in AqH as differing between cataract and glaucoma samples, as stable, or as highly expressed in the eye (Supplementary Fig. S1 includes a detailed list of inclusion criteria for the 384-well array design capable of assessing 372 selected miRNAs). Screening 372 miRNAs is more cost-effective and less statistically demanding than screening 1800 miRNAs. RNA preparation, reverse transcription and quality control were conducted in the same manner as in the commercially available MIHS-3218Z array described above.

Complete miRNA Assessment

Plasma and AqH samples (n = 57) from both cohorts were run on the CMHS-02265 custom PCR array (Cohort 1: 11 patients and 8 controls; Cohort 2: 16 patients and 22 controls). We initially evaluated plasma data and subsequently compared our results to those for AqH. A flowchart of patient and sample distribution for initial miRNA selection and final analysis is presented in Supplementary Figure S2. All Ct data were filtered to remove background signal (all Cts >53 were discarded) and normalized by ΔCt to the mean Ct of all amplified miRNAs in each sample.

Statistical Analyses

All analyses were conducted in R.24 Plasma miRNA levels (determined using the 2-ΔΔCt method) were analyzed using a 2-way ANOVA (factors were cohort, disease, and the interaction term) to identify miRNAs that differed between cataract control and glaucoma subjects. The P values were corrected for false discovery rate with the Benjamini-Hochberg method.25 Overlap in miRNA expression between plasma and AqH was visualized with the VennDiagrams package26 and summarized expression data from both sample types, as presented in Supplementary Table S1. Univariate logistic regression was used to assess diagnostic accuracy for each miRNA, and multivariable models were then applied to determine whether miRNA biomarkers could be combined to improve disease identification. Receiver operator characteristic (ROC) curves were plotted with the pROC package,27 which produced sensitivity and specificity metrics for each ROC curve at the optimal threshold. Plasma miRNAs identified as being associated with disease status were assessed in the AqH to determine if AqH miRNA levels also predicted disease status. Further, the degree of correlation between plasma and AqH miRNA profiles from individual-matched samples were determined using linear mixed effects models (lme4 package28), including cohort, disease state, and the interaction term as factors, adjusting for each individual subject.

Pathway Analysis

Two approaches were used to link differential miRNA expression with biological mechanisms via pathway analyses. First, miRNA targets for miRNAs of interest (20 in plasma, 6 in AqH) were identified using TargetScan.29 Enriched GO pathways were evaluated with DIANA-miPath v330 in all high-probability mRNA targets, filtered for context + scores < −0.4.31 Second, Ingenuity Pathway Analysis (IPA) microRNA target filter (Qiagen) was used to identify miRNA targets that were either experimentally confirmed or predicted with high confidence. These miRNA targets were subsequently filtered for known associations with ophthalmic disease. A core expression analysis revealed canonical pathways that were associated with the selected miRNA ophthalmic disease miRNA targets. We predicted outcomes of miRNA expression changes on target genes based on the assumption that the prevailing action of miRNAs is to decrease target mRNA expression or translation.

Results

Our overall goal was to identify miRNAs that are differentially expressed in plasma from glaucoma or XFS patients and controls. A custom-built miRNA array detected miRNAs that may be developed as easily screenable biomarkers to diagnose glaucoma or assess treatment response (CMHS-02265; Qiagen; Supplementary Table S1). CMHS-02265 quantifies 372 miRNAs, selected based on screening 1800 of the most abundantly
expressed and best characterized human miRNAs using a commercially available platform (MIHS-3218Z; Qiagen; Supplementary Fig. S1). We selected miRNAs that tended to be differentially expressed between patients and controls, were highly abundant in AqH, and were minimally variable.

Detecting miRNAs in the Eye

Glaucoma and XFS patients had more detectable miRNAs than in controls ($\text{CT} < 33$) in AqH ($P = 0.0007$) and plasma samples ($P = 0.0014$) of glaucoma/XFS patients than in cataract controls. (B) Mean CT was similar across both sample types. Cataract versus glaucoma/XFS data from both cohorts combined, were compared with 2-way ANOVA, and presented as mean ± SD.

Plasma miRNAs as Biomarkers

Expression of miRNAs was evaluated first in plasma samples, representing a more accessible and clinically useful biomarker source than AqH. Twenty plasma miRNAs were more abundant in plasma from glaucoma patients than from control subjects and achieved the threshold of significance required for the false discovery rate correction (Table 3; Fig. 3). There were no interaction effects in the 2-way ANOVA comparison between disease and cohort factors in the plasma samples for any miRNAs examined, indicating that miRNAs respond similarly to disease across the two ethnicities.

ROC curves were constructed for each of the 20 putative biomarkers (Figs. 4A–T). All 20 miRNAs differed significantly between patients and controls from Cohort 2 in a univariate logistic regression (Table 4). We next assessed whether detection of disease state could be improved using combinations of biomarkers. Of the 20 plasma miRNAs of interest and 190 pairwise combinations, 64 pairs were correlated ($r^2 > 0.70$ for any simple regression between miRNA pairs), making them poor candidates for combination. A multivariate logistic regression retained a combination of three miRNAs as significant factors. miRs 637, 1306-5p, and 3159 had only limited correlation ($r^2 = 0.04–0.63$) and in combination produced the highest AUC ± SEM of 0.91 ± 0.008 (Fig. 4U) with a specificity of 59% at a sensitivity of 95% (95% CI: 41%–97%).

Correlation of miRNAs in AqH and Plasma

We tested the hypothesis that miRNA expression levels correlate between plasma and AqH. 6/20 miRNAs elevated in a univariate ANOVA were also detectable in plasma.

<table>
<thead>
<tr>
<th>miRNA</th>
<th>P</th>
<th>Fold Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>lsa-miR-4667-5p</td>
<td>4.1E-05</td>
<td>2.55</td>
</tr>
<tr>
<td>lsa-miR-99b-3p</td>
<td>4.8E-05</td>
<td>3.17</td>
</tr>
<tr>
<td>lsa-miR-637</td>
<td>5.1E-05</td>
<td>2.53</td>
</tr>
<tr>
<td>lsa-miR-4490</td>
<td>5.7E-05</td>
<td>4.19</td>
</tr>
<tr>
<td>lsa-miR-1253</td>
<td>6.0E-05</td>
<td>3.58</td>
</tr>
<tr>
<td>lsa-miR-3190-3p</td>
<td>3.1E-04</td>
<td>3.08</td>
</tr>
<tr>
<td>lsa-miR-3173-3p</td>
<td>0.001</td>
<td>5.68</td>
</tr>
<tr>
<td>lsa-miR-608</td>
<td>0.001</td>
<td>5.07</td>
</tr>
<tr>
<td>lsa-miR-4725-3p</td>
<td>0.002</td>
<td>4.69</td>
</tr>
<tr>
<td>lsa-miR-4448</td>
<td>0.002</td>
<td>2.08</td>
</tr>
<tr>
<td>lsa-miR-323b-5p</td>
<td>0.002</td>
<td>4.88</td>
</tr>
<tr>
<td>lsa-miR-4538</td>
<td>0.003</td>
<td>3.24</td>
</tr>
<tr>
<td>lsa-miR-3913-3p</td>
<td>0.003</td>
<td>1.70</td>
</tr>
<tr>
<td>lsa-miR-3159</td>
<td>0.003</td>
<td>2.31</td>
</tr>
<tr>
<td>lsa-miR-4663</td>
<td>0.003</td>
<td>2.39</td>
</tr>
<tr>
<td>lsa-miR-4767</td>
<td>0.003</td>
<td>1.81</td>
</tr>
<tr>
<td>lsa-miR-4724-5p</td>
<td>0.003</td>
<td>2.46</td>
</tr>
<tr>
<td>lsa-miR-1306-5p</td>
<td>0.003</td>
<td>1.54</td>
</tr>
<tr>
<td>lsa-miR-181b-3p</td>
<td>0.004</td>
<td>1.92</td>
</tr>
<tr>
<td>lsa-miR-453-3p</td>
<td>0.004</td>
<td>3.02</td>
</tr>
</tbody>
</table>

ANOVA P values are reported for disease state (glaucoma/XFS versus cataract controls). These P values all met threshold significance after adjustment for false discovery rate using the Benjamini-Hochberg method. Fold change is $2^{-\Delta\text{CT}}$ of glaucoma versus cataracts for each cohort.
patient plasma were also significantly increased in AqH from the same subjects (miR-637, miR-99b-3p, miR-4725-3p, miR-4724-5p, miR-4358, miR-433-3p; Fig 5). While the correlation between miRNA levels in plasma and AqH was low across the entire dataset containing 372 miRNAs ($r = 0.48$, $P < 0.0001$), it improved when only the top 20 plasma biomarkers ($r = 0.72$, $P < 0.0001$) and the top 6 AqH biomarkers ($r = 0.85$, $P < 0.0001$) were plotted. This improved correlation between the sample types when inputs are restricted to the miRNA targets identified by our analyses can be considered evidence of their usefulness as biomarkers.

Pathway Analysis

Pathway analyses was used to assess biological pathways implicated in glaucoma by the 20 miRNA biomarkers. DIANA analysis of GO pathways linked to high-probability miRNA-mRNA interactions identified basic cellular processes (cellular nitrogen metabolism, gene expression) as well as GO terms that align with the neurological component of glaucoma (e.g., synaptic transmission; Supplementary Table S2). Identification of specific pathway enrichments (e.g., Fc-epsilon receptor and neurotrophin/tropomyosin-related kinase (TRK) receptor sig-
FIGURE 4. Area under the curve (AUC) and variance for each ROC in 20 plasma miRNAs. (A–T) ROCs for the 20 potential plasma biomarkers, presented in order of significance. (U) Of all potential miRNA combinations evaluated by multivariate logistic regression analysis, miRNAs 637, 1306-5p, and 3159 yielded the best glaucoma/XFS detection. Shaded area and error bars represent confidence interval range. All inputs showed a significant difference between cataract and glaucoma/XFS samples from Cohort 2 by univariate logistic regression. AUC is presented ± SEM.
 signaling pathways) in these subjects, which encompass multiple glaucoma subtypes, may provide generalized biological insights into the disease. There was also significant overlap between enriched GO pathways that were targeted by the 6 miRNAs differentially expressed in AqH, and the 20 miRNAs that differed in plasma samples (Supplementary Table S2), further validating the diagnostic potential of plasma.

IPA MicroRNA Target Filter produced 2829 unique potential high confidence mRNA hits that were predicted to be a target of 1 or more of the 20 miRNAs that differed in plasma samples. The ophthalmic disease filter reduced this list to 438 mRNAs. From this subset, IPA Core Expression Analysis identified canonical pathways that may be integral to the pathological processes in glaucoma (Supplementary Table S3). This analysis implicates general disease processes including neuroinflammation (Supplementary Table S4), neuronal nitric oxide synthase (nNOS) signaling (Supplementary Table S5), endothelial nitric oxide synthase (eNOS) signaling (Supplementary Table S6), and neurotrophin/TRK receptor signaling (Supplementary Table S7).

DISCUSSION

Glaucoma is the most common cause of irreversible blindness worldwide. Subclinical disease is difficult to diagnose and can cause irreversible harm before discernable vision loss.32 There is an unmet and urgent demand for molecular biomarkers that could diagnose glaucoma early, thus making the disease more amenable to treatment and limiting disease progression. Here we present miRNAs that are more abundantly expressed in plasma (and AqH) of glaucoma patients than cataract controls from two ethnic cohorts.

The presence of relatively stable, extracellular miRNAs in plasma has generated great interest in the potential development of miRNAs to study a variety of diseases. miRNAs are easy to sample, highly stable, and simple to quantify, making them well-suited for not only the discovery of disease molecular signatures but also as disease biomarkers themselves. Some primary open angle glaucoma (POAG) endo-phenotypes, including POAG with initial parafoveal scotoma’s (IPFS)33,34 and XFG,35 are associated with vascular dysfunction. Hence, circulating molecules (in plasma rather than the eye) may represent particularly useful biomarkers. Therefore, we creat-

Table 4. Logistic Regression Statistics for Cohort 2 Data (Japan)

<table>
<thead>
<tr>
<th>miRNA</th>
<th>Odds Ratio</th>
<th>95% CI</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univariate Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hsa-miR-4667-5p</td>
<td>4.14</td>
<td>1.5–11.4</td>
<td>0.006</td>
</tr>
<tr>
<td>hsa-miR-99b-3p</td>
<td>4.13</td>
<td>1.5–11.3</td>
<td>0.006</td>
</tr>
<tr>
<td>hsa-miR-637</td>
<td>8.64</td>
<td>1.8–42.2</td>
<td>0.008</td>
</tr>
<tr>
<td>hsa-miR-4490</td>
<td>3.16</td>
<td>1.4–7.5</td>
<td>0.008</td>
</tr>
<tr>
<td>hsa-miR-1253</td>
<td>3.41</td>
<td>1.4–8.0</td>
<td>0.005</td>
</tr>
<tr>
<td>hsa-miR-3190-5p</td>
<td>2.95</td>
<td>1.2–7.1</td>
<td>0.02</td>
</tr>
<tr>
<td>hsa-miR-3175-5p</td>
<td>2.56</td>
<td>1.1–6.0</td>
<td>0.03</td>
</tr>
<tr>
<td>hsa-miR-608</td>
<td>2.84</td>
<td>1.3–6.4</td>
<td>0.01</td>
</tr>
<tr>
<td>hsa-miR-4725-3p</td>
<td>2.25</td>
<td>1.0–5.1</td>
<td>0.05</td>
</tr>
<tr>
<td>hsa-miR-4448</td>
<td>2.95</td>
<td>1.3–6.9</td>
<td>0.01</td>
</tr>
<tr>
<td>hsa-miR-323b-5p</td>
<td>2.30</td>
<td>1.1–4.8</td>
<td>0.03</td>
</tr>
<tr>
<td>hsa-miR-4538</td>
<td>2.55</td>
<td>1.0–6.6</td>
<td>0.06</td>
</tr>
<tr>
<td>hsa-miR-3913-3p</td>
<td>2.90</td>
<td>1.2–6.8</td>
<td>0.01</td>
</tr>
<tr>
<td>hsa-miR-3159</td>
<td>2.26</td>
<td>1.1–4.9</td>
<td>0.03</td>
</tr>
<tr>
<td>hsa-miR-4665</td>
<td>9.80</td>
<td>1.9–50.5</td>
<td>0.006</td>
</tr>
<tr>
<td>hsa-miR-4767</td>
<td>4.61</td>
<td>1.4–15.5</td>
<td>0.01</td>
</tr>
<tr>
<td>hsa-miR-4724-5p</td>
<td>1.91</td>
<td>1.0–5.8</td>
<td>0.07</td>
</tr>
<tr>
<td>hsa-miR-1306-5p</td>
<td>2.40</td>
<td>1.2–4.8</td>
<td>0.01</td>
</tr>
<tr>
<td>hsa-miR-181b-3p</td>
<td>3.47</td>
<td>1.2–10.2</td>
<td>0.02</td>
</tr>
<tr>
<td>hsa-miR-4724-3p</td>
<td>1.82</td>
<td>1.0–3.6</td>
<td>0.09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multivariate Analysis*</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>hsa-miR-637</td>
<td>2031.9</td>
<td>2.9–1 471 266</td>
<td>0.02</td>
</tr>
<tr>
<td>hsa-miR-1306-5p</td>
<td>24.5</td>
<td>1.9–312</td>
<td>0.01</td>
</tr>
<tr>
<td>hsa-miR-3159</td>
<td>0.002</td>
<td>5.1 × 10⁻⁶⁻⁰.9</td>
<td>0.05</td>
</tr>
</tbody>
</table>

* Three of these retained significance in a multivariate analysis, suggesting that their combination may improve disease classification or detection.

![Figure 5](image-url)
ed a customized miRNA-screen to assess expression levels of glaucoma-specific miRNAs in both plasma and AqH and used this platform to identify candidate biomarkers in clinically relevant samples from glaucoma/XFS patients and cataract controls.

In the current study, circulating levels of 20 miRNAs were higher in glaucoma/XFS patients than in cataract patients. One miRNA combination (miR-637, miR-1306-5p, miR-3159) demonstrated the best ability (AUC = 0.91), relative to single biomarkers, to classify glaucoma patients and control subjects, with high sensitivity (85%) and specificity (87.5%). Of note, miR-637 also performed well alone to identify glaucoma in AqH samples.

Despite low miRNA abundance and high sample variability observed in AqH, 6 of the 20 miRNAs more highly expressed in plasma samples from glaucoma and XFS patients than controls were also elevated in matched AqH samples from patients than controls. Detection of plasma biomarkers suggests that miRNAs related to glaucoma/XFS may not only derive from ocular tissues but may have a systemic origin. Moreover, because some miRNAs were similarly elevated with glaucoma/XFS in both plasma and AqH, there was overlap in predicted miRNA pathways systemically and in the eye (Supplementary Table S2). Whether the blood-aqueous barrier excludes circulating miRNAs from the AqH, as it does for proteins, or whether miRNAs can freely diffuse from vitreous to AqH remains a matter of ongoing debate. It also remains to be discovered what is the source of miRNAs detected in AqH and whether any originate from the retina or from the vasculature, possibly reflecting systemic conditions.

Few studies have so far compared miRNAs from AqH in glaucoma and control subjects. The first study detected 500 miRNAs using a commercially available 3D-Gen human miRNA chip-based analysis system containing miRNAs (n = 5 glaucoma, n = 10 control), identifying a subset of miRNAs that differed between groups. In another study, the potential of developing miRNAs as glaucoma biomarkers was illustrated by the differential expression of miRNAs in AqH from glaucoma patients (n = 6) and age-matched cataract controls (n = 8). Our study is the first to report glaucoma-specific biomarkers in plasma and AqH from more than 50 subjects. More recently, several POAG and XFG-associated miRNAs (querying 800 plasma and AqH from more than 50 subjects. More recently, this platform to identify candidate biomarkers in clinically relevant samples, with high sensitivity (85%) and specificity (87.5%).

Our study provided an opportunity to gain mechanistic insight into a complex disease process by examining putative genetic targets of the 20 identified miRNAs. Molecular target prediction and pathway analysis revealed potential mechanisms contributing to the pathophysiology of glaucoma. Enriched pathways included neuroinflammation signaling, ENOS and nNOS signaling, and neurotrophin/TRK receptor signaling. Our pathway analyses results, derived from miRNA-mRNA target predictions, are supported by other studies that have directly evaluated gene targets. For example, neurotrophin has been implicated in RGC survival, both in animal models and in humans, and neurotrophin signaling was identified as one of the most biologically relevant pathways in a recent study identifying miRNAs related to glaucoma.

Epsilon signaling has additionally been highlighted in a bioinformatics analysis of glaucoma, enrichment of this immunoglobulin membrane receptor highlights the inflammatory component of the disease. The relevance of nitric oxide (NO) and its downstream target guanylyl cyclase (GC) to the pathophysiology of glaucoma is well-established. Both NOS and GC are expressed in both the anterior and posterior chambers of the eye. Plasma and AqH levels of NO metabolites and the secondary messenger cyclic guanosine-3’,5’-monophosphate (cGMP), produced by GC upon activation by NO, are lower in glaucoma patients than controls. Genetic association studies have identified multiple variants in genes of the NO signaling pathway that are associated with glaucoma.

Furthermore, NO is emerging as a novel target for therapeutic lowering of IOP. Additional evidence for a central role of this pathway in the etiology of glaucoma may stimulate development of novel glaucoma drugs that target the NO-cGMP signaling pathway, including small molecules that synergistically increase GC enzyme activity with NO.

There are limitations to the present study. Samples were collected from primarily female patients with established disease and being treated with a variety of medications, both in the glaucoma and control (cataract) group. Many of the patients included in Cohort 2 were diagnosed with XFS with...
miRNA Biomarkers for Glaucoma

The pursuit of future studies to validate specific miRNAs as diagnostic tools for glaucoma.

Acknowledgments

Supported by the NEI R01 EY022746-01 grant from the National Institute of Health, National Eye Institute (ESB), the Wild Family Foundation, the Hassenfeld Scholar award, and the K08HL111210 grant from the National Heart, Lung, and Blood Institute (RM) and by the Matthew and Lee Sabatine Research Fund of the New York Glaucoma Research Institute, New York, NY (RR).

Disclosure: A.G. Hindle, None; R. Thoonen, None; J.V. Jasien, None; R.M.H. Grange, None; K. Amin, None; J. Wise, None; M. Ozaki, None; R. Ritch, None; R. Malhotra, None; E.S. Buys, None.

References

59. Buys ES, Potter LR, Pasquale LR, Ksander BR. Regulation of intraocular pressure by soluble and membrane guanylate...

