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Purpose: The purpose of this study was to assess the feasibility of deep learning (DL)
methods to enhance the prediction of visual acuity (VA) improvement after macular hole
(MH) surgery from a combined model using DL on high-de�nition optical coherence
tomography (HD-OCT) B-scans and clinical features.

Methods: We trained a DL convolutional neural network (CNN) using pre-operative
HD-OCT B-scans of the macula and combined with a logistic regression model of pre-
operative clinical features to predict VA increase� 15 Early Treatment Diabetic Retinopa-
thy Study (ETDRS) letters at 6 months post-vitrectomy in closed MHs. A total of 121 MHs
with 242 HD-OCT B-scans and 484 clinical data points were used to train, validate, and
test the model. Prediction of VA increase was evaluated using the area under the receiver
operating characteristic curve (AUROC) and F1 scores. We also extracted the weight of
each input feature in the hybrid model.

Results: All performances are reported on the held-out test set, matching results
obtained with cross-validation. Using a regression on clinical features, the AUROC was
80.6, with an F1 score of 79.7. For the CNN, relying solely on the HD-OCT B-scans, the
AUROC was 72.8± 14.6, with an F1 score of 61.5± 23.7. For our hybrid regression model
using clinical features and CNN prediction, the AUROC was 81.9± 5.2, with an F1 score of
80.4± 7.7. In the hybrid model, the baseline VA was the most important feature (weight
= 59.1± 6.9%), while the weight of HD-OCT prediction was 9.6± 4.2%.

Conclusions: Both the clinical data and HD-OCT models can predict postoperative
VA improvement in patients undergoing vitrectomy for a MH with good discrimina-
tive performances. Combining them into a hybrid model did not signi�cantly improve
performance.

Translational Relevance:OCT-based DL models can predict postoperative VA improve-
ment following vitrectomy for MH but fusing those models with clinical data might not
provide improved predictive performance.
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Introduction

Idiopathic full-thickness macular hole (MH) is a
discontinuation of the neurosensory retina at the fovea
and results in significant visual impairment includ-
ing reduced visual acuity (VA) and metamorphop-
sia.1 Analysis of baseline optical coherence tomog-
raphy (OCT) in patients with a MH can provide
insight into surgical success and postoperative VA.1
OCT is commonly used in ophthalmology for multi-
ple reasons: it allows noncontact, noninvasive, and
easy-to-use cross-sectional images for clinical staging
of various retinal diseases, including MH, by showing
foveal and vitreous microstructures.

Pars plana vitrectomy with internal limiting
membrane (ILM) peeling is commonly used to treat
MH, with recent studies reporting the MH closure
rate after a primary surgical procedure between 78%
and 96%.1–3 Despite the high closure rate, functional
outcomes after successful surgery are variable.4 Several
authors tried to predict visual outcomes in closed
MH based on clinical and imaging factors (e.g. MH
duration, pre-operative VA, and MH size) or more
specific OCT-defined parameters, such as macular hole
index (MHI).2,4,5 Unfortunately, current predictive
methods have some limitations that can cause inaccu-
racy and variability. For instance, pre-operative VA
measurement is not always well standardized, MH
duration based on symptoms onset is affected by recall
bias and subjectivity, and OCT-based MH size and
index ratios do not account perfectly for the hole
asymmetry and overall hole shape. Moreover, measur-
ing MH dimensions from OCT is time-consuming and
requires expertise.

Therefore, other authors tried to predict visual
outcomes in closed MH with automated three-
dimensional (3D) analyses using pre-operative OCT
B-scans to measure parameters, such as the base
area, maximum base diameter, top area, maximum
top diameter, minimum diameter, height, and the
MHI.6–8 Despite its high predictive potential, using a
3D analysis instead of the traditional slice-based analy-
sis suffers from some issues. Namely, modern scanners,
such as the Cirrus high-definition (HD)-OCT (ZEISS,
Dublin, CA), require 2 seconds to image a target cube.
During this period, misalignment across slices can
occur due to natural and involuntary movements of
the subject’s eyes.9 Although some eye motion correc-
tion in 3D-OCT B-scans exists, these inter-slice distor-
tions and misalignments are a significant barrier to a
full 3D analysis. Moreover, typically, macular cubes
for 3D analysis (512 × 128 pixels) have lower resolu-
tion than traditional 2D OCT B-scans (750 × 500

pixels) using Cirrus 5000 HD-OCT, which gives less
potential to increase neural network performances.
In addition, clinicians routinely examine the OCT
B-sans in a slice-by-slice manner. Thus, the ability
to analyze and display information about MH in a
slice-based manner is aligned with current clinical
practices.

Promising deep learning (DL) models have been
successfully applied to OCT B-scans to detect
various ocular diseases, including diabetic retinopa-
thy (DR), age-related macular degeneration (AMD),
and MH.10,11 DL systems have also been used to
predict antivascular endothelial growth factor treat-
ment outcomes from pretreatment clinical images,
showcasing their ability to also make predictions on
the efficiency of a treatment from pretreatment knowl-
edge.12 Because visual outcomes in MHs are affected
by both morphological factors on OCT B-scans and
other clinical factors, a hybrid model combining these
is potentially helpful in predicting postoperative visual
improvement.

This study aimed to assess the feasibility of DL
methods to enhance the prediction of corrected visual
acuity (CVA) increase at 6 months of � 15 Early Treat-
ment Diabetic Retinopathy Study (ETDRS) letters in
closed MH after vitrectomy, by using pre-operative
high-definition (HD)-OCTB-scans in addition to clini-
cal data. To the best of our knowledge, this is the first
time a combined model using DL and clinical features
is used to try to predict visual outcomes in a closed
MH.

Methods

The chosen clinical ground truth was an improve-
ment of � 15 letters on ETDRS VA chart 6 months
postoperatively. This threshold was previously consid-
ered to represent a clinically significant improvement
in VA.13 We formulate this as a classification problem,
where the DL model is asked to predict a binary
outcome, that is whether CVA will improve by � 15
letters 6 months after surgery. Predicting the precise
number of letters gained postoperatively is subject to
toomuch variation and instability, and has less interest-
ing clinical implications (i.e. a CVA gain of 5 instead of
6 letters is not clinically significant). CVA was defined
here as the best VA obtained using the patient’s current
refractive correction with or without pinhole.

This study was approved by the Institutional Review
Board of the Centre Hospitalier Universitaire de
Québec – Université Laval (2021-5371) and adheres to
the tenets of the Declaration of Helsinki.
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Study Cohort

All consecutive patients operated for idiopathic full-
thickness MH between 2014 and 2018 at the Centre
Hospitalier Universitaire de Québec – Université Laval
(Canada) were identified. All patients were operated by
one of five vitreoretinal surgeons.

Hospital records were retrospectively reviewed to
identify the patients with successful MH closure after
primary vitrectomy. Only patients with an anatomic
MH closure confirmed by HD-OCT B-scan follow-
ing surgery were included. Data from patients with
unclosed MHs was collected to assess our models’
ability to predict the visual outcome in those rare
cases, but those were not used to train any of the
classification models. Hole closure was defined as
the absence of neurosensory retinal defect at the
central fovea in all postoperative HD-OCT B-scans at
6 months.5 Exclusion criteria included patients with
a follow-up of less than 6 months after the first
surgery, history of a vitrectomy for any reason, and
intra-operative use of a silicone oil tamponade or
special techniques (e.g. free flap, inverted flap, retinal
autografts, etc). Eyes with stage 1 MH, lamellar MH,
MH secondary to other causes (e.g. trauma, AMD,
type 2 macular telangiectasia, and retinal detach-
ment), and eyes with ocular comorbidities that could
potentially affect VA including high refractive or
axial myopia (� 6 diopters of myopia or axial length
� 26 mm) were excluded. In patients with bilateral
MH on initial presentation, only the first operated
eye was included. Eyes with significant cataract prior
to surgery and eyes that developed clinically signif-
icant cataract during the 6 months follow-up were
excluded.

Dataset Preparation and Feature Collection

We reviewed the records of all eyes operated forMH
with a vitrectomy, ILMpeeling, and gas or air tampon-
ade. The type of tamponade used was at the discretion
of the surgeon with C3F8 often used in more complex
cases. All patients were advised to position face-down
after surgery for 5 to 7 days.

Pre-operative data included age, sex, lens status,
myopia, MH duration defined as the duration between
the first reference and the time of surgery,14 baseline
CVA, and MH size. MH size was measured as the
minimum hole width or the narrowest aperture size
in the middle retina, as defined by the Vitreomac-
ular Traction Study Group15 on initial presentation.
MHmeasurements were performed by the same person
(author A.L.) and validated by a retina specialist
(author A.D.) with consensus when discordance.

To reduce overfitting and to gain a better under-
standing of the clinical importance of each input
feature, we decided to select the following features as
themain clinical factors predicting final CVAaccording
to the previous literature: baseline CVA, MH size, MH
duration, and pseudophakic status.2,4,5 Operative data
included surgical technique, type of dye, and type of
tamponade used. Postoperative data included CVA at
6 months postoperatively. The CVA originally reported
on the Snellen scale was converted to logarithm of the
minimal angle of resolution (logMAR).16 Lens status
and HD-OCT B-scans were recorded at baseline and
at 6 months postoperatively.

All patients had undergoneHD-OCT imaging using
Cirrus 5000 HD-OCT (Carl Zeiss Meditec, Jena,
Germany) with 30 degrees centered on the fovea. The
individual HD-OCT B-scans horizontal and vertical
lines were 750 × 500 pixels. Each patient’s image
data set was exported as a folder of anonymized
non-compressed TIFF files. Our data set did not
include images with improper positioning, low signals,
or strong motion artifacts causing misalignment and
blurring; no images were excluded.

We make our data set and codebase publicly avail-
able to stimulate and ease further research on the topic.

Training and Validation of DL-Based Model

We randomly split the 121 patients of the data set
into training, validation, and test subsets, each respec-
tively containing 83 (69%), 21 (17%), and 17 (14%)
patients. As their names indicate, the training set was
used to train DL models, the validation to select the
best performing model, and the test set to evaluate the
performance of the chosen model in comparison with
baselines.

We selected the CBR-Tiny17 DL model for our
experiments because it displays competitive perfor-
mances on medical imaging data sets despite its
simplicity. During training, we leveraged the fact that
we have two HD-OCT B-scans (i.e. horizontal and
vertical lines) for each patient to artificially double
our training samples. At inference time, we took
the average of the prediction provided by both HD-
OCT B-scans associated with each patient. We applied
randomized data augmentation, randomly rotating,
flipping horizontally, and adjusting the brightness
and contrast of every image in a training batch. All
augmented images were then resized to the 224 ×
224 pixels range and then normalized using the mean
and standard deviation values from the ImageNet data
set.18 Every vision model was trained using the binary
cross-entropy loss with a batch size of 32, using the
Adam19 optimizer with a learning rate of 0.0001 for a
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maximum of 1000 gradient steps.We tested themodel’s
performance against the validation set every 50 steps
and retained the model with the highest validation
area under the receiver operating characteristic curve
(AUROC).

Visualization heatmaps were generated by
Gradient-weighted Class Activation Mapping (Grad-
CAM). This was done to help understand the areas of
interest on the HD-OCT B-scans which were consid-
ered by the DL model.

Regression Model

To provide a baseline for comparison of the DL
model’s performance, we trained a logistic regression
model on clinical features. Hyperparameters used for
the logistic regression, such as the regularization coeffi-
cient, were selected using 10-fold cross-validation over
the training set. Because our logistic model was trained
using cross validation, it did not require a held-out
validation set like the DL model. Accordingly, we
trained the regression model on samples from both
the DL training and validation sets, using the held-out
test set to assess performance. Specifically, this meant
that our logistic regression model was trained on clini-
cal data of the 104 patients of the testing and valida-
tion subsets and tested on the same 17 patients as
the DL model. As stated above, the retained features
for each patient were: baseline CVA, MH size, MH
duration, and pseudophakic status. Before being fed to
the model, each patient’s clinical data was standardized
using the mean and standard deviation of each feature
computed on the training set.

Our implementation of the regression model used
the LogisticRegressionCV model from scikit-learn20
with Python version 3.8.

Hybrid Model

From the fully trained deep vision model, we
extracted the model’s logistic prediction for a patient’s
HD-OCT B-scans and concatenated it to the patient’s
clinical data. This clinical data augmented with
the vision model’s predictions were then used to
train another logistic regression, yielding an easy-to-
implement way to combine HD-OCT B-scans and
clinical data. Hyperparameters for this hybrid model
were selected according to the same procedure as our
regression model from clinical data only. An overview
of this proposed hybrid model can be seen in Figure 1.

Many techniques exist to handle multimodal data
like our images and clinical features. These techniques,
usually classified under late, medium, or early fusion,21
represent an increasing usage of DL, with early fusion

meaning the whole multimodal data is fed to a neural
network and late fusion meaning only the DL model’s
prediction is kept.We chose late fusion as this preserves
the interpretability. Indeed, because the final predic-
tion is provided by logistic regression, one can compute
each feature’s importance according to the model,
including for the DL model prediction. Albeit poten-
tially less performant, late fusion still represents an
interesting avenue in healthcare tasks, where interpre-
tation of the model is highly valuable.

Statistical Analysis

After training and testing our hybrid model, we
obtained the predictive output of combining each HD-
OCT B-scan with the corresponding patient’s clinical
data. The confusion matrices were used to calculate
the overall accuracy of prediction of visual outcome
(CVA gain � 15 letters) at 6 months. AUROC was
used to evaluate the reliability of the model in predict-
ing CVA gain. Other outcome measures included F1
scores, accuracy (ACC), sensitivity (SN), specificity
(SP), positive predictive value (PPV), and negative
predictive value (NPV).

For both regression-based models (i.e. clinical data
only and hybrid), we extracted feature importance for
each input feature by computing the ratio between
the feature’s weight and the sum of all model feature
weights.

Data for patient baseline characteristics are
presented asmean ± standard deviation for continuous
variables and as frequencies (percentages) for categori-
cal variables. Statistical analyses were performed using
Python (version 3.8.10; Python Software Foundation)
with the Numpy library.22 Statistical significance was
set at α = 0.05.

Cross-Validation

Due to the small size of our held-out test set, we
performed five-fold cross-validation with all three of
our proposed models. For the regression model based
solely on clinical features, we split the training set into
five mutually exclusive groups, using each group as
test set and the four others as training set for a total
of five different runs. We repeated this five-fold cross-
validation with five different group separations for a
total of 25 runs. For the DLmodel, which also required
a validation set for model selection, we repeated the
process by using each of the four training folds as
validation set, for a total of 100 runs of the DL model.
For each DLmodel run, a corresponding hybrid model
run was done by using the trained DL model and its
corresponding training and testing sets for regression.
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Figure 1. Overview of our proposed hybrid model. (Top) Illustration of the extraction of the OCT-based prediction from the trained DL
model. (Bottom) Flow-chart representing the combination of clinical data and OCT-based data to predict the clinical ground truth.

Performance Assessment on Unclosed MH

Although all ourmodels were trained using our data
set that contains closed cases of MH, it is known that
some MH cases may remain unclosed after surgery. To
assess our model’s ability to predict the visual outcome
of such unclosed cases, we tested the performance of
our trained hybridmodels on the 16 unclosedMHcases
of our cohort.

Results

Characteristics of eyes included in the different
subsets (i.e. training, validation, and held-out test sets)
are shown in Table 1. Among the 121 patients included
(242 HD-OCT B-scans), 88 (73%) were women and the
mean age was 67 ± 8 years.

Table 2 presents the comparison between the two
groups (CVA gain � 15 letters versus <15 letters) in
terms of demographic and clinical features. There was
no difference in the type of tamponade and dye used
between the two groups (P = 0.98 andP = 0.11, respec-
tively), which ensures comparability of confounding
factors. Vitrectomy with sulfur hexafluoride (SF6) gas

tamponade and indocyanine green (ICG) was most
commonly performed. Baseline CVAandMHsize were
statistically different between the two groups, but MH
duration and pseudophakic status were not.

Using only logistic regression on clinical features, in
the training set, the AUROCwas 80.6 with an F1 score
of 78.2. On the held-out test set, the AUROC was 80.6
with an F1 score of 79.7. For the DL model, in the
training set, relying solely on theHD-OCTB-scans, the
AUROC was 77.3 ± 10.3 with an F1 score of 67.1 ±
28.9. On the held-out test set, the AUROC was 72.8 ±
14.6 with an F1 score of 61.5 ± 23.7.

For our hybrid model, in the training set, the
AUROC was 84.09 ± 1.58 with an F1 score 78.0 ± 1.7.
On the held-out test set, the AUROC was 81.9 ± 5.2
with an F1 score of 80.4 ± 7.7. Performances of the
models on the held-out test and using cross-validation
are shown in the Table 3. All reported results consist of
95% confidence intervals (CI) based on 10 independent
training runs. Our models do not require a validation
set because the best parameters are selected according
to 10-fold validation, hence the absence of validation
results.

The receiver operating characteristic (ROC) curves
of all independent runs are presented for the clinical,
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Table 1. Characteristics for Patients of the Di�erent Splits in the Data Set

Training Set (n = 104) Test Set (n = 17) Total Set (n = 121) P Value

Age, years± SD 66± 8 69 ± 7 67 ± 8 0.12
Sex 0.84

Female,n (%) 76 (73) 12 (71) 88 (73)
Male,n (%) 28 (27) 5 (29) 33 (27)

Baseline CVA, letters± SD 50± 15 51 ± 18 50 ± 16 0.83
MH size, µm ± SD 357± 171 256± 101 343± 167 0.002
MH duration , weeks± SD 11± 10 10 ± 5 11 ± 9 0.53
Pseudophakic,n (%) 18 (17) 4 (24) 22 (18) 0.54
Phacovitrectomy ,n (%) 1 (1) 0 (0) 1 (1) 0.68
CVA at 6 months, letters± SD 66± 12 66 ± 11 66 ± 12 1.00
CVA gain≥15 letters ,n (%) 52 (50) 8 (47) 60 (50) 0.83
Stage of MH 0.81

Stage 2,n (%) 16 (15) 3 (18) 19 (16)
Stage 3,n (%) 64 (62) 10 (59) 74 (61)
Stage 4,n (%) 24 (23) 4 (24) 28 (23)

MH, macular hole; CVA, corrected visual acuity; SD, standard deviation.

OCT-based DL, and hybrid model in Figure 2. These
results indicate that our hybrid model can provide
interesting prediction of postoperative visual improve-

ment with discriminative performances, but this is not
significantly better than the clinical data-only logistic
regression model.

Table 2. Comparison Between the Two Groups (CVA Gain� 15 Letters Versus<15 Letters) in Terms of
Demographic and Clinical Features

Features
CVA Gain� 15 Letters

(n = 60)
CVA Gain<15 Letters

(n = 61)
Total Set
(n = 121) P Value

Age, years± SD 67± 15 67± 14 67± 15 1.00
Sex 0.17

Female,n (%) 47 (78) 41 (67) 88 (73)
Male,n (%) 13 (22) 20 (33) 33 (27)

Baseline CVA, letters± SD 42± 15 59± 10 50± 16 <0.0001
MH size, µm ± SD 394± 183 293± 131 343± 167 0.0008
MH duration , weeks± SD 11± 12 10± 7 10± 10 0.58
Pseudophakic,n (%) 15 (25) 7 (12) 22 (18) 0.05
Phacovitrectomy ,n (%) 0 (0) 1 (2) 1 (2) 0.32
CVA at 6 months, letters± SD 70± 9 62± 12 66± 12 <0.0001
Stage of MH 0.53

Stage 2,n (%) 10 (17) 9 (15) 19 (16)
Stage 3,n (%) 35 (58) 39 (64) 74 (61)
Stage 4,n (%) 15 (25) 13 (21) 28 (23)

Surgery procedure
Vitrectomy with ILM peeling,n (%) 60 (100) 61 (100) 121 (100) 0.99

Tamponade used 0.98
SF6,n (%) 53 (88) 54 (89) 107 (88)
C3F8,n (%) 7 (12) 7 (12) 14 (12)

Dye used 0.11
ICG,n (%) 43 (72) 51 (84) 94 (78)
TB,n (%) 17 (28) 10 (16) 27 (22)

MH, macular hole; ILM, internal limiting membrane; CVA, corrected visual acuity; ICG, indocyanine green; TB, trypan blue;
SD, standard deviation.

Downloaded from intl.iovs.org on 08/07/2022



Predicting Visual Improvement After Macular Hole Surgery TVST | April 2022 | Vol. 11 | No. 4 | Article 6 | 7

Table 3. Performances of the Models on the Held-Out Test and Using Cross-Validation

Models F1 Scores AUROC ACC SP SN PPV NPV

Clinical
Train 78.2 79.3 76.0 88.5 71.7 80.0 72.9
Test 79.7 80.6 80.2 89.7 72.3 80.0 81.8

OCT-based DL
Train 67.1± 28.9 77.3± 10.3 69.8± 3.6 76.9± 25.2 65.4± 15.6 57.6± 14.4 81.4 ± 9.0
Test 61.5± 23.7 72.8± 14.6 63.9± 13.2 70.8± 30.2 60.2± 17.9 60.2± 15.4 76.9± 15.4

Hybrid
Train 78.0± 1.7 84.1 ± 1.6 76.9 ± 4.2 79.0± 16.8 76.4 ± 26.8 74.2± 9.4 78.8± 7.6
Test 80.4 ± 7.7 81.9 ± 5.2 78.7± 2.9 91.3 ± 15.9 67.8± 26.9 77.4± 4.3 80.8± 6.7

Clinical cross-validation
Train 77.0 ± 2.1 82.4 ± 2.7 76.5 ± 5.3 84.7± 9.9 64.2± 19.9 72.6± 9.5 83.2 ± 6.9
Test 81.0 ± 7.1 81.5 ± 11.2 80.3 ± 10.8 97.2 ± 5.0 55.4± 23.2 70.4± 11.0 86.7± 5.9

OCT-based DL cross-validation
Train 74.0± 3.7 75.3± 6.9 73.5± 7.3 85.2 ± 8.5 53.8± 21.5 66.8± 9.0 79.5± 7.3
Test 76.3± 6.8 74.8± 11.1 74.9± 10.3 87.3± 11.2 57.2± 25.8 70.3± 13.5 81.3± 14.6

Hybrid cross-validation
Train 76.8± 2.6 82.2± 3.2 76.4± 5.6 80.6± 9.8 70.1 ± 20.0 75.7 ± 10.5 80.0± 6.0
Test 80.1± 7.6 81.7± 10.6 79.3± 10.7 92.4± 9.3 60.2 ± 23.6 72.3 ± 12.6 90.6 ± 10.3

DL, deep learning; AUROC, area under the receiver operating characteristic curve; ACC, accuracy; SP, speci�city; SN, sensi-
tivity; PPV, positive predictive value; NPV, negative predictive value.

Best means are highlighted.

Heatmaps illustrated the most important region for
decision making in our OCT-based DL model (Fig. 3).
The fovea was identified as the most critical region for
prediction of the clinical ground truth, suggesting that
general MH morphology is considered by the model.

For both regression-based models (i.e. clinical data
only and hybrid), we reported feature importance for
both models in Figure 4. We see that, for both models,
the baselineCVAwas themost important feature, being
assigned 63.0 ± 0.0% of the model’s weight for clini-
cal data only and 59.1 ± 6.9% in the hybrid model.
Notably, the OCT prediction only contributes moder-
ately to the hybrid model’s output, as its importance
ratio is 9.6 ± 4.2%.

We also reported in Table 4 the differences in
the pre-operative and postoperative factors between
eyes predicted correctly and incorrectly by the hybrid
model. It was more difficult for the hybrid model to
predict the accurate visual outcome when the MH size
was smaller (180 ± 38 versus 280 ± 103 μm; P = 0.01).
MH size was higher in the training set compared to the
test set (357 ± 171 and 256 ± 101 μm, respectively; P =
0.002) which may explain the lower performances due
to less examples of small MH in the training of the
DL model. The three most difficult cases to predict are
shown in Figure 5.

Table 5 shows the performances of our hybridmodel
when applied to unclosed MH cases in comparison
to our held-out test set of closed MH cases. Overall,

we noted no significant performance difference when
testing on unclosed MH cases. F1 scores, AUROC,
and ACC for the hybrid model tested with closed MH
versus unclosed MH: 80.4 ± 7.7, 81.9 ± 5.3, and 78.7
± 2.9 versus 77.8 ± 1.4, 79.3 ± 3.1, and 79.4 ± 1.9.

Discussion

In this study, we developed a hybrid model that
used DL on pre-operative HD-OCT B-scans and logis-
tic regression on clinical features to predict CVA
improvement � 15 ETDRS letters at 6 months in closed
MH after a vitrectomy surgery. Despite the limited
total number of OCT scans (n = 242), both our
models based on clinical data and OCT scans had
good discriminative performances. Combining both
models into a hybrid model using late fusion yielded
marginally better performance, but the improvement
was not statistically significant when considering 95%
CIs (clinical data only: AUROC of 80.6 and F1 score
of 79.7 versus hybrid model: AUROC of 81.9 ± 5.2
and F1 score of 80.4 ± 7.7); conclusions were similar
when we used cross-validation. Given the fact that the
hybrid model does not attribute much weight to the
prediction provided by the HD-OCT scans (i.e. 9.6
± 4.2%), it appears that clinical data regression and
OCT-based DL are correlated. Much of the informa-
tion provided by the OCT-based DL model is likely
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Figure 2. The receiver operating characteristic (ROC) curves on the cross-validation and held-out test set for all three models. We report
the mean value and a 95% CI computed from 100 independent runs for the DL and hybrid models and 25 runs for the clinical data regression
model. For each independent run, we plotted the corresponding ROC curve in a di�erent color.
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Figure 3. Visualization heatmap for prediction of the clinical ground truth. The heatmap was generated by Gradient-weighted Class Activa-
tion Mapping (Grad-CAM). The heatmap highlights the pathological area (fovea) as being most important for accurate prediction of CVA
improvement after surgery in HD-OCT B-scans. (A) Original image. (B) Grad-CAM.

Figure 4. Feature importance ratio (%) attributed by the regression models with and without the addition of the OCT-based prediction.
For each feature, we reported the average and standard deviation computed from 10 independent runs. The standard deviation is 0 for all
features when using only clinical data because the clinical features are always strictly the same in this case. MH, macular hole; CVA, corrected
visual acuity.

already represented in the clinical data only model as
MH morphology in baseline CVA, size, and duration
of the MH. Moreover, we tested our hybrid model on
the unclosed MHs of our cohort and the results were
similar compared to the held-out test with the closed
MHs (Table 5), which highlights that the visual predic-
tion of our model is able to generalize to MH that
failed to close after the surgery. Thus, the closure of the
MH may not be a crucial data to obtain when we have
pre-operative OCT and clinical variables (especially
VA). This may be explained by the fact that informa-
tion extracted from OCT provides information on the
closure of theMH (e.g. largeMH size makes closure of
the hole less likely). In this way, training a model with
a MH that has not closed may not be essential.

Our model based on OCT-based DL is a new and
promising alternative to clinical data for prediction of
outcomes after surgery. This can lead to new appli-
cations in ophthalmology in the future. However, our
results need to be contextualized. The difficulty of the

task is greater than the DL image classification that
detects retinal diseases on OCT as MH, where the
AUROC is often much higher (e.g. 97.8%).10 Our task
is difficult even for an experienced retinal specialist, it is
therefore expected that our combined predictionmodel
cannot reach near-perfect accuracy. Other studies used
DL technology to predict anatomic outcome after
MH surgery.23,24 Despite similarities between these
two tasks, the task to predict MH status (closed or
open) after the vitrectomy seems to be easier. MH
closure essentially amounts understanding the shape
of the MH, whereas predicting visual outcome also
requires understanding how one MH’s shape and its
restoration impacts the patient’s VA. The postoper-
ative integrity of some layers of the retina like the
external limiting membrane (ELM) and the ellipsoid
zone are correlated with postoperative VA.25 The DL
modelmust then include the prediction of arrangement
and reorganization of these layers to predict the VA
gain.
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Table 4. The Di�erences in the Pre-Operative and Postoperative Factors Between Eyes Predicted Correctly and
Incorrectly by the Hybrid Model

Eyes Predicted Correctly (n = 13) Eyes Predicted Incorrectly (n = 4) P Value

Age, years± SD 70± 7 66 ± 3 0.13
Sex 0.83

Female,n (%) 9 (69) 3 (75)
Male,n (%) 4 (31) 1 (25)

Baseline CVA, letters± SD 51± 19 49 ± 11 0.80
MH size, µm ± SD 280± 103 180± 38 0.01
MH duration , weeks± SD 9± 7 9 ± 4 1.00
Pseudophakic,n (%) 2 (15) 2 (50) 0.15
Phacovitrectomy ,n (%) 0 (0) 0 (0) 1.00
CVA at 6 months, letters± SD 67± 7 66 ± 3 0.69
CVA gain≥15 letters ,n (%) 6 (46) 2 (50) 0.90
Stage of MH 0.05

Stage 2,n (%) 1 (8) 2 (50)
Stage 3,n (%) 9 (69) 1 (25)
Stage 4,n (%) 3 (23) 1 (25)

MH, macular hole; CVA, corrected visual acuity; SD, standard deviation.
MH size is smaller in the eyes predicted incorrectly.

Figure 5. Horizontal HD-OCT of the three most di�cult cases to predict on the held-out test with the hybrid model.

Table 5. Performances of the Hybrid Model on the Held-Out Test on Unclosed Versus Closed Macular Holes After
the First Vitrectomy

Hybrid Model F1 Scores AUROC ACC SP SN PPV NPV

Test set (closed MH) 80.4 ± 7.7 81.9± 5.2 78.7± 2.9 91.3± 15.9 67.8± 26.9 77.4± 4.3 80.8± 6.7
Unclosed MH set 77.8 ± 1.4 79.3± 3.1 79.4± 1.9 100.0± 0.0 72.7± 2.0 69.7± 1.0 100.0± 0.0

DL, deep learning; AUROC, area under the receiver operating characteristic curve; ACC, accuracy; SP, speci�city; SN, sensi-
bility; PPV, positive predictive value; NPV, negative predictive value.

The performances are similar which indicates that our hybrid model well generalized to MH that failed to close after the �rst
vitrectomy.

These results are interesting in real-world clinical
settings. Prediction of postoperative visual outcomes
can allow clinicians to give a more accurate prognosis
to patients and help alleviate their anxiety. This could

eventually help ophthalmologists make better surgi-
cal decisions in patients with a poor visual prognosis.
Our model is built on standard surgical methods for
primary MHs with no other pathologic disease that
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could potentially affect VA, but future investigations
could help to predict vision in eyes with concomitant
other eye diseases, such as diabetic macular edema.
Although the difficulty of this task is greater, advanced
work in DL in connection with this pathology could be
favorable.11

OCT imaging is a useful way of measuring various
aspects of MH morphology with high precision and
reproducibility.26 Some OCT-defined parameters have
been used as prognostic factors of visual outcomes
in closed MH after surgery.6–8 However, these OCT-
defined parameters were evaluated individually in
previous studies. The accuracy and applicability of
these prediction algorithms using single factors are
limited, whereas visual outcomes after MH surgery
are influenced by multiple factors. Clinical data are
also crucial to better understand VA improvement.
Three characteristics are important for prediction
and included in our model: pre-operative VA, MH
duration, and MH size.2,4,5 Eyes with better baseline
VA generally obtain better postoperative VA, whereas
eyes starting with worse VA have more potential
VA gain.27–29 Moreover, MHs of shorter durations
are associated with better visual outcomes as the
integrity of the macular structure and ELM are
better preserved.25 Furthermore, an inverse correlation
between MH size and postoperative VA is well recog-
nized, with larger MH typically associated with worse
visual outcomes.30,31 Lens status was also included (i.e.
phakic or pseudophakic) to limit the effect of progres-
sive cataract development in a patient with a phakic
lens on postoperative VA. In our study, we propose a
straightforward way to integrate DL on OCT images
and relevant clinical data to make accurate predictions
of postoperative visual improvement.

Concurrently to our work, Obata et al. also inves-
tigated the task of predicting VA after MH surgery,
finding that a DL model on OCT scans performed
better than logistic regression from clinical data.32
Although closely related to our approach, their work
differed in the prediction task given to the model.
Indeed, whereas our approach aimed to provide binary
classification (whether the VA will increase by 15
ETDRS at 6months or not), their task was amulticlass
classification (whether a patient’s VA will be within
four different ranges after surgery). The latter was an
intuitively harder task and was probably the reason
behind their lower performances (precision of 46%
for the DL model) compared with ours. Moreover,
they compared their DL model to a multiple linear
regression model in which clinical data included pre-
operative VA, MH size, and age with no inclusion of
pseudophakic status. In our study, 15.2 ± 1.6% of
the model’s weight of the hybrid model was related to
pseudophakic status. This is likely less relevant inObata

et al.’s work given that they performed phacovitrec-
tomy in 99% (236/238) of patients with phakic lenses.

In future works, our approach can probably benefit
from using transfer learning. In transfer learning, a
DL model is initially trained on an auxiliary task
usually related to the task at hand.Using the pretrained
model’s weights as a starting point, the fully trained
model’s performance can then be improved with a
smaller sample size for the target task. This is of
particular interest in the medical field where imaging
data is more difficult to obtain in large quantities.33,34
Another interesting research direction would be to
consider other fusion schemes than late fusion21 for
the hybrid model. Indeed, whereas late fusion enjoys
the desirable property of preserving interpretability, it
still represents a very limited source of information
sharing between the clinical data and the OCT models.
Other approaches fall into the early and medium
fusion categories,21 potentially increasing the hybrid
model’s performance at the cost of losing interpretabil-
ity. Recently, one such early fusion model for predic-
tion of the anatomical outcome of MH surgery was
proposed by Xiao et al.35 who found that a hybrid
model had better performance than a model based
exclusively onOCT scans and clinical data (AUROCof
90.4, 80.4, and 79.7, respectively). We hypothesize that
significant gain in performance found when compared
to our work is attributable to the easier nature of the
anatomic task as well as their hybrid model’s increased
capacity. To this end, we hope that making our data
set and codebase publicly available will enable other
researchers to further progress on the proposed task,
by testing the above proposedmethods or through their
own alternatives.

This study has limitations. As seen in Table 1, the
DL model trained on MH with larger diameters than
in the test set (P = 0.02) and ended up making more
mistakes on smaller MH sizes, as seen in Table 4.
This discrepancy in the MH sizes between sets was
an artifact of our random sampling procedure to
separate the train and test patients. In our procedure,
we randomly assigned the MHs in the groups, ensur-
ing the visual outcomes in both sets were as similar as
possible while attempting to also do the same for clini-
cal features. Considering the high variance in patients
across all features and the small size of the test set (17
patients), one can hardly expect to have feature distri-
butions that are as similar as the two sets we used.
Moreover, it is well known that baseline CVA is the
most important clinical predictor (hybridmodel weight
of baseline CVA: 59.1 ± 6.9%), and this information
was separated adequately between train and test sets.4
We considered our random split to be as accurate as
possible given our limited number of patients. It is to
be expected that the model will be more accurate on
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patients that are similar to what it was trained on, so
the lower occurrence of large MH sizes in the train-
ing set probably explains why the model’s performance
worsens on smaller MH sizes. One way to possibly
alleviate this performance discrepancy would be to use
stratification based on the MH size attribute. We chose
not to use stratification because it would have signif-
icantly reduced the amount of data available to train
on, which was already a bottleneck for our DL model.

Moreover, cataract surgery can have a significant
impact on the results, but we took all the measures
to limit its effect. Eyes with significant cataract prior
to surgery and eyes that developed clinically signifi-
cant cataract during the 6 months of follow-up were
excluded. Moreover, we selected the prediction at 6
months to minimize the development of cataract in
phakic eyes. In addition, few eyes had phacovitrectomy
(1 eye) and no patients had a cataract surgery during
the follow-up.

Our model had a relatively small sample size, issued
from a single center. Perspectives for external validation
are underway. Currently, our hospital center does not
have new data to assess external validity and no public
data set contains OCTwith the necessary clinical infor-
mation as CVA.36 That said, this is a preliminary study
to evaluate the feasibility of predicting postoperative
CVA improvement with DL methods. Further studies
are also needed to determine the mechanisms guiding
model prediction.

In conclusion, despite the limited total number
of OCT scans, both models from clinical data and
OCT scans had good discriminative performances.
Combining both models into a hybrid model yielded
marginally better performance, although the improve-
ment was not statistically significant. Our models
allow prediction of visual improvement after success-
ful MH closure surgery. These models could eventu-
ally help ophthalmologists for surgical planning of MH
surgery and better care for patients with tailored visual
prognoses.
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P, Malukiewicz G. Long-Term Anatomic and
Functional Outcomes afterMacular Hole Surgery.
J Ophthalmol. 2018;2018:3082194.

26. Ruiz-Moreno JM, Staicu C, Piñero DP, et al. Opti-
cal coherence tomography predictive factors for
macular hole surgery outcome. Br J Ophthalmol.
2008;92(5):640–644.

27. Scott RA, Ezra E, West JF, Gregor ZJ. Visual
and anatomical results of surgery for long standing
macular holes. Br J Ophthalmol. 2000;84(2):150–
153.

28. Jaycock PD, Bunce C, Xing W, et al. Outcomes
of macular hole surgery: implications for surgical
management and clinical governance. Eye (Lond).
2005;19(8):879–884.

29. Gupta B, Laidlaw DA, Williamson TH, Shah
SP, Wong R, Wren S. Predicting visual suc-
cess in macular hole surgery. Br J Ophthalmol.
2009;93(11):1488–1491.

30. Ezra E, Gregor ZJ, Morfields Macular Hole
Study Group Report No. 1. Surgery for idio-
pathic full-thicknessmacular hole: two-year results
of a randomized clinical trial comparing natural
history, vitrectomy, and vitrectomy plus autolo-
gous serum:MorfieldsMacular Hole Study Group
RAeport no. 1.ArchOphthalmol. 2004;122(2):224–
236.

31. Ullrich S, Haritoglou C, Gass C, Schaum-
berger M, Ulbig MW, Kampik A. Macular
hole size as a prognostic factor in macular
hole surgery. Br J Ophthalmol. 2002;86(4):390–
393.

32. Obata S, Ichiyama Y, Kakinoki M, et al. Predic-
tion of postoperative visual acuity after vitrectomy
for macular hole using deep learning-based artifi-
cial intelligence.GraefesArchClin ExpOphthalmol.
2022;260:1113–1123.

33. Xie Y, Richmond D. Pre-training on grayscale
imagenet improves medical image classification. In
Proceedings of the European Conference on Com-
puter Vision (ECCV) Workshops. 2018: pp. 476–
484.

34. Rajpurkar P, Park A, Irvin J, et al. AppendiXNet:
Deep Learning for Diagnosis of Appendicitis from
A Small Dataset of CT Exams Using Video Pre-
training. Sci Rep. 2020;10(1):3958.

Downloaded from intl.iovs.org on 08/07/2022

https://doi.org/48550/arXiv:1902.07208
https://doi.org/arXiv:1412.6980


Predicting Visual Improvement After Macular Hole Surgery TVST | April 2022 | Vol. 11 | No. 4 | Article 6 | 14

35. Xiao Y, Hu Y, Quan W, et al. Development
and validation of a deep learning system to clas-
sify aetiology and predict anatomical outcomes
of macular hole [published online August 4,
2021]. Br J Ophthalmol, https://doi.org/10.1136/
bjophthalmol-2021-318844.

36. Khan SM, Liu X, Nath S, et al. A global review
of publicly available datasets for ophthalmological
imaging: barriers to access, usability, and general-
isability. Lancet Digit Health. 2021;3(1):e51–e66.

Amended April 15, 2022: A few very minor style
changes were made to the text.

Downloaded from intl.iovs.org on 08/07/2022

https://doi.org/10.1136/bjophthalmol-2021-318844

