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Purpose: Clinical trials for remyelination in multiple sclerosis (MS) require an imaging
biomarker. The multifocal visual evoked potential (mfVEP) is an accurate technique for
measuring axonal conduction; however, it produces large datasets requiring lengthy
analysis by human experts to detect measurable responses versus noisy traces. This
study aimed to develop a machine-learning approach for the identification of true
responses versus noisy traces and the detection of latency peaks in measurable signals.

Methods: We obtained 2240 mfVEP traces from 10 MS patients using the VS-1 mfVEP
machine, and they were classified by a skilled expert twice with an interval of 1 week.
Of these, 2025 (90%) were classified consistently and used for the study. ResNet-50 and
VGG16 models were trained and tested to produce three outputs: no signal, up-sloped
signal, or down-sloped signal. Eachmodel ran 1000 iterations with a stochastic gradient
descent optimizer with a learning rate of 0.0001.

Results: ResNet-50 and VGG16 had false-positive rates of 1.7% and 0.6%, respectively,
when the testing datasetwas analyzed (n= 612). The false-negative rateswere 8.2%and
6.5%, respectively, against the samedataset. The latencymeasurements in the validation
and testing cohorts in the study were similar.

Conclusions:Ourmodels efficiently analyzemfVEPswith<2% false positives compared
with human false positives of <8%.

Translational Relevance: mfVEP, a safe neurophysiological technique, analyzed using
artificial intelligence, can serve as an efficient biomarker in MS clinical trials and signal
latency measurement.

Introduction

Multiple sclerosis (MS) is a common neuroinflam-
matory disorder affecting 2.2 million people globally.
It is a devastating diagnosis, often with onset in young
adulthood.1 Remyelination strategies have the poten-
tial to revolutionize therapy for this disease. Visual
evoked potentials (VEPs), which are scalp electrode
recordings of the brain signal in response to a visual
stimulus, have been suggested as promising biomarkers
for monitoring responses to remyelination therapy in
MS clinical trials. To date, the RENEW, RENEWED,
SYNERGY, ReBUILD, and stem cell therapy clinical
trials have used VEPs for measuring study outcomes,

including responses to treatment.2–5 However, the clini-
cal usefulness of conventional full-field VEPs is limited
by the fact that they provide a summed response
of all neuronal elements stimulated. As a result, this
technique is prone to phase cancellation of dipoles
oriented in opposite directions and subsequent loss of
potentially clinically relevant information. In addition,
it is greatly dominated by the macular region due to its
cortical overrepresentation.6,7

The multifocal VEP (mfVEP) technique is superior
to conventional full-field VEPs in evaluating the
integrity of the visual system, because it (1) provides
an independent measurement of multiple segments
of visual field, thus allowing more accurate detection
of smaller defects; (2) eliminates, or at least greatly
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Figure 1. (A) An example of the visual stimulus presented to the subjects. (B) An example ofmfVEP responses for one eye (56 traces) across
the vertical plane. (C) An example of no signal or a noisy signal. (D) An example of a down-sloped signal. (E) An example of an up-sloped
signal.

diminishes, the dipole orientation cancellation effect;
and (3) allows assessment of contribution from the
more peripheral parts of the visual field.6,8,9 This
advantage is due to simultaneous and independent
stimulation of multiple locations of the visual field and
recording across two perpendicularly oriented channels
using four scalp electrodes.

The mfVEP, however, produces a large amount of
data per patient (i.e., each mfVEP recording contains
224 individual traces), which, for accurate analysis of
small changes, must be analyzed manually by skilled
researchers. The analysis of data typically involves
separation of noisy traces (which is a source of high
variability) from true (readable) responses and the
detection of latency peaks in the true responses. These
tasks are onerous and require a high level of train-
ing and expertise. As the number of clinical trials and
patients in trials grows, leading to larger datasets, the

advent of a scalable alternative becomes vital for the
speedy generation of results and the incorporation of
mfVEPs into both trials and clinical practice. Artifi-
cial intelligence (AI) techniques are promising tools to
overcome this barrier. Therefore, the aim of the current
study was to develop a machine-learning approach
for the identification of noisy traces (referred to here
as “no-signal”) versus measurable mfVEP responses
(referred to here as “signal”) and the detection of
latency peaks in the signals (Fig. 1).

Methods

Standard protocol approvals, registrations, and
patient consents were obtained. The study was
approved by University of Sydney and Macquarie
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University Human Research ethics committees and
followed the tenets of the Declaration of Helsinki.
Written informed consent was obtained from all
participants.

Subjects

Ten consecutive patients with relapsing remitting
MS, defined according to the revised McDonald 2010
criteria, and with a history of unilateral optic neuritis
of more than 6 months were enrolled.8 All patients had
visual acuity of ≥6/12.

MfVEP Recordings

MfVEPs were recorded monocularly across verti-
cal and horizontal planes using a Visionsearch (Sydney,
Australia) system with standard stimulus conditions as
described previously.9 In brief, four gold-disc electrodes
(Grass Instruments, West Warwick, RI) were used
for bipolar recording with two electrodes positioned
4 cm on either side of the inion, one electrode 2.5
cm above, and another 4.5 cm below the inion in
the midline. Electrical signals were recorded along two
channels, measured as the difference between superior
and inferior electrodes (vertical channel) and between
the left and right electrodes (horizontal channel).
Fifty-six segments per channel were generated: eight
segments in the inner ring and 12 segments for each
of the four outer rings (Fig. 1). The size of the
segments in individual rings was cortically scaled.
In total for this study, 2240 mfVEP traces were
analyzed. Data for the training and testing of AI
networks was deliberately collected from three differ-
ent sites, and the analyses were performed by different
technicians.

The traces were classified manually twice, a week
apart, by a skilled expert (AK) to separate traces with
recognizable mfVEP responses (“signal”) from noisy
traces (“no-signal”), as well as to determine the latency
peak of the signal. A signal was further classified
into two different configurations: up-sloped or down-
sloped. This classification was used to identify the
latency of the mfVEP response. The algorithm was
based on the identification of positive peaks in cases
of an up-sloped configuration of the main response
or negative peaks in cases of a down-sloped configu-
ration of the main response (Fig. 1, arrows). In order
to ensure good quality of the data, only the segments
that were consistently identified by the expert as signal
or no-signal in both readings were further used in the
study (Fig. 1).

The images of the VEP traces were then used as
input to the AI model. No augmentation, transfor-

mation, or signal processing was done to the images.
The images of traces were divided into two sets:
the first set (70% of images) was used for training
and validation (training dataset), and the second set
(30% of images) was used for testing (testing dataset).
The training dataset was further split into 80% for
training and 20% for validation. In order to test
models against new data, we ensured that traces in
the training and testing datasets were from different
subjects.

Model Description

Two image-based models were tested: ResNet-5010
and VGG16.11 An image-based model was used, as
processing the two-dimensional (image) shapes of the
mfVEPs closely represents the assessment done by
human experts when determining signal versus no
signal traces. The models have been proven to be effec-
tive in many image classification challenges in the
computer science andmedical fields. Thesemodels were
loaded with pre-trained weights leveraging their image
recognition detection network.

In this study, each trace was converted to a black-
and-white image with a resolution of 540 × 400 pixels.
To feed the images into the models, the images were
resized to 244 × 244 pixels. The ResNet-50 model was
adjusted to take the black-and-white image (rather than
a red, green, and blue color image) and output three
classes: no signal, up-sloped signal, or down-sloped
signal. The VGG16 model input was not adjusted to
black-and-white images. Each model ran 1000 itera-
tions with a stochastic gradient descent optimizer,
which was selected to have a learning rate of 0.0001.
For the latency measurements, in the case of an up-
sloped signal, the coordination of the highest point
marked the latency; in the case of a down-sloped
signal, the coordination of the lowest point marked
the latency. These were measured using simple statis-
tical software across the training set (n = 1413) and the
testing set (n = 613); the distribution of these result is
presented Figure 2.

In order to maintain high accuracy of longitudinal
mfVEP analyses, and latency in particular, it is more
important not to include noisy traces (whichmay intro-
duce a high degree of variability) than to miss some
of the true “signal” traces. Therefore, for the model to
be successful, a low false-positive (FP) rate (i.e., noisy
traces classified as real signal) is required. Conversely, a
low false-negative (FN) rate (i.e., traces containing real
signal but classified as noise), although still desirable, is
far less crucial, as these rates are excluded from analy-
ses and therefore do not affect progression results.
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Figure 2. Box plot demonstrating the distribution of latency
between down-sloped and up-sloped signals for the training (blue)
and testing (orange) datasets. The lower edge of the box repre-
sents the 25th percentile, and the upper edge represents the 75th
percentile. The notch is themedian.Whiskers are amaximum length
of 1.5 × interquartile range. Circles represent outliers.

Results

A total of 2240 mfVEP segments were classified
twice with an interval of 1 week. Of these, 2025 (or
90%) were classified consistently (i.e., as up-sloped
signal, down-sloped signal, or no signal) on both
occasions (Table 1). In addition, for cases classified as
“signal,” the peak was detected in the same location
at each reading. These traces were used for training
and testing of our AI models. The remaining 215
images were excluded from the study due to discrepan-
cies between the two readings (Table 1). Models were
trained using 1413 mfVEP traces (1157 for training,
256 for validation) and tested using the 612 remaining
mfVEP traces, of which 249 were originally classified
by an expert as “signal” (126 up-sloped signals and 123
down-sloped signals) and 363 as “no signal.” A confu-
sion matrix was generated for each of the models for
the testing cohort (n = 612) for ResNet-50 and VGG16
(Table 2).

Both models demonstrated relatively low rates of
FN cases (a situation when down-slope or up-slope
signals are classified as “no signal”): 8.2% and 6.5%
for ResNet-50 and VGG16, respectively. More impor-

tantly, both models displayed very low FP rates (“no
signal” classified as either an up-sloped or a down-
sloped signal): 1.7% and 0.6% for ResNet-50 and
VGG16, respectively.

Both models also performed well in distinguish-
ing between up-sloped and down-sloped Signals. Thus,
of the 126 up-sloped signals, both ResNet-50 and
VGG16 produced similar results in the validation set,
with 103 (81.7%) and 113 (89.7%) correct classifica-
tions, respectively. Of the 123 down-sloped signals, 114
and 111 were correctly classified by ResNet-50 and
VGG16, resulting in accuracies of 92.7% and 90.2%,
respectively. However, by applying a precisionmetric to
ResNet-50 and VGG16, we can see that the detection
of up-sloped signals was 97.1% for ResNet-50, and it
was 99.1% for VGG16. Similar results were obtained
for down-sloped signals, with precision of 97.4% and
99.1%, respectively. Neither of the models misclassified
the direction of the slope (e.g., up-sloped classified as
down-sloped); all misclassification of signal data could
be attributed to signals being classified as no-signal
(i.e., FNs). Figure 2 demonstrates similar widespread
distributions of latency values for both the training
and testing datasets for down-sloped signals and up-
sloped signals, indicating the presence of signals with
both normal and delayed latency.

Discussion

In this study, we present an approach to the
automatic interpretation of mfVEP signals using AI
that can provide a rapid and accurate separation of
noisy responses from reliable signals, thus enabling
change analysis in longitudinal follow-up. This is
important, as the mfVEP is one of the few tools
available to monitor the state of nerve myelina-
tion. Remyelination of chronically demyelinated white
matter represents a promising strategy in the treat-
ment of MS. Such an approach offers the potential to
prevent accelerated axonal degeneration of damaged
(demyelinated) axons from inflammatory mediators
and immune effector cells and to restore conduction
velocity.12–14 The validation of remyelinating therapies,
however, is hampered by the current lack of consensus

Table 1. Classification of Traces by Human Expert (N = 2240 Total Images)

Classification Percent (%) n

Classified as signal first round but no-signal second round 5.8 131
Classified as no-signal first round but as signal second round 3.8 84
Classified the same between first and second rounds 90.4 2025
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Table 2. Classification of Traces by ResNet-50 and VGG16

Classification
Predicted
No-Signal

Predicted
Up-Sloped Signal

Predicted
Down-Sloped Signal Total

ResNet-50, n (%)

Actual no-signal 357 (98.3) 3 (0.8) 3 (0.8) 363
Actual up-sloped signal 23 (18.3) 103 (81.7) 0 126
Actual down-sloped signal 9 (7.3) 0 114 (92.7) 123
Total 389 (63.6) 106 (17.3) 117 (19.1) 612

VGG16, n (%)

Actual no-signal 361 (99.4) 1 (0.02) 1 (0.02) 363
Actual up-sloped signal 13 (10.3) 113 (89.7) 0 126
Actual down-sloped signal 12 (9.8) 0 111 (90.2) 123
Total 386 (63.07) 114 (18.6) 112 (18.3) 612

on use of imaging biomarkers for remyelinating trials,
particularly considering the moderate effect of poten-
tial remyelinating drugs.15 Although there are a number
of promising therapies, reliable imaging biomarkers
for myelin repair remain to be identified. However,
evoked potentials and, particularly, mfVEPs due to
their ability to directly estimate the speed of axonal
conduction are highly sensitive and very accurate
quantitative measures of de-/remyelination in both
experimental and clinical settings.2,3,16–18 Although
accuracy of VEP measurement and latency, in partic-
ular, is essential for monitoring optic nerve function
(considering the small degrees of change observed in
remyelination trials3), the vast amount of mfVEP data
typically collected in human clinical trials and manual
techniques utilized for latency measurement make it
susceptible to error.

AI has been increasingly used in the field of biomed-
ical image analysis. In the current study, we have
tested the capability of two image-based AI models to
correctly identify the presence of measurable mfVEP
traces and separate them from noisy (i.e., unreliable)
traces in a group of treated MS patients, among whom
we would expect to find both normal and reduced
amplitude responses, as well as changes in latency. The
patients were therefore representative of the typical
clinical scenario where a range of responses may be
encountered, even across the field of one recording.

In order to compare AI to human performance,
we initially evaluated the ability of an experienced
mfVEP analyst to separate identifiable traces with
visible responses from noisy (no-signal) traces. The
experienced mfVEP reader had an error rate of just
below 10%. From an accuracy point of view, it is more
important not to overestimate positive responses (not
to identify noisy traces as true signals) than to catego-

rize true responses as noise and lose some data. For this
reason, when the AI classification was being performed
we aimed for a smaller false positive rate (>5%) at the
expense of increased FN responses (>10%).

In general, both models demonstrated a high level
of precision in identifying measurable traces when the
testing dataset was analyzed. False-positive and false-
negative rates were well within the expected range
(<5% and 10%, respectively). The strong performance
of the AI models with regard to achieving results
comparable to those of an experienced human analyst
is encouraging, particularly considering the time saved
when an AI algorithm performs the classification. For
example, it takes 20 to 30minutes to thoroughly analyze
mfVEP data for an eye, but the time required for
AI to perform the same task is 1 minute. The detec-
tion of latency using AI networks to identify the
slope of the main signal also demonstrated excellent
performance, with no misclassification in the testing
dataset.

To the best of our knowledge, this is the first study to
propose such an approach for analyzing mfVEPs and
its use in clinical practice for MS. Qiao19 described a
deep learning technique based on the VGG19 model
that demonstrated an accuracy of 90.6% when analyz-
ing data from patients with suprasellar tumors. In our
study, both models demonstrated high precision of
over 97% for signal detection and a FP rate of less than
2%. Given that the traces were recorded using differ-
ent operators at different sites, the result of classifi-
cation is not site (or operator) specific; however, the
same model of mfVEP machine (OV-1) was used to
obtain all of the recordings. Hence, it remains to be
seen how well the algorithm will perform when applied
to data collected using different models of mfVEP
machines.
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The primary aim of the current studywas to identify
and remove noisy (unmeasurable) mfVEP traces from
the analysis of the latency progression. Because MS
patients are known to exhibit the entire range of
mfVEP waveforms, data from normal controls were
not required in this modeling. However, the current
approach can now be applied to a population of
normal subjects to determine the overall specificity of
mfVEP.

Both models proved to be efficient algorithms in
detecting mfVEPs and were able to efficiently repli-
cate or outperform a human. The processing times
for both models were similar. However, as demon-
strated in Table 2, VGG16 has higher acuity in detect-
ing true signals and maintained a low FP rate. As
discussed earlier, this is an important point when
considering correct latency measurements and subse-
quent applications in clinical decisionmaking; thus, the
authors recommend that this model be used in clini-
cal trials versus ResNet-50. As a future direction for
this study, an AI model processing one-dimensional
numerical data could be considered to complement the
findings from our study, which used image-based, two-
dimensional AI modeling of mfVEPs.

In conclusion, the application of AI to mfVEP
analysis to separate true traces from those contami-
nated by noise and to identify latency peaks proved
to be accurate, reliable, and efficient. It opens up new
possibilities for using mfVEPs as biomarkers in clini-
cal trials of remyelinating agents, as these will monitor
latency changes over time.9 This tool can be used in
clinical practice and provide a fast and relatively low-
cost assessment of the remyelinating capacity of new
therapies in MS.20
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