Methods

Quantifying Uncertainty of the Estimated Visual Acuity Behavioral Function With Hierarchical Bayesian Modeling

Yukai Zhao¹, Luis Andres Lesmes², Michael Dorr², and Zhong-Lin Lu³–⁵

¹ Center for Neural Science, New York University, New York, NY, USA
² Adaptive Sensory Technology Inc., San Diego, CA, USA
³ Division of Arts and Sciences, NYU Shanghai, Shanghai, China
⁴ Center for Neural Science and Department of Psychology, New York University, New York, NY, USA
⁵ NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China

Correspondence: Zhong-Lin Lu, Division of Arts and Sciences, NYU Shanghai, 1555 Century Avenue, Shanghai 200122, China. e-mail: zhonglin@nyu.edu

Received: May 7, 2021
Accepted: September 17, 2021
Published: October 14, 2021

Keywords: uncertainty; visual acuity (VA); visual acuity behavioral function; quantitative visual acuity (qVA); hierarchical Bayesian modeling (HBM)

Citation: Zhao Y, Lesmes LA, Dorr M, Lu ZL. Quantifying uncertainty of the estimated visual acuity behavioral function with hierarchical Bayesian modeling. Transl Vis Sci Technol. 2021;10(12):18, https://doi.org/10.1167/tvst.10.12.18

Introduction

Visual acuity (VA) is the most important functional vision metric in the clinic.¹ Precise assessment of VA is of paramount importance for accurate diagnosis of eye diseases, monitoring disease progression, and evaluating treatment efficacy, as well as setting classification and qualification standards in many sports and professions.²–⁸ However, VA measurements are intrinsically noisy and the estimated VA scores carry a lot of uncertainty. This is because human VA behavior is probabilistic in nature.⁹–¹² Given the exact same optotypes, the responses from a human observer may vary from trial to trial because of the various noises in the perceptual system.¹³–¹⁶ In this study, we apply the Hierarchical Bayesian Modeling (HBM) approach to improve quantification of uncertainty in VA assessments.

It is well known that human behavior in optotype identification can be modeled by the visual acuity behavioral function (VABF; Fig. 1A), that is, the probability of correct optotype identification as a function of optotype size.¹⁷–²⁰ The function has two parameters, VA threshold, the optotype size required to reach a certain performance level, and VA range, which specifies how fast acuity behavior changes with increasing or decreasing optotype size.¹⁷–²⁰ Although traditional VA assessments have only focused on estimating VA threshold, both VABF parameters may vary across individuals and disease stages.¹⁸,²¹–²³ A complete characterization of the VABF requires a joint estimate of both parameters.²⁴,²⁵

Copyright 2021 The Authors

tvst.arvojournals.org | ISSN: 2164-2591

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Downloaded from tvst.arvojournals.org on 11/05/2021
Figure 1. VA behavioral function (VABF) and uncertainty in VA assessments. (A) A VABF with two parameters: VA threshold and range. (B) Estimated VABFs from repeated ETDRS tests, which sample the theoretical VABF with a number of optotype sizes, each tested five times (circles). (C) A color density plot of the point VABF parameter estimates across repeated ETDRS tests. (D) Data (circles) from one ETDRS assessment and the best fitting VABF (curve). (E) Probability distribution of the estimated VABFs from D. (F) The joint probability distribution of the estimated VABF parameters from D.

The VABF is a theoretical construct that specifies the probability of correct optotype identification at every possible optotype size. In actual VA assessments, the function is only sampled with a finite number of optotype sizes, and each with a small number of trials. As a result, the empirical VABFs and the corresponding VABF parameters vary across repeated assessments (Figs. 1B, 1C). Figure 1C is a color density plot of the point estimates across multiple tests. It illustrates the joint probability of different point estimates of VABF parameters from many repeated measurements. In this scheme, each VA assessment results in a single estimate of the VABF parameters, so repeated assessments are required to quantify the uncertainty.

In the real world, where repeated VA assessments are most often not possible, how do we gauge uncertainty from a single VA assessment? This can be done with several modeling approaches.26 Given the results from a single VA assessment (Fig. 1D), the probability distribution of VABF can be estimated by their likelihood or Bayesian inference (Fig. 1E). The corresponding parameters and the associated probabilities form a joint distribution of the estimated VABF parameters (Fig. 1F). The mean and spread of the joint distribution can be used to quantify the estimated parameters and their uncertainties,26–30 which is often quantified by the half width of the 68.2% credible interval (68.2% HWCI) of the distribution,26,27 defined as the smallest interval that contains the true value of the estimated quantity with 68.2% probability. The estimated uncertainties from repeated tests (see Fig. 1C) and a single measurement (see Fig. 1F) are equivalent under ideal experimental conditions.26,30,31

Traditional VA assessments, including the printed VA charts and computerized tests, sample the VABF with optotypes that are 0.1 logMAR apart, each tested on a row with a small number of optotypes.32–34 The method of limits and heuristic termination rules are used to determine a single VA score (but see Ref. 35). Although uncertainty is usually not estimated, studies with repeated tests found large uncertainties (approximately 0.07–0.34 logMAR)33,36–43 because of the coarse sampling of the VABF as well as the use of heuristic termination rules that depend on the probabilistic behavior of the human observer. In addition, the exact performance level (probability of correct optotype identification) associated with each heuristic termination rule depends on the range parameter of the VABF.24,25 We cannot meaningfully compare
VA scores from patients with different VA range parameters or interpret changes of VA scores of the same patient with range parameter changing between assessments.18,19

The quantitative visual acuity (qVA) method24,25 is a Bayesian inference procedure developed to characterize the full VABF and quantify the uncertainty in each assessment of individual i in test j. In the qVA, the VABF (see Fig. 1) is characterized with parameter $\theta_{ij} = (\alpha_{ij}, \beta_{ij})$, where α_{ij} is VA threshold, corresponding to the $d' = 2$ performance level, β_{ij} is the range parameter of the function that covers $d' = 1$ to $d' = 4$ performance levels.24,25 The qVA incorporates high density optotype size sampling and starts with a broad joint prior distribution of θ_{ij}, representing existing knowledge of the general pattern of the VABF (Fig. 2A). An active learning approach is used to optimize stimulus selection to reduce the expected uncertainty of the posterior distribution of θ_{ij} in each trial (see Fig. 2). Bayes’ rule is used to compute the joint posterior distribution of θ_{ij} (Figs. 2B, 2C), which allows us to quantify not only the VABF parameters but also their uncertainties from a single measurement. In computer simulations, we showed that the qVA could assess VABF parameters with virtually no bias, and very small uncertainty in α_{ij} (HWCI = 0.028 logMAR) and small uncertainty in β_{ij} (HWCI = 0.092 logMAR), reflecting 52.5% and 49.5% uncertainty reductions of the estimated α_{ij} relative to the electronic-early treatment diabetic retinopathy study (E-ETDRS) and Freiburg Visual Acuity and Contrast Test (FrACT) methods, respectively.25 The results were confirmed in a psychophysical study: estimated θ_{ij} from the qVA exhibited very small ($\alpha_{ij} = 0.019$ logMAR HWCI) and relatively small ($\beta_{ij} = 0.062$ logMAR HWCI) uncertainty. In addition, we found a significant correlation ($r = 0.412$, $P < 0.001$) between estimated α_{ij} and β_{ij} across individuals and tests in the psychophysical experiment.25

In its current implementation, each qVA test (Fig. 3A) starts with a broad prior. It does not take advantage of any knowledge across individuals and tests such as the observed correlation between α_{ij} and β_{ij},24,25 which could be useful in further constraining the estimated θ_{ij} and thereby reducing their uncertainties. In other words, the broad prior and independent treatment of each qVA test may overestimate the uncertainty of the estimated VABF. Although the qVA has greatly reduced the uncertainty of α_{ij} estimates, the uncertainty of β_{ij} estimates is still relatively large.25

The observed correlation between estimated α_{ij} and β_{ij} across individuals and tests in our previous study25 motivated us to develop a three-level HBM (Fig. 3B) to quantify uncertainties at the population,
The joint posterior distributions of VABF parameters in instructing the identity of the letters verbally. qVA, were presented to the subject. The subject was R, S, V, and Z) and with their size determined by the letters on a row, randomly sampled without replacement (and without foil). Each qVA test consisted of 45 rows of stimulus with mean μ and covariance Σ, which have distributions $p(\mu)$ and $p(\Sigma)$. At the individual level, $p(\tau_i|\eta)$, the joint distribution of VABF hyperparameter τ_i of individual i across all the tests performed by the individual, is modeled as a mixture of 2-dimensional Gaussian distributions with mean ρ_i and covariance φ, which have distributions $p(\rho_i|\eta)$ and $p(\varphi)$. $p(\rho_i|\eta)$ denotes that ρ_i is conditioned on η. At the test level, $p(\theta_{ij}|\tau_i)$, the joint distribution of the VABF parameters of individual i in test j, θ_{ij}, is conditioned on τ_i. The cross- and within-individual regularities are modeled as covariances Σ and φ in the HBM. Bayes’ rule is then used to update the joint prior distribution of all the parameters and hyperparameters to their joint posterior distribution, which allows us to quantify the estimated hyperparameters and parameters as well as their uncertainties at the population, individual and test levels.

The HBM has been used in many different disciplines to model data with hierarchical structures, including astronomy, ecology, genetics, and cognitive science. By decomposing the variability of an entire dataset into distributions at multiple levels of the hierarchy, it can better quantify uncertainty at each level. Here, we developed an HBM and evaluated its performance relative to that of the qVA using the qVA data in 14 eyes tested in 4 Bangerter foil conditions. Our goal was to improve quantification of uncertainty at the test level. We hypothesized that the HBM would account for the data better than the qVA and reduce the uncertainties of estimated VABF parameters in single VA tests relative to the qVA.

Methods

Data

The dataset used in this study included a total of 56 tests: 14 eyes (left and right eyes of 7 subjects), each tested with the qVA with 3 levels of Bangerter foils and without foil. Each qVA test consisted of 45 rows ($K = 45$) of 3 optotypes (Fig. 4). In each qVA trial, 3 letters on a row, randomly sampled without replacement from the 10 Sloan letters (C, D, H, K, N, O, R, S, V, and Z) and with their size determined by the qVA, were presented to the subject. The subject was instructed to report the identity of the letters verbally. The joint posterior distributions of VABF parameters $p(r_{ijk}|\theta_{ij}, os_{ijk})$ in row k of test j:

$$p(r_{ijk}|\theta_{ij}, os_{ijk}) = f\left(g(os_{ijk}, \theta_{ij}), n\right), \quad (1a)$$

where $g(os_{ijk}, \theta_{ij})$ is the VABF of correct identification of a single optotype with size os_{ijk} and model parameters $\theta_{ij} = (\alpha_{ij}, \beta_{ij})$; $f\left(g(os_{ijk}, \theta_{ij}), n\right)$ is the probability of observing the number of correct identifications given $g(os_{ijk}, \theta_{ij})$ and a specific chart design (e.g. $n = 3$ optotypes on a row). The details of functions f and g can be found in Supplementary Materials A and previous publications. The probability of obtaining the observed responses in all rows in test j from individual i is the product of the probability of responses in all
Hierarchical Bayesian Modeling of Visual Acuity

(1b)

\[p(r_{ij,1:K} | \theta_{ij}, \alpha_{ij,1:K}) = \prod_{k=1}^{K} p(r_{ijk} | \theta_{ij}, \alpha_{ij,k}). \]

Three-Level Hierarchy

To account for the entire dataset with all the individuals and tests, we constructed an HBM with three levels (see Fig. 3). In this model, the population level distribution of VABF hyperparameters sets the prior for the mean hyperparameters of each individual, which in turn sets the prior of the parameters of the individual in all her/his tests. We describe the distributions at these three levels in more details below.

At the population level, \(p(\eta) \), the joint distribution of hyperparameter \(\eta \), is modeled as a mixture of two-dimensional Gaussian distributions \(\mathcal{N} \) with mean \(\mu \) and covariance \(\Sigma \), which have distributions \(p(\mu) \) and \(p(\Sigma) \):

\[p(\eta) = \mathcal{N}(\eta, \mu, \Sigma) p(\mu) p(\Sigma). \]

At the individual level, \(p(\tau_i | \eta) \), the joint distribution of hyperparameter \(\tau_i \) of individual \(i \) is modeled as a mixture of two-dimensional Gaussian distributions \(\mathcal{N} \) with mean \(\rho_i \) and covariance \(\varphi \), which have distributions \(p(\rho_i | \eta) \) and \(p(\varphi) \):

\[p(\tau_i | \eta) = \mathcal{N}(\tau_i, \rho_i, \varphi) p(\rho_i | \eta) p(\varphi), \]

where \(p(\rho_i | \eta) \) denotes that \(\rho_i \) is conditioned on \(\eta \).

At the test level, \(p(\theta_{ij} | \tau_i) \), the joint distribution of parameter \(\theta_{ij} \) is conditioned on \(\tau_i \).

The probability of obtaining the entire dataset is computed by probability multiplication:

\[p(X_{ij,1:1:1:1:1:K}, \alpha_{ij,1:1:1:1:1:K}) = \prod_{i=1}^{I} \prod_{j=1}^{J} \prod_{k=1}^{K} p(r_{ij,k} | \theta_{ij}, \alpha_{ij,k}) p(\theta_{ij} | \tau_i) p(\tau_i | \eta) p(\eta) \]

\[= \prod_{i=1}^{I} \prod_{j=1}^{J} \prod_{k=1}^{K} p(r_{ij,k} | \theta_{ij}, \alpha_{ij,k}) p(\theta_{ij} | \tau_i) \mathcal{N}(\tau_i, \rho_i, \varphi) p(\rho_i | \eta) p(\varphi) p(\mu) p(\Sigma), \]

where \(X = (\theta_{1:1:1:1:1:1}, \rho_{1:1:1}, \varphi, \mu, \Sigma) \) are all the parameters and hyperparameters in the HBM, \(I \) is the total number of individuals, and \(J \) is the total number of tests on each individual.

Bayesian Inference

We start with prior distributions of \(\mu \), \(\Sigma \), and \(\varphi \).

\[p_0(\mu) = \mathcal{U}(\mu_{0,\min}, \mu_{0,\max}), \]

\[p_0(\Sigma^{-1}) = \mathcal{W}(\Sigma_{qVA}^{-1}/v, v), \]

where \(\mathcal{U} \) is a two-dimensional uniform distribution with \(\mu_{0,\min} = (-0.5, 0.1) \) logMAR and \(\mu_{0,\max} = (1.3, 1.5) \) logMAR; precision matrices \(\varphi^{-1} \) and \(\Sigma^{-1} \) are the inverse of covariance \(\varphi \) and \(\Sigma \); \(\mathcal{W}(\Sigma, v) \) denotes a Wishart distribution with expected mean precision matrix \(\Sigma \) and degrees of freedom \(v = 2; \varphi_{qVA}^{-1} \) is the inverse of the average covariance matrix \(\Sigma_{qVA} \) computed from the joint posterior distributions across all qVA tests in the dataset; \(\Sigma_{qVA}^{-1} \), is the inverse of the covariance matrix \(\Sigma_{qVA} \) computed from the estimated \(\theta_{ij} \) across all qVA tests.

Bayes’ rule is used to compute the joint posterior distribution of all the parameters and hyperparameters in the HBM:

\[p(X_{ij,1:1:1:1:1:K}, \alpha_{ij,1:1:1:1:1:K}) = \prod_{i=1}^{I} \prod_{j=1}^{J} \prod_{k=1}^{K} p(r_{ij,k} | \theta_{ij}, \alpha_{ij,k}) p(\theta_{ij} | \tau_i) p(\tau_i | \eta) p(\eta) \]

\[\mathcal{W}(\Sigma_{qVA}^{-1}/v, v). \]

where the denominator is the integral of the probability of obtaining the entire dataset (Equation 4) across all possible values of \(X \) and is a constant for a given dataset and HBM.

Computing the Joint Posterior Distribution

In this study, an individual refers to a combination of subject, eye and foil level, with the total number of individuals \(I = 56 \). In addition, each individual was only tested once \((J = 1) \).

The complexity of the HBM increases exponentially with the number of hyperparameters and parameters. It would take practically infinite time to compute all the points in the 232-dimensional hyperparameter/parameter space defined in Equation 6. We used the JAGS package in R to evaluate the joint posterior distribution (see Equation 6). JAGS uses an efficient sampling algorithm to generate representative samples of the joint posterior distribution of all the parameters and hyperparameters in the HBM via Markov Chain Monte Carlo (MCMC). Each MCMC generated 15,000 samples via a random walk process (see Supplementary Materials B for details). Because the initial part of the random walk was largely influenced by the arbitrary starting position, steps in the burn-in and adaptation (further optimization of the sampling algorithm by JAGS) phases were discarded and not included in the analysis. The exact number of steps discarded differ for each model. In this study, 20,000 and 100,000 steps were used for burn-in and adaptation in each HBM model based on results from pilot studies. Convergence of each parameter was evaluated with Gelman and Rubin’s diagnostic rule based on the
The ratio of between- and within-MCMC variances along each dimension, that is, the variance of the samples across MCMC processes divided by the variance of the samples in each MCMC process. The HBM was deemed “converged” when the ratios for all the parameters were smaller than 1.05. The data with \(k = 5, 10, 15, 20, 25, 30, 35, 40 \), and 45 rows were fit by the HBM separately.

Simulations

Each simulated dataset consisted of 56 qVA tests from 56 individuals, each tested once. The VABF parameters for the simulated observers were randomly sampled from the posterior distributions of \(\theta_{ij} \) obtained from the HBM fit to the real data. Each qVA test consisted of 45 three-optotype rows, and the row-by-row responses were determined by the VABF specified with the parameters of the simulated observer. The HBM was fit to the simulated dataset of 56 tests. The procedure was repeated 10 times.

Statistical Analysis

Goodness-of-Fit

Bayesian predictive information criterion (BPIC)\(^{71,72} \) was used to quantify and compare the goodness-of-fit of the HBM against that of the qVA. The BPIC quantifies the likelihood of the data based on the joint posterior distribution of the parameters of a model and penalizes model complexity.

Uncertainty

We compared the uncertainties of estimated \(\theta_{ij} \) from the qVA and HBM. The uncertainty of each estimated parameter was quantified by the 68.2% HWCI of its marginal posterior distribution.\(^{26,27} \) Paired \(t \)-test (R function \(t.test^{69} \)) was used to compare the 68.2% HWCIs between the two methods.

Discrimination Accuracy

To demonstrate effects of uncertainty reduction, we computed the accuracy in detecting a 0.15 logMAR VA threshold (\(\alpha_{ij} \)) change, a 0.15 logMAR range (\(\beta_{ij} \)) change, and a 0.15 logMAR change of both parameters. We chose 0.15 logMAR as the magnitude of \(\alpha_{ij} \) change because a greater-than-15-letter VA improvement (0.3 logMAR) is considered by the US Food & Drug Administration (FDA) as an acceptable end point of a clinical trial, although a greater-than-10-letter VA improvement (0.2 logMAR) has been used when the benefits can outweigh the safety risks of the proposed method or product.\(^{73} \) We chose 0.15 logMAR as the magnitude of \(\beta_{ij} \) change, because a similar change has been reported in eyes with degraded vision.\(^{18,25} \)

Discrimination accuracy was quantified by the area under receiver operating characteristic curve (AUROC). Given a change-criterion, specificity is defined as the probability of correctly identifying no change, whereas sensitivity is defined as the probability of correctly identifying a change.\(^{74} \) Whereas sensitivity and specificity depend on the change criterion, the AUROC in signal detection theory provides a criterion-free estimate of the accuracy of a test to detect a change.\(^{74} \) It only depends on the discriminability \(d' \) that weighs the evidence against uncertainty and quantifies the signal (change) to noise (HWCI) ratio of two probability distributions of the estimates in two conditions. For one-dimensional distributions, \(d' \) is defined as\(^{74} \):

\[
d' = \frac{\Delta}{\text{HWCI}} \tag{7}
\]

where \(\Delta \) is the magnitude of change. For multidimensional difference distributions, \(d' \) is defined as\(^{75} \):

\[
d' = \sqrt{\Delta \times \text{cov}(\Delta)^{-1} \times \Delta^T} \tag{8a}
\]

\[
\text{cov}(\Delta) = \begin{bmatrix} \text{HWCI}_{\text{threshold range}} & \text{covariance} \\ \text{covariance} & \text{HWCI}_{\text{threshold}}^2 \end{bmatrix} \tag{8b}
\]

where \(\Delta = (0.15, 0.15) \), \(\text{cov}(\Delta) \) is the covariance matrix of the VABF parameter difference distribution, \(\text{cov}(\Delta)^{-1} \) is the inverse of \(\text{cov}(\Delta) \), \(\Delta^T \) is the transpose of \(\Delta \), represents matrix multiplication, and \(\text{corr} \) is the correlation coefficient at the test level in the HBM.

Results

Goodness-of-Fit

The BPIC for the qVA and HBM were 4867 and 4832, respectively, indicating that the HBM fit the data better than the qVA. Figure 5 shows the posterior distributions of the estimated VABFs in one test from the qVA and HBM after 5, 15, and 45 rows. Although the HBM fit the data better and reduced the uncertainty of the estimated \(\theta_{1:1} \), it did not significantly change the expected values of the estimated \(\theta_{1:1} \), the average absolute differences of the estimates from the qVA and HBM across all individuals were 0.002 and 0.022 logMAR, respectively, indicating that HBM and qVA estimates exhibited virtually the same central tendency.
Posterior Distributions From the HBM

Figure 6 illustrates the joint posterior distributions of hyperparameters μ, Σ, and η after 45 rows. Whereas μ and Σ were from the HBM fits to the data (see Equation 6), η was constructed from the distributions of μ and Σ (see Equation 2). The correlation coefficient between η^1 and η^2 was 0.662. ($P < 0.001$). Figure 7 illustrates the joint posterior distributions of hyperparameters φ, and ρ_i, and τ_i for 8 out of the 56 individuals after 45 rows. Whereas ρ_i and φ were from the HBM fits to the data (see Equation 6), τ_i was constructed from the distributions of ρ_i and φ (see Equation 3). Figure 8A illustrates the joint posterior distributions of parameters θ_{ij} from the 8 corresponding individuals in Figure 7 after 45 rows. Figure 8B shows the mean θ_{ij} of all the 56 tests.

Uncertainty of θ_{ij} Estimates

Figure 9 shows the estimated joint posterior distributions of θ_{ij} after 5, 15, and 45 rows for one individual, obtained from both the qVA and HBM. Across all the individuals and tests, the average 68.2% HWCI of the estimated θ_{ij} decreased with the number of rows in both methods (Fig. 10, Table 1). With 5 rows, the
Figure 7. Illustrations of the joint posterior distributions of hyperparameters ρ_i (A), ϕ (B), and τ_i (C) for 8 out of the 56 individuals after 45 rows in the HBM.

68.2% HWCIs of the estimated α_i (t(55) = 14.8, $P < 0.001$) and β_i (t(55) = 13.7, $P < 0.001$) were significantly different between the methods. With 45 rows, the 68.2% HWCIs of the estimated α_i (t(55) = 4.63, $P < 0.001$) and β_i (t(55) = 6.74, $P < 0.001$) were significantly different between the methods. Relative to the qVA, the HBM reduced the HWCI of the estimated α_i by 4.2% to 26.9%, and β_i by 20.8% to 45.8%.

Uncertainty of the estimated parameters is quantified as the HWCI of the (marginal) posterior distribution of θ_i. Because the trial-by-trial data and distribution of τ_i were different for each individual and test, the uncertainties were different across individuals and tests in the HBM (Fig. 11).

Discrimination Accuracy

Discrimination accuracy increased with the number of rows (Table 2, Fig. 12). The HBM estimates exhibited higher accuracy than the qVA, especially when the number of rows was relatively small. To reach 95% accuracy, 10 and 7 rows were needed to detect a 0.15 logMAR α_i change with the qVA and HBM, and 10 and 6 rows were needed to detect a 0.15 logMAR change of both α_i and β_i, respectively.

Discussion

In this study, we developed an HBM to improve uncertainty quantification in VA assessment. By explicitly quantifying regularities at the population, individual, and test levels, the HBM utilized knowledge of VABF across multiple assessments to constrain parameter estimates, and decompose the variability of an entire dataset into distributions at three levels. Applying the model to a dataset that consisted of qVA assessments of 14 eyes in 4 Bangerter foil conditions, we showed that the HBM provided better fits to the data than the qVA and reduced the HWCI of the α_i estimates by 26.9%, 12.2%, and 4.2%, and β_i estimates by 45.8%, 35.3%, and 20.8% for tests with 5, 15, and 45 rows, respectively. Simulations showed that the HBM recovered α_i spanning about 0.8 logMAR (-0.15 to 0.047 logMAR for α_i and β_i) were comparable to the HWCIs of the parameter estimates (0.019 and 0.050 logMAR for α_i and β_i), indicating good convergence of the HBM fits. In addition, the HWCIs from the simulations were also comparable to those from the experimental data (0.018 and 0.048 logMAR for α_i and β_i), suggesting that the simulations captured the uncertainties in the real experiment.
The HBM exhibited its largest advantage relative to the qVA when the number of tested rows in each qVA test was small (see Table 1). This is because the HBM reduces uncertainty by incorporating knowledge across all individuals and tests. As the number of rows increased, more knowledge in each qVA test became available and provided better constraints on the parameters. The results highlight the importance of the HBM when fewer rows are tested, which is often the case in clinical settings. In fact, the current HBM can be readily used to analyze data from other VA tests, such as the ETDRS (Lu et al. IOVS. 2021;62: ARVO Abstract 3546329).

The HBM reduced the uncertainty of the estimated θ_{i1} and improved the discrimination accuracy of the tests. The reduction of uncertainty, on average, resulted in 3 fewer rows needed to reach 95% accuracy in detecting changes of 0.15 logMAR in α_{i1} or both α_{i1} and β_{i1} than the qVA (see Table 2, Fig. 12). The increased accuracy in detecting β_{i1} changes in the HBM may enable a new range endpoint in functional vision,5 because it has been documented that poor VA thresholds were accompanied by wider VA ranges.25 In addition, using the joint distribution of θ_{i1} can further increase the accuracy in detecting changes of VA behavior because the two-dimensional distributions may contain more information than the one-dimensional marginal distributions.76–78

In this paper, we constructed a simple three-level HBM without considering any structure related to test conditions because our goal was to quantify the uncertainty of the estimated VABF in each test. The HBM can be extended to model regularities between different experimental conditions (e.g. before and after treatment) with covariance. A positive covariance between conditions can enhance the ability to detect differences between conditions, and therefore improve
Table 1. Average 68.2% HWCI (logMAR) of the Estimated α_{i1} and β_{i1} in the qVA and HBM

<table>
<thead>
<tr>
<th>Number of Rows</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_{i1}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>qVA</td>
<td>0.069</td>
<td>0.044</td>
<td>0.034</td>
<td>0.028</td>
<td>0.026</td>
<td>0.024</td>
<td>0.022</td>
<td>0.020</td>
<td>0.019</td>
</tr>
<tr>
<td>HBM</td>
<td>0.051</td>
<td>0.036</td>
<td>0.029</td>
<td>0.025</td>
<td>0.023</td>
<td>0.022</td>
<td>0.021</td>
<td>0.019</td>
<td>0.018</td>
</tr>
<tr>
<td>Reduction</td>
<td>26.9%</td>
<td>17.3%</td>
<td>12.2%</td>
<td>9.2%</td>
<td>8.4%</td>
<td>6.3%</td>
<td>5.6%</td>
<td>4.9%</td>
<td>4.2%</td>
</tr>
<tr>
<td>β_{i1}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>qVA</td>
<td>0.210</td>
<td>0.144</td>
<td>0.111</td>
<td>0.091</td>
<td>0.085</td>
<td>0.080</td>
<td>0.073</td>
<td>0.067</td>
<td>0.061</td>
</tr>
<tr>
<td>HBM</td>
<td>0.114</td>
<td>0.086</td>
<td>0.072</td>
<td>0.062</td>
<td>0.058</td>
<td>0.059</td>
<td>0.056</td>
<td>0.052</td>
<td>0.048</td>
</tr>
<tr>
<td>Reduction</td>
<td>45.8%</td>
<td>40.5%</td>
<td>35.3%</td>
<td>31.1%</td>
<td>29.2%</td>
<td>26.2%</td>
<td>23.3%</td>
<td>22.8%</td>
<td>20.8%</td>
</tr>
</tbody>
</table>

Figure 11. Histograms of 68.2% HWCI of the estimated α_{i1} (A) and β_{i1} (B) for tests in the qVA (blue) and HBM (red) after 45 rows.

Table 2. Discrimination Accuracy (%) in Detecting a 0.15 logMAR α_{i1} Change, a 0.15 logMAR β_{i1} Change, and a 0.15 logMAR Change of Both Parameters

<table>
<thead>
<tr>
<th>Number of Rows</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_{i1}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>qVA</td>
<td>86.4</td>
<td>96.0</td>
<td>98.9</td>
<td>99.7</td>
<td>99.9</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>HBM</td>
<td>93.4</td>
<td>98.3</td>
<td>99.6</td>
<td>99.9</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>β_{i1}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>qVA</td>
<td>64.4</td>
<td>70.4</td>
<td>75.5</td>
<td>80.1</td>
<td>81.7</td>
<td>83.0</td>
<td>85.2</td>
<td>87.3</td>
<td>89.6</td>
</tr>
<tr>
<td>HBM</td>
<td>75.0</td>
<td>81.0</td>
<td>85.6</td>
<td>89.0</td>
<td>90.7</td>
<td>92.1</td>
<td>93.4</td>
<td>94.4</td>
<td>95.4</td>
</tr>
<tr>
<td>θ_{i1}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>qVA</td>
<td>86.8</td>
<td>96.2</td>
<td>99.0</td>
<td>99.8</td>
<td>99.9</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>HBM</td>
<td>94.2</td>
<td>98.6</td>
<td>99.7</td>
<td>99.9</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

The procedure eliminated the correlation between eyes. We obtained virtually the same estimated θ_{i1} as the original HBM fit to the 14 eyes, with slightly higher HWCI of the estimated β_{i1} (0.018 ± 0.00082 and 0.050 ± 0.00184 logMAR for α_{i1} and β_{i1} in the 7 eye fits, versus 0.018 and 0.048 logMAR in the 14 eye fit). The RMSEs between the HBM fits to the 7 and 14 eyes were 0.00078 and 0.0073 logMAR for α_{i1} and β_{i1}, and 0.00036 and 0.00350 logMAR for the corresponding HWCI. The results also suggest that the original experimental dataset with 14 eyes tested in 4 conditions was sufficient to constrain the HBM because cutting the amount of data to half generated virtually the same estimates.

Uncertainty in assessing the probabilistic VA behavior is determined by three factors: prior knowledge of the VA behavior, data collected in the assessment, and data analysis method. We developed the HBM as a data analysis tool in this study. The posterior distributions of the hyperparameters η and τ_i at the population and individual levels from the HBM can also be used to construct informative priors (see Figs. 6C, 7C) within the hierarchical adaptive design optimization (HADO) framework for new individuals (see Fig. 6C) and repeated tests of the same individual (see Fig. 7C), respectively. In the HADO framework, the joint distribution in the HBM is updated after each test and used as an informative prior in the next test to improve test efficiency for new individuals or repeated tests of the same individual. The 6-hour computation time of the HBM on a desktop computer makes it realistic to incorporate it within the HADO framework with daily updates of the joint posterior distribution.

Conclusion

We developed a three-level HBM to utilize knowledge of VA behavior across multiple individuals and tests by explicitly modeling cross- and within-individual covariances. The HBM reduced the
Discrimination accuracy in detecting a 0.15 logMAR α_i change (A), a 0.15 logMAR β_i change (B), and a 0.15 logMAR change of both parameters (C) as functions of number of tested rows in the qVA (open squares) and HBM (filled circles).

Figure 12.

Acknowledgments

Disclosure: Y. Zhao, None; L.A. Lesmes, (I, E, P); M. Dorr, (I, E, P); Z.-L. Lu, (I, P)

References

15. Lu Z-L, Dosher BA. Characterizing observers using external noise and observer models:

73. Csaky K, Ferris F, Chew EY, Nair P, Cheetham JK, Duncan JL. Report from the NEI/FDA

