Role of the Phospholipase C Pathway and Calcium Mobilization in Oxytocin-Induced Contraction of Lacrimal Gland Myoepithelial Cells

Angela Gárriz,1 Salome Aubry,1 Quentin Wattiaux,1 Jeffrey Bair,2 Michael Mariano,1 Georgios Hatzipetrou,1 Maytal Bowman,1 Junji Morokuma,1 Gustavo Ortiz,2,3 Pedram Hamrah,3 Darlene A. Darrt,2 and Driss Zoukhri1,3

1Department of Comprehensive Care, Tufts University School of Dental Medicine, Boston, Massachusetts, United States
2Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
3Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts, United States

Correspondence: Angela Gárriz, Department of Comprehensive Care, Tufts University School of Dental Medicine, 1 Kneeland Street, Boston, MA 02111, USA; angela.garriz@tufts.edu.

Received: March 19, 2021
Accepted: October 13, 2021
Published: November 23, 2021

Purpose. We reported that oxytocin (OXT), added to freshly prepared lacrimal gland lobules, induced myoepithelial cell (MEC) contraction. In other systems, OXT activates phospholipase C (PLC) generating Inositol 1,4,5-trisphosphate (IP3) which increases intracellular calcium concentration ([Ca2+]i) causing contraction. The aim of the current study was to investigate the role of this pathway in OXT-induced contraction of MEC.

Methods. Tear volume was measured using the cotton thread method. Lacrimal gland MEC were isolated and propagated from α-smooth muscle actin (SMA)-green fluorescent protein (GFP) mice, in which MEC express GFP making them easily identifiable. RNA and protein samples were prepared for RT-PCR and Western blotting for G protein expression. Changes in [Ca2+]i were measured in Fura-2 loaded MEC using a ratio imaging system. MEC contraction was monitored in real time and changes in cell size were quantified using ImageJ software.

Results. OXT applied either topically to surgically exposed lacrimal glands or delivered subcutaneously resulted in increased tear volume. OXT stimulated lacrimal gland MEC contraction in a dose-dependent manner, with a maximum response at 10^{-7} M. MEC express the PLC coupling G proteins, Gqα and G11, and their activation by OXT resulted in a concentration-dependent increase in [Ca2+]i, with a maximum response at 10^{-6} M. Furthermore, the activation of the IP3 receptor to increase [Ca2+]i is crucial for OXT-induced MEC contraction since blocking the IP3 receptor with 2-APB completely abrogated this response.

Conclusions. We conclude that OXT uses the PLC/Ca2+ pathway to stimulate MEC contraction and increase lacrimal gland secretion.

Keywords: myoepithelial cells, oxytocin, lacrimal gland, calcium, contraction

Myoepithelial cells (MECs) are part of the lacrimal gland secretory apparatus.1 MECs create an extensive and functional branching network that surrounds the acinar and ductal epithelial cells separating them from the basement membrane and mesenchymal stromal cells.2–5 MECs express cholinergic muscarinic and purinergic receptors and are therefore thought to be able to respond to neural stimuli and contract to expel lacrimal gland fluid and proteins from the acini and ducts.6,7 These cells express a number of contractile proteins, such as α-smooth muscle actin (SMA) and calponin, as well as epithelial markers, such as keratins (keratin 5 and keratin 14).8–10 Despite their potential crucial role in lacrimal gland secretion, there is a meager number of studies investigating the mechanisms regulating lacrimal gland MEC contraction. In contrast, these cells have been extensively studied in the mammary gland where their contraction is critical for milk ejection and knockout of SMA expression leads to impaired milk secretion.8–10 MEC contraction in the mammary gland is controlled by activation of the oxytocin receptor (OXTR) by oxytocin (OXT).11 Most importantly, in studies with OXT and OXTR knock out (KO) mice lactation is impaired, most likely due to loss of the contractile ability of the MEC and diminished exocytosis in epithelial cells.9,10 To the best of our knowledge, no ocular phenotype, such as dry eye disease, was reported in these mice.

OXT was extensively studied for its classical action as a strong uterotonic effect during labor and stimulation of milk ejection during lactation.9,10 However, OXT exerts its effects on a variety of systems, including the male reproductive system and different organs (pancreas, heart, and kidneys, among others).12–18 Many of the observed effects
of OXT are achieved by its action on smooth-muscle cells in the target organs.

Phospholipase C-\(\beta\) (PLC-\(\beta\)) catalyzes the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP\(_2\)) to generate 2 second messenger molecules: inositol 1,4,5-triphosphate (IP\(_3\)) and diacylglycerol (DAG).

IP\(_3\) mobilizes calcium (Ca\(^{2+}\)) from intracellular stores and DAG activates protein kinase C (PKC). IP\(_3\) interacts with IP\(_3\) receptors (IP\(_3\)R) expressed in endoplasmic reticulum membranes to induce release of the sequestered Ca\(^{2+}\) into the cytosol. Released free cytosolic Ca\(^{2+}\) then activates, in conjunction with calmodulin, several protein kinases that phosphorylate key proteins involved in smooth muscle cell contraction/relaxation. Both Goq and Go11 stimulate PLC-\(\beta\) isoforms with similar efficiency. The role of the PLC/Ca\(^{2+}\) pathway in regulating OXT induced MEC contraction in the mammary gland and smooth muscle cells is well documented.

We recently reported that both human and murine lacrimal gland MEC express the OXTR and that healthy murine lacrimal gland MEC but not chronically inflamed ones, are able to contract in response to OXT stimulation. As a first step toward studying the impact of OXT on lacrimal gland MEC function, we aimed in the present study to investigate the role of the PLC/Ca\(^{2+}\) pathway in OXT-induced contraction of lacrimal gland MEC.

MATERIALS AND METHODS

Animals

All experiments described herein were performed in accordance with the Association for Research in Vision and Ophthalmology (ARVO) Statement for the Use of Animals in Ophthalmic and Vision Research and were approved by the Tufts Medical Center Animal Care and Use Committee. C57BL/6 and BALB/c mice were purchased from Taconic (Germantown, NY, USA). Mice were maintained in constant temperature rooms with fixed light/dark intervals of 12 hours length and were fed ad libitum.

As a first step toward studying the impact of OXT on lacrimal gland MEC function, we aimed in the present study to investigate the role of the PLC/Ca\(^{2+}\) pathway in OXT-induced contraction of lacrimal gland MEC.

Measurement of Tear Release

Tear release was measured on lightly anesthetized (isoflurane) mice using phenol red impregnated cotton threads (Zone-Quick; Lacrimedics, San Mateo, CA, USA), as previously described. The threads were held with jeweler forceps and applied to the ocular surface, on both eyes, in the lateral canthus for 10 seconds. Wetting of the thread (which turns red in contact with tears) was measured in millimeters under a dissecting microscope. To stimulate tear release, OXT was either topically applied to surgically exposed exoribital lacrimal glands (measures tear release) or was delivered via subcutaneous (SC) injection (measures tear volume). Carbachol and pilocarpine, two cholinergic muscarinic agonists, were used as positive controls for tear stimulation.

Lacrimal Gland Imaging by Intravitral Multiphoton Microscopy

Animal preparation was performed as previously described. Briefly, mice were anesthetized by intraperitoneal injection of ketamine (100 mg/kg)/xylazine (20 mg/kg) cocktail, which results in up to 75 minutes of deep anesthesia. Prior to the incision, hair between the eye and ear (approximately 10 mm wide) was carefully removed using Nair hair removal lotion (Naircare, Princeton, NJ, USA), followed by a single dose injection of 30 μL local analgesic (0.75% Bupivacaine HCl). An approximately 5 mm cutaneous incision was made 2 mm away from the eye and 3 mm away from the ear to expose the exorbital lacrimal gland. Careful removal of the soft tissues around the lacrimal gland was performed to expose it without damaging the blood vessels. In order to stabilize the lacrimal gland during imaging, a wooden spatula was placed underneath it. Afterward, 5 to 10 μL of PBS were carefully injected into the lacrimal gland capsule (connective tissue that surrounds the lobes of the lacrimal gland). This created a separation between the capsule and the lobes of the gland to enable removal of the capsule without damaging the underlying lobes. The mouse body temperature was maintained between 35 and 37°C using a disposable hand warmer (HotHands; HearMax, Dalton, GA, USA). Intra-vital-multiphoton microscopy (Iv-MPM) was performed using an Ultima Multiphoton Microscope System (Bruker, Fitchburg, WI, USA) equipped with 2 MaiTai Ti/Sapphire DeepSee lasers (Newport Spectra-Physics, Irvine, CA, USA).

The laser power was set at 95, and the photomultiplier tube gain (PMTs) was set at 650 for all channels. Using a 20x-1.0 NA (Olympus XLUMPLFLN; Olympus, Tokyo, Japan) water immersion objective, scans of the lacrimal gland were taken with 512 × 512 resolution and 2-fold line averaging. GenTeal ophthalmic lubricant gel (Alcon, Fort Worth, TX, USA) was applied onto the glands and the incision to
prevent desiccation during imaging. In order to stain the blood vessels, mice were retro-orbital injected with 100 μL of a 1:10 dilution of QTRACKER Qdot 655-Vascular Label (Cat # Q21021MP; Thermo Fisher Scientific, Waltham, MA, USA).

Image Analysis
In order to examine the GFP+ cells within the lacrimal gland, 4D movies and 3D images were generated by importing the image stacks to the Imaris software (Bitplane, Zurich, Switzerland) as previously described. The number of GFP-labeled MEC was counted semi-automatically in XZY positions using the 3D rendering function of Imaris software.

Measurement of MEC Contraction
Between 4500 and 5000 MEC were seeded overnight into a 24-well plate. Video recording was performed using a digital camera (Vanguard USB 5 Megapixel ISH500 Digital Camera; Vanguard, Hanson, MA, USA) mounted on an inverted light microscope (Vanguard; Precise Instrument). Still images and lapse time videos were captured using the manufacturer TCapture software (version 3.9). Cells were stimulated with OXT (10^{-8}, 10^{-7}, or 10^{-6} M) and viewed by video for 20 minutes. Still images were taken at 0 and 20 minutes after OXT stimulation for image analyses. At least 10 random fields from each well and each condition were used for image analyses, using ImageJ software (Image J 1.53a; National Institutes of Health, Bethesda, MD, USA). The perimeter of each cell was calculated before and after OXT stimulation and the decrease in cell size after OXT stimulation was expressed in a percentage.

RNA Extraction and RT-PCR Analysis
RNA from lysed MEC and lacrimal gland tissue samples was extracted using the RNAeasy isolation mini kit (Qiagen, Valencia, CA, USA) following the manufacturer’s protocol. The RNA concentration was measured using a NanoDrop 1000 (Thermo Fisher Scientific). Purified total RNA (50–250 ng) was used for reverse transcription and PCR amplification using the OneStep RT-PCR Kit (Qiagen, Valencia, CA, USA) with primers (Gene Fw: 5’-CTGTCATGGTTGGTCAAG-3’; Rev 5’-CTCGCTCCTGGAAGATGGTG-3’; Gene 11: Fw 5’-GTACCC- GTTTGACCTGGAGA-3’; Rev 5’-CTCCACCAGAAGGCTGTCACT-3; and GAPDH: Fw 5’-GGTGAAAGGTGGTTGGAAGG-3’; Rev 5’-CTGAATGCTGGGAAGTATGTT-3’) designed using NCBI/Primer-BLAST in a 2720 Thermal Cycler (Applied Biosystems, Foster City, CA, USA). The reverse transcription reaction and the cycling conditions were conducted according to the manufacturer’s instructions. Next, the amplification products were separated by electrophoresis on a 2% agarose gel and visualized by UV light after SYBR safe DNA gel stain (Invitrogen, Carlsbad, CA, USA).

SDS-PAGE and Western Blotting
Lacrimal gland MEC grown in 6-well plates were homogenized in 0.2 mL ice-cold radio-immunoprecipitation assay (RIPA) buffer (10 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% sodium deoxycholate, 10 mM DTT, and 0.1% SDS supplemented with a protease inhibitor cocktail; Sigma-Aldrich, St. Louis, MO, USA). Proteins were separated by SDS-PAGE on NuPage 4 to 12% Bis-Tris gels in MOPS-SDS buffer (Invitrogen) and transferred to polyvinylidene difluoride (PVDF) membranes. Non-specific binding was blocked using Intercep blocking buffer (LI-COR Biosciences, Lincoln, NE) for 1 hour at room temperature. Membranes were then incubated overnight at 4°C with either rabbit polyclonal anti-Guq (1:500; Abcam, Cambridge, MA, USA) or mouse monoclonal anti-Gsr1 (1:200; Santa Cruz Biotechnology, Dallas, TX, USA) primary antibodies diluted in blocking buffer + 0.1% Tween 20 (to reduce nonspecific binding). Following 3 washes with Tris-buffered saline + tween-20 (TBS; 50 mM Tris-HCl, 150 mM NaCl, and 0.1% tween-20; pH 7.6) membranes were incubated for 1 hour at room temperature with the appropriate secondary antibodies, a goat anti-rabbit IRDye 800 (LI-COR Biosciences) or a goat anti-mouse IRDye 680 (LI-COR Biosciences), diluted 1:5000 followed by detection on a LI-COR ODYSSEY CLX Infrared Imager.

Measurement of Intracellular [Ca^{2+}]
MEC were seeded on 35 mm glass bottom petri dishes (Cellvis, Sunnyvale, CA, USA) at a density of 5000 cells per dish. They were loaded with the intracellular Ca^{2+} indicator fura-2/AM (0.5 μM) for 1 hour in the dark. Then cells were stimulated with OXT (10^{-8}, 10^{-7}, and 10^{-6} M). In selected experiments, cells were preincubated for 20 minutes with the IP_3 receptor antagonist, 2-aminoethoxydiphenyl borate (2-APB; 10^{-5} M) before addition of OXT. UTP (10^{-5} M) was used as a positive control in each experiment. Changes in intracellular [Ca^{2+}] were recorded using a ratio imaging system (InCyt Im2; Intracellular Imaging, Cincinnati, OH, USA). As fura-2 binds to free calcium in the cell, its peak absorption wavelength changes from 380 nm (unbound) to 340 nm (bound), whereas the emission wavelength remains at 510 nm. The 510 nm emissions are captured by the camera as black and white images and the ratio of emission intensity excited by 340 nm and 380 nm light is recorded. These ratios are compared to a standard curve derived from standard calcium solutions to determine ion concentration. The use of ratios ensures that measurements are not changed by variable dye concentration or cell thickness.

Data Presentation and Statistical Analysis
Where appropriate, data are expressed as mean ± SEM. The data were statistically analyzed using either unpaired Student’s t-test or 1-way analysis of variance (ANOVA) followed by Dunnett’s multiple comparisons test using GraphPad Prism version 8.2. The P values below 0.05 were considered statistically significant.

RESULTS
OXT Increases Tear Volume
We reported that OXT, added to freshly prepared lacrimal gland lobules, induced a decrease in acini size indicative of stimulation of MEC contraction. To determine if this hormone is capable of increasing tear output, we measured tear volume, using phenol red impregnated cotton threads, after OXT was either topically applied to surgically exposed exorbital lacrimal glands for tear release or was...
subcutaneously (SC) injected for tear volume. Carbachol and pilocarpine, two cholinergic muscarinic agonists known to stimulate lacrimal gland secretion, were used as positive controls. Previous studies reported the expression of M3 muscarinic receptors by lacrimal gland MEC.6 As shown in Figure 1A, topical application of OXT increased tear release with a maximum 7.03 ± 1.21 mm obtained at a 5 × 10−5 M. The positive control, carbachol at 5 × 10−6 M, increased tear volume to 12.38 ± 1.60 mm. OXT delivered SC increased tear release from a baseline value of 2.88 ± 0.39 mm to 7.29 ± 1.16 mm (Fig. 1B). For comparison, pilocarpine increased tear release from a baseline value of 2.29 ± 0.28 mm to 11.77 ± 1.67 mm (see Fig. 1B).

Isolation and Propagation of Lacrimal Gland MEC

We used SMA-GFP mice to isolate lacrimal gland MEC. IV-MPM of the lacrimal glands showed the extensive expression of GFP by the MEC (Fig. 2A, Supplementary Video S1). The number of GFP-labeled MEC was counted semi-automatically in XYZ positions using the 3D rendering function of Imaris software and report a mean ± S.D. of 2.02 ± 1.11 cells/μm2 (see Fig. 2A).

Because GFP expression was under the SMA promoter and other cells beside the MEC, such as pericytes, also express SMA, we labeled blood vessels with QTRACKER Qdot 655-Vascular Label and performed IV-MPM. As shown in Figure 2A (Supplementary Video S2), some pericytes do express GFP but their number appears relatively low compared to that of GFP-MEC positive cells.

Next, lacrimal glands from SMA-GFP mice were used to isolate and propagate MEC using our published protocol.7,30 As shown in Figure 2B, MEC-GFP positive cells can be seen surrounding GFP-negative acinar epithelial cell clusters in freshly digested lacrimal gland lobules (day 0). After 2 to 4 days in culture, GFP-positive cells started to adhere to the plastic culture dish (see Fig. 2B) and by 7 to 10 days, they became the predominant cell type. As stated above, SMA is also expressed by pericytes and therefore these can be present in our culture system. As reported with rat lacrimal gland MEC, murine lacrimal gland MEC can be passaged up to three times.7 Passage 1 (P1) and P2 cells shown in Figure 2B indicate that after passage, GFP-positive MECs are the only cell type present. To rule out the presence of non-GFP expressing cells in our culture system, cell nuclei were stained with DAPI. As shown in Figure 2C, all DAPI positive nuclei are GFP positive. It should be noted that
GFP(-) fibroblasts, without being apparent in early preparations, may become activated by 2D culture, causing them to begin to express SMA and GFP, a possibility that cannot be ruled out.

OXT Stimulates Lacrimal Gland MEC Contraction

We used lacrimal gland MEC in P2 or P3 to measure contraction following OXT stimulation using ImageJ software. Cells were plated at very low density (approximately 5000 cells) in 24-well plates and imaged under an inverted microscope equipped with a digital camera. We used a seeding density that allowed proper identification of individual cell borders during image analysis and a time in culture that made it easier for cells to "contract" (detach from the plastic culture dish and reduce in size). Changes in cell size, either spontaneously or in response to OXT stimulation, were measured using still images taken before and 20 minutes after stimulation using ImageJ software. Figure 3A and Supplementary Video S3 shows an example of change in cell shape followed by a 20-minute stimulation with 10^{-7} M OXT. In the absence of stimulation, lacrimal gland MEC displayed a spontaneous change in cell shape of about 2.5% (Fig. 3B). Addition of OXT for 20 minutes induced a concentration-dependent decrease in lacrimal gland MEC size with a maximum of 11.5% at 10^{-7} M (see Fig. 3B, Supplementary Videos S3, S4). It should be noted that OXT induced MEC contraction can be detected 5 minutes post addition but reaches a maximum by 20 minutes (Supplementary Video S5).

Lacrimal Gland MEC Express PLC Coupling G-Proteins. As OXT is known to use the PLC/Ca^{2+} pathway to induce MEC contraction in other tissues, we determined if lacrimal gland MEC express the PLC-coupling G-Proteins. First, we tested the effect of 2-APB on lacrimal gland MEC contraction, we used an IP3 receptor antagonist, 2-aminoethoxydiphenyl borate (2-APB), which blocks IP3-mediated Ca^{2+} release from the endoplasmic reticulum. First, we tested the effect of 2-APB on

![Image](362x477 to 506x730)

FIGURE 4. The mRNA and protein expression of G-protein subunits α₁q and α₁₁ from lysed myoepithelial cells (MEC) and lacrimal gland (LG) tissue samples. (A) The mRNA expression of Gqα, Go₁₁, and GAPDH which was used as a housekeeping gene. (B) Goq and Go₁₁ protein expression in a SDS Page/Western blotting. Black arrow indicates Goq and Go₁₁ migrating at the predicted molecular weight. Black star indicates additional bands detected in the Goq blot.

![Image](58x52 to 3x10)

FIGURE 5. Lacrimal gland myoepithelial cells (MECs) contraction measurements after oxytocin (OXT) stimulation, performed by a real time monitor system. (A) Example of lacrimal gland MEC contraction before (0 min) and after (20 min) of OXT stimulation (10^{-7} M). (B) Measurement of lacrimal gland MEC contraction. The average of cell area measured in 10 cells per photograph was measured before and after OXT stimulation representing the lacrimal gland MEC contraction expressed as a percentage (%). A significant increase of MEC contraction after OXT stimulation at concentrations of 10^{-7} M and 10^{-5} M was observed, compared to 0. Statistically significant differences are represented by: * = P < 0.01 and ** = P < 0.001, n = 3 to 4.
Role of PLC in Oxytocin Induced MEC Contraction

Lacrimal gland MEC are known to express the OXTR and OXT to induce MEC contraction in lacrimal gland lobules. In the current study, we show that OXT, applied either topically or surgically exposed lacrimal gland or SC increases tear volume as measured by the phenol red thread assay. We also showed that lacrimal gland MEC can be isolated and propagated from mouse lacrimal gland using the same protocol we used for isolating these cells from rat lacrimal glands. Using these cells, we showed that OXT stimulates lacrimal gland MEC contraction in a dose-dependent manner and that PLC-induced increase in [Ca2+]\textsubscript{i} is crucial for this response, in agreement with reports from other cells/tissues.

The OXTR belongs to a small receptor family of classical G-protein coupled receptors (GPCRs) also containing the structurally related arginine-vasopressin receptors (V1aR, V1bR, and V2R). Depending on the type of the coupling G protein (Goq/11, Gex, or Goi/o), the activation generates different second messengers and thus leads to distinct responses. For example, OXT mediated contraction in myometrial cells involves the activation of a calcium-dependent pathway mediated by Goq/11 and the decrease in cAMP levels mediated by Goi. In human embryonic kidney HEK293 cells, OXT stimulates cell growth via Goq/11 coupling, whereas Goi coupling inhibits it. Finally, in immortalized olfactory neurons, OXT coupling to Goq/11 decreases inward rectifying potassium (K+) currents in a subset of cells, whereas, in a different subpopulation, OXT coupling to Goi increases them. OXT-stimulated PLC via Goq and Go11 has been well described in rat and human myometrial cells.

In the present study, we showed that MEC express the PLC coupling G proteins, Goq and Go11, and that their activation resulted in a concentration-dependent increase in [Ca2+]\textsubscript{i}. We also reported that OXT stimulated MEC contraction and that activation of the IP\textsubscript{3} receptor to increase [Ca2+]\textsubscript{i} is crucial for OXT-induced MEC contraction because blocking the IP\textsubscript{3} receptor with 2-APB completely abrogated OXT-induced MEC contraction. The 2-APB was the first membrane-permeant modulator of IP\textsubscript{3} receptor described and it is still considered a useful tool to investigate the physiological role of IP\textsubscript{3} in different cell types. It should be noted, however, that several studies have reported that...

DISCUSSION

FIGURE 5. Measurement of change in intracellular Ca2+ concentrations ([Ca2+]\textsubscript{i}) in lacrimal gland myoepithelial cells (MEC) during stimulation with oxytocin (OXT 10-8 to 10-5 M). (A) Representative Ca2+ traces over time elicited by increasing concentrations of OXT. (B) Change in [Ca2+]\textsubscript{i} (nM) after incubation of lacrimal gland MEC with OXT. A concentration-dependent increase of [Ca2+]\textsubscript{i} was observed and it was significantly different in OXT 10-7 M compared with 0. UTP (10-5 M) was used as a positive control. Statistically significant differences are represented by: *P < 0.05; **P < 0.001, and ***P < 0.0001, n = 5.

OXT-induced increase in [Ca2+]\textsubscript{i}. OXT (10-7 M) increased [Ca2+]\textsubscript{i} to 326.3 ± 23.1 nM (Fig. 6A). Preincubation of lacrimal gland MEC with 2-APB (10-4 M) significantly decreased the OXT-induced mobilization of intracellular Ca2+ to 200.4 ± 28.6 nM. OXT (10-7 M) increased lacrimal gland MEC contraction by 11.95% compared to basal 2.77%, and 10-5 M when they were compared to 0. UTP (10-7 M) was used as a positive control. Statistically significant differences are represented by: *P < 0.05; **P < 0.001, and ***P < 0.0001, n = 5.

FIGURE 6. Effect of Inositol 1,4,5-trisphosphate (IP\textsubscript{3}) receptor antagonist, 2-aminoethoxydiphenylborate (2-APB), which blocks IP\textsubscript{3} mediated Ca2+ release from the endoplasmic reticulum on myoepithelial cell (MEC) contraction. (A) Changes in intracellular [Ca2+]\textsubscript{i} in lacrimal gland MEC stimulated with 10-7 M of oxytocin (OXT) alone or after addition of 2-APB (10-4 M). There was a statistically significant decrease in intracellular [Ca2+]\textsubscript{i} in lacrimal gland MEC treated with 2-APB (P = 0.0039, n = 3). (B) Lacrimal gland MEC contraction after 20 minutes of addition of vehicle (control), 10-7 M of OXT (OXT 10-7 M), and 10-7 M of OXT after addition of 2-APB (10-4 M). There was a statistically significant decrease in the control and 2-APB 10-4 M + OXT 10-7 M compared with OXT 10-7 M (P < 0.0001, n = 3).
2-APB have effects on Ca2+ mobilization not related to inhibition of IP\textsubscript{3}-induced Ca2+ release, such as blockade of store-operated Ca2+ entry pathways.40–42 A role for the store operated Ca2+ channel, Orai1, in mammary gland MEC contraction and lactation has been elegantly demonstrated by Davis et al.43 Future studies should address the role of Ca2+ channels in lacrimal gland MEC contraction and tearing.

Stevenson et al.44 using transgenic mice that express the fast, ultrasensitive Ca2+ indicator (GCaMP) reported that, in contrast to mammary MEC, they could not detect OXT-mediated increase in [Ca2+], or contractile response in MEC from the lacrimal gland. In contrast, Satoh et al.45 using Fura-2 and Indo-1 as calcium indicators coupled with digital imaging analyses reported that cholinergic stimulation of lacrimal gland MEC induced increases in [Ca2+], concomitant with contraction. More recently, Jin et al.46 using a mouse line expressing Yellow Cameleon 3.60 (a genetically encoded Ca2+ indicator) and intravital two-photon imaging, also reported increased [Ca2+], in lacrimal gland MEC in response to cholinergic stimulation. The use of different mouse cell lines and imaging techniques could explain the discrepancies between these studies.

Our findings indirectly implied that OXT-induced increase in [Ca2+], and MEC contraction could be responsible for the observed increase in tear volume. In support of this conclusion, Jin et al.46 reported correlation between the agonist evoked increases in [Ca2+], in lacrimal gland MECs to stimulation of tear release. More importantly, they showed that post-ganglionic denervation of the lacrimal gland (to mimic dry eye disease) led to decreased cholinergic-induced Ca2+ mobilization in MEC that correlated with decreased tear release. Based on these comparative studies (intravital Ca2+ signaling in MEC and tear release in healthy compared with denervated glands), the authors concluded that Ca2+ signaling in lacrimal gland MECs participate in tear-secretory function.

Coupling of the OXTR via G\alpha\textsubscript{s}\textsubscript{q} activates adenylyl cyclase to increase intracellular cyclic adenosine monophosphate (cAMP) levels whereas coupling via G\alpha/o has an opposite effect on adenylyl cyclase and decreases cytosolic cAMP concentration. Several reports showed that activation of this pathway counterbalances the G\alphaq/11-dependent effect and self-limits the OXT-induced cell contractile responses.47 Studies are currently underway to determine if OXT alters cAMP levels in lacrimal gland MECs and if activation of this pathway leads to MEC contraction and/or attenuates the OXTR-G\alpha\textsubscript{q}/11-dependent stimulatory pathway described in the present report.

Although OXT is released in response to a variety of stimuli (e.g. suckling, parturition, and stress) from the posterior pituitary into the systemic circulation that lead to an intranuclear release of OXT. Sometimes, OXT is also synthesized in peripheral tissues, such as uterus, placenta, amion, testis, and heart.12 The source(s) and mechanisms of release of OXT in the lacrimal gland remain to be investigated.

In summary, our data showed that OXT stimulates lacrimal gland MEC contraction and increases aqueous tear volume; and that the PLC/calcium pathway plays a major role in this response.

Acknowledgments

The authors thank Mihir Shah and Srikanth Janga in the Hamm-Alvarez lab (Keck School of Medicine of USC, Los Angeles, CA, USA) for their help with the tear measurements experiments and Ivo Kalajzić (UConn Health, Farmington, CT, USA) for the generous gift of SMA-GFP mice.

Supported by NHI R01EY029870 to DZ, NIH R01 EY019470 to DAD, and NIH R01 EY029602 to PIH.

Disclosure: A. Gárriz, None; S. Aubry, None; Q. Watiaux, None; J. Bair, None; M. Mariano, None; G. Hatzipetrou, None; M. Bowman, None; J. Morokuma, None; G. Ortiz, None; P. Hamrah, None; D.A. Dartt, None; D. Zoukhri, None

References

Role of PLC in Oxytocin Induced MEC Contraction

32. Park MK, Lee KK, Uhm DY. Slow depletion of endoplasmic reticulum Ca(2+) stores and block of store-operated Ca(2+)/Ca(2+) channels by 2-aminoethoxydiphenyl borate in mouse pancreatic acinar cells. *Naunyn Schmiedebergs Arch Pharmacol.* 2002;365:399–405.

SUPPLEMENTARY MATERIAL

SUPPLEMENTARY VIDEOS S1 AND S2. Imaging of lacrimal glands from αSMA-GFP mice (C57BL/6)/SMA-CreERT2 strain obtained using multiphoton microscopy. In this video GFP+ cells are lacrimal gland MEC that can be observed surrounding acini in several lobules. SMA is the main marker for MEC, but it can also be present in other cell types such as pericytes. In Video S2, blood vessels were stained with Qtracker.
Qdot 655-Vascular Label and are visualized in red. GFP+ pericytes can be seen surrounding the blood vessels. The 4D movies were generated using the Imaris Software (Bitplane, Zurich, Switzerland).

Supplementary Video S3. Time-lapse video of a cultured lacrimal gland MEC stimulated with oxytocin (OXT, 10^{-7} M). The cell was recorded using Tcapture software (version 3.9) for a total of 20 minutes after addition of OXT.

Supplementary Video S4. Time-lapse video of cultured lacrimal gland MECs stimulated with oxytocin (OXT, 10^{-7} M) for 5 minutes recorded using Tcapture software (version 3.9). The arrow points to the cell edge that is seen contracting in response to OXT stimulation.