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Introduction

To increase our understanding of risk factors for
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Purpose: To assess the quality of optical coherence tomography (OCT) grading
algorithms for retinal biomarkers of age-related macular degeneration (AMD).

Methods: Following a systematic review of the literature data on detection and
quantification of AMD retinal biomarkers by available algorithms were extracted and
descriptively synthesized. Algorithm quality was assessed using a modified version of
the Quality Assessment of Diagnostic Accuracy Studies 2 checklist with a focus on
accuracy against established reference standards and risk of bias.

Results: Thirty five studies reporting computer-aided diagnosis (CAD) tools for
qualitative analysis or algorithms for quantitative analysis were identified. Compared
with manual assessment in reference standards correlation coefficients ranged from
0.54 to 0.97 for drusen, 0.80 to 0.98 for geographic atrophy (GA), and 0.30 to 0.98 for
intra- or subretinal fluid and pigment epithelial detachment (PED) detection by
automated algorithms. CAD tools achieved area under the curve (AUC) values of 0.94
to 0.99, sensitivity of 0.90 to 1.00, and specificity of 0.89 to 0.92.

Conclusions: Automated analysis of AMD biomarkers on OCT is promising. However,
most of the algorithm validation was performed in preselected patients, exhibiting
the targeted biomarker only. In addition, type and quality of reported algorithm
validation varied substantially.

Translational Relevance: The development of algorithms for combined, simulta-
neous analysis of multiple AMD biomarkers including AMD staging and the
agreement on standardized validation procedures would be of considerable
translational value for the clinician and the clinical researcher.

yet been translated into epidemiological studies, as the
manual grading of the increasing data volumes
generated in multimodal imaging is unfeasible. Thus,

translational vision science & technology

the onset and progression of age-related macular
degeneration (AMD), the leading cause of irreversible
severe vision loss among Caucasians in all developed
countries, we need large, prospective epidemiological
studies.' In order to accurately stage AMD and assess
progression, we increasingly rely on multimodal
retinal imaging in a clinical context. This has not

semi- or fully automated algorithms are necessary to
grade image data generated in epidemiological
studies.

Optical coherence tomography (OCT) is an inte-
gral part of multimodal imaging and of increasing
importance in standard clinical care. The image data
volume generated by OCT is particularly high (up to
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926
search results through database
and hand search

Screening for eligibility
(title, abstract,
full-text where necessary)

861 irrelevant

65 relevant
faiitext 30 publications
review about algorithms already
described elsewhere

35 publications on
newly described
algorithms

Figure 1. Flowchart depicting the literature search on algorithms
for analysis of AMD biomarkers on OCT.

hundreds of B-Scans per examination), its manual
analysis can consume a tremendous amount of time
and, to date, we lack established and validated means
of semi- or fully automated grading for AMD
biomarkers on OCT. The first, very general approach
in automated OCT analysis was automated retinal
layer segmentation with subsequent thickness calcu-
lations, which can be helpful in a variety of retinal
diseases as an unspecific diagnostic marker.” Howev-
er, automated segmentation implemented in proprie-
tary OCT software is of varying quality and
frequently encounters segmentation errors in the
presence of retinal pathology.” > Recently, substantial
efforts have been made to develop automated image
analysis for detection of AMD-specific biomarkers,
like drusen, geographic atrophy (GA), and sub- and
intraretinal fluid, enabling a more detailed quantifi-
cation of these biomarkers.

Thus, in this article we present an overview of the
currently available algorithms for semi- and fully
automated OCT image analysis of retinal AMD
biomarkers.

Eligibility Criteria for Considering Studies for
This Review

Search Methods for Identifying Studies

Our search strategy, selection of publications, and
reporting of results were conducted in accordance
with the Cochrane recommendations for systematic
reviews. Literature was searched in MEDLINE,
MEDLINE In-Process, Science Citation Index Ex-
panded, Conference Proceedings Citation Index -
Science, Book Citation Index - Science, Emerging
Sources Citation Index, Korean Citation Index, and
Scientific Electronic Library Online Citation Index
for published studies up to March 2016. Detailed
information about the search terms and formulas can
be found in Supplementary Table S1. The initial
search yielded 926 articles. After screening of all
abstracts for eligibility, 65 references were included in
the full-text review (Fig. 1). Study authors were
contacted to provide additional data if required.
Reference lists of manuscripts reviewed in full were
hand searched for additional relevant articles. All
included studies reported having obtained ethics
approval.

Study Selection

Articles reporting algorithms quantifying or qual-
itatively analyzing retinal biomarkers of AMD on
OCT images were included. Studies using OCT
angiography or polarization-sensitive OCT were
excluded, as were nonhuman studies. A huge body
of literature is available on the general topic of
automated OCT image analysis and much of it may,
with some modifications, be applicable to AMD.
However, in order to limit the scope of our already
quite extensive survey, we decided to exclude works
that did not report qualitative or quantitative AMD
biomarker analysis. For example, studies improving
visualization only or reporting retinal layer segmen-
tation or retinal thickness measurements only were
deemed irrelevant for this review. In case of any
uncertainty a senior investigator (RPF) was consult-
ed. Conference abstracts were excluded in case they
were later published as a journal article, which was
included in the review.
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Data Collection and Risk of Bias Assessment

Data on OCT devices and image acquisition
protocols, number of included eyes, used reference
standards, algorithm functionality, validity, reliabili-
ty, limitations, relations to other algorithms, key
conclusions of the authors, and other relevant
information were extracted. Two independent asses-
sors (MWMW and JB) used a modified version of the
Quality Assessment of Diagnostic Accuracy Studies 2
(QUADAS-2) checklist (see Supplementary Table S2
for details), which was adapted to the requirements
for assessment of automated OCT analysis by
including the following: algorithm training/develop-
ment and testing in separate patient collectives,
objective comparison to reference standard with index
test, manual double grading for the reference stan-
dard, and blinding of graders and intragrader
repeatability. Risk of bias was assessed regarding
patient selection, conduct, and interpretation of index
and reference tests and flow and timing. Agreement
on study quality was high between both assessors with
a kappa score of 0.85. Any ambiguities were
adjudicated by a senior investigator (RPF). Risk of
bias was defined as high if it was increased in any of
the aforementioned fields. A summarizing statement
regarding increased risk of bias is included in Tables 1
through 5. Detailed assessments of risk of bias are
provided in Supplementary Table S2.

Data Synthesis and Analysis

Algorithms were categorized based on qualitative
or quantitative analysis, and the latter were further
categorized dependent on the analyzed biomarkers.
Quality of the algorithms was assessed by comparison
of their reported accuracy with the reference standard
employed in each respective study as well as by
assessing the appropriateness of chosen reference
standards and validation samples.

We identified a total of 35 algorithms for
automated or semiautomated analysis of retinal
AMD biomarkers on OCT (Fig. 1). These include
27 for quantitative and eight for qualitative assess-
ment. Algorithms for the quantitative analysis include
the following biomarkers: drusen, GA, pigment
epithelial detachment (PED), and intra-/subretinal
fluid (Fig. 2). Algorithms for qualitative analysis will
be referred to as computer-aided diagnosis (CAD)
tools. The algorithm characteristics are summarized

Computer-aided-
diagnosis tools:
8

35 algorithms identified

Pigment
epithelial detachment:

Intra- / Subretinal fluid:
4

Geographic atrophy:
6

Figure 2.

Overview of the entity of included algorithms.

in Tables 1 through 5. Quantitative algorithms will be
presented by detected biomarker. For each category,
one exemplary algorithm is presented in brief and
interesting aspects of additional algorithms are
highlighted.

In brief, algorithmic image analysis is based on
intensity values, intensity gradients, and pixel position
within the image, which was used to generate a
segmentation of retinal layers or pathological struc-
tures. Based on the two-dimensional analysis, a three-
dimensional interpolation can be generated for
further analysis. En face images can be generated by
axial projection, referred to as summed voxel
projection (SVP). This can also be calculated for only
a part of the axial intensity, resulting in a partial SVP
(e.g., only for a specific part of the image, such as a
segmented layer on OCT). The different image
processing approaches used by the reviewed algo-
rithms are listed in Supplementary Table S3.

Drusen

Seven algorithms were published on drusen detec-
tion, mainly focusing on area covered by drusen and
total drusen volume, but also on drusen number and
maximum diameter (see Table 1). Where available,
their coefficient of correlation (CC) ranged from 0.54
to 0.97 when validated against manual grading on
OCT or color fundus photography (CFP). All except
one algorithm® relied on calculation of the difference
between the actual retinal pigment epithelium (RPE)
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segmentation and a calculated ideal RPE or Bruch’s
membrane. Two algorithms®’ used active contours
for RPE segmentation in which an object is delineated
by an energy-minimizing contour guided by the
surrounding image (e.g., based on intensity gradients
and internal forces dependent on the contour itself
such as continuity and smoothness).” In the algorithm
by Chen et al.,’ the RPE was detected using an
intensity threshold and interpolated to achieve a
smooth line. First, an ideal RPE free of any
deformations and then the difference between the
ideal and real RPE layer were calculated for drusen
identification. Finally, using an en face projection,
possible false-positive drusen were removed if they are
only present in one B-scan or based on their intensity
or shape information. De Sisternes et al.'” published
an approach in which 11 drusen features, including
information about drusen geometry, reflectivity,
texture, number, area, and volume were used for the
calculation of likelihood of progression from early
and intermediate to exudative AMD. Piecewise linear
regression with Lasso regularization was used and
prediction of progression was estimated. A frequent
limitation of algorithms for drusen detection was
underestimation of overall drusen burden.”'"'* The
authors attributed this to a “blind angle” of the
algorithms for very small drusen with only minimum
RPE elevation because of necessary preprocessing
steps for noise reduction and absolute thresholds for
RPE deviations detected as drusen.

Applications

Extension for algorithm from

Related Studies
and Clinical
number and individual drusen

Gregori G. et al.'® for drusen
size calculation

Risk of
Bias
Unclear

3.19) in

+
13.2) in manual CFP

automated OCT vs. 53.7

(

analysis vs. 100 (+16.2)
in manual IR analysis

Performance
(Reference Standard)
Bland-Altman plots:

Mean drusen number (SD):
Drusen number with
increasing drusen

underestimation of
amount

13.2 (
increasing

x

Geographic Atrophy

Six algorithms on GA detection and area calcula-
tion were published (Table 2). Where available, their
CC and overlap ratio (OR) ranged from 0.80 to 0.98
and 0.59 to 0.82, respectively, when validated against
manual grading in partial OCT SVP, fundus-auto-
fluorescence (FAF), and red-free photography (RFP).
The common approach for GA detection on OCT was
a partial SVP of the choroid based on the increase in
reflectance intensity underneath Bruch’s membrane in
the area of GA. Chen et al.”* published an exemplary
algorithm using this approach. Their algorithm first
segmented the RPE with an adopted version of the
RPE-detection method used for their drusen detection
algorithm.” Then, a partial SVP beneath the RPE was
generated and the average axial intensity within this
slab was used to generate an en face image. In the en
face projection, an active contour model identified
GA. In order to speed up the algorithm, a global
binarization method was used to narrow down the
image regions analyzed for GA. In those cases where

Algorithm
Characteristics
Identification and
derived RPE elevation

counting of drusen
map

clusters in Cirrus-

Output
(automated)

Continued
AUC, area under the curve; CFP, color fundus photography; DOCTRAP, Duke OCT retinal analysis program; ICC, intraclass correlation; IR, infrared, OR,

overlap ratio; SD, standard deviation.

Diniz et al."> Number

Reference

translational vision science & technology
Table 1.

)
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the binarization results were far away from the real
GA boundaries, a region around the GA was
specified manually for further GA analysis. The
algorithm was also compared with the algorithm
described by Yehoshua et al.,”* currently implement-
ed in the Cirrus Software (Carl Zeiss Meditec, Jena,
Germany). A limitation of the algorithm by Chen et
al.”* was a generally underestimated GA area.

Geographic Atrophy and Drusen

One algorithm combined GA and drusen detec-
tion and was published in a fully automated and a
semiautomated version (Table 2). Chiu et al.”> used
abnormal thinning and thickening of a multiple-layer
complex called RPE-drusen complex (RPEDC),
defined by the inner aspect of the RPE plus drusen
material and the outer aspect of Bruch’s membrane,
in order to identify GA and drusen, respectively.
Subretinal drusenoid deposits were also included in
the RPEDC. After image downsampling, binariza-
tion was used to separate the hyperreflective inner
layers (retinal nerve fiber layer and the two
plexiform layers) from the outer hyperreflective
RPEDC. Subsequently, the internal limiting mem-
brane, the inner border of the RPEDC and Bruch’s
membrane were segmented by iteratively finding
shortest paths in a derived graph. In this approach,
each pixel corresponds to a node, edge weights were
based on intensity gradients, and shortest paths were
found between the left and right image boundaries.
The algorithm was less accurate on OCT scans
containing both GA and drusen versus solely drusen.
Beside the validation against manual segmentation
on OCT, no additional statistical analysis was
reported.

Pigment Epithelial Detachment

Out of four algorithms quantifying PED volume
(Table 3), two™>* were based on the same principle of
ideal to actual RPE comparison presented above, and
two>"** used the graph-based surface segmentation
approach by Li et al.*’ for fluid detection within
PEDs. The first two calculated PED area as well.
Three of the algorithms were validated against
manual segmentation on OCT; however, different
statistical methods were used. One of these was the
drusen quantification algorithm developed by Gregori
et al.'” (see Table 1), which was licensed to Carl Zeiss
and used for PED quantification.”® Segmentation
with this algorithm performed less well in cases with
GA.™

Intra-/Subretinal Fluid and Pigment
Epithelial Detachment

Eight algorithms on fluid-associated alterations
were found, four for intra- and subretinal fluid
detection only, and four that also include PEDs (see
Table 4). All were validated against manual segmen-
tation on OCT. However, the variety of statistical
methods used makes a direct comparison difficult.
The four algorithms detecting intra- and subretinal
fluid only were based on a variety of image analysis
methods such as gray level- or gradient-based
segmentation, active contours, and convolutional
neural networks. The latter is a state of the art
machine learning technique inspired by biological
neural networks within the visual cortex. The
algorithms detecting intra- and subretinal fluid as
well as PEDs were all graph-based and used classifiers
for fluid detection, except one.*” In brief, classifiers
assign an object to a class, for example, based on the
class of the k most similar objects (k nearest-neighbor
classifier) or a “forest” of randomly generated
decision-trees during a learning process (random
forest classifier). The algorithm by Zheng et al.*!
used intensity gradient-based edge maps for segmen-
tation of fluid-filled regions. The true positive
delineated regions were then manually selected. In
validation against manual OCT segmentation the dice
coefficient was used, which is a commonly used
measure for comparison of similarity in image
analysis.

Some of the presented algorithms were imple-
mented in the Cirrus software and are commercially
available. This is the case for the algorithm
developed by Gregori et al.,'>*° which was used for
drusen and PED’® quantification and for the
algorithm on GA quantification described by Ye-
hoshua et al.”* The implemented algorithms for
drusen and GA detection got Food and Drug
Administration approval as a part of the Cirrus
HD-OCT 6.0 software.

Computer-Aided Diagnosis Tools

For algorithms with qualitative analysis a classi-
fication process is needed, for which machine
learning algorithms are often used. In order to build
a model for the classification process, the algorithm
analyzes a training dataset, in which the diagnosis of
all subjects is known. Then, a testing dataset is used
to evaluate the model’s performance. A frequently
used method in machine learning are support-vector
machines (SVMs), in which an optimal separating
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Output

Table 4. Algorithms for Intra- or Subretinal Fluid and PED Quantification

Algorithm Characteristics

Reference
Intra-/ Fernandez et al.*°
subretinal
fluid
Zheng et al.*!
Pilch et al.>?
Schlegl et al.
(Schlegel T, et al.
I0VS 2015;56: ARVO
E-abstract 5920)
Intra-/ Dolejsi et al.*
subretinal
fluid & PED
Chen et al.*®
Ding et al.>®
(conference
abstract)
Xu et al.®!

Area, volume
(semiautomated)

Area
(semiautomated)

Area, volume

(automated)

Area (automated)

Volume
(semiautomated)

Volume
(automated)

Detection
(automated)

Volume
(automated)

Active contours—based segmentation of
fluid regions with manual initialization

Gradient-based edge-maps segmentation
+ Split Bregman method®®' + manual
selection (not delineation) of fluid
regions

Gray-level segmentation based on local
feature based k-means cluster analysis and
k-nearest neighbor classification*®>3>*

Convolutional neuronal networks based
individual pixel classification as normal,
intraretinal fluid, or subretinal fluid>>

Retinal layer and fluid filled region
segmentation based on graph searc
with manual initialization

h47

Segmentation of fluid-filled regions with the
combination of k nearest-neighbor
classification based on 52 features*® and
optimal surface detection®®

Segmentation of intraretinal fluid with a
combination of optimal surface
detection®®>° and a variational approach
solved using the Split Bregman
algorithm®>® °'; classification as true or false
positive fluid based on shape and intensity
features of fluid surrounding area using a
random forest classifier®

11-layer segmentation based on graph
search,* layer-dependent stratified
sampling for fluid segmentation with a k
nearest-neighbor-classifier>® based on 52
extracted voxel features*®

translational vision science & technology
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Table 4. Extended
Related Studies

Performance and Clinical
Reference (Reference Standard) Risk of Bias Applications
Intra-/ Fernandez et al. Subjective evaluation: 95% of High
subretinal good or fair segmentation (reference
fluid Plot-based comparison with standard)
manual segmentation on OCT
Zheng et al.*' ICC: 0.90-0.98 (OCT) Unclear

Dice Coefficient: 0.72-0.79 (OCT)
Reliability: ICC: 0.998-0.999, Dice
coefficient: 0.96-0.98

Pilch et al.>? Bland-Altman plot: discrepancies Unclear Follow-up of 1
in area measurements were patient with serous
within the range of the area retinal detachment
deviations among the experts due to exudative
(OCT) AMD over 4 years
Schlegl et al. Overlap accuracy: healthy: 98%;  Unclear
(Schlegel T, et al. intraretinal fluid: 90%; subretinal

JOVS 2015;56: ARVO fluid: 92% (OCT)
E-abstract 5920)

Intra-/ Dolejsi et al.* Coefficient of determination: 0.91 High
subretinal (previous semiautomated graph-  (reference
fluid & PED cut algorithm) standard)

Reliability: mean volume difference
0.12 = 0.2 mm?

Chen et al.* CC: 0.95 (OCT) High Precursor and
TPV, FPV, and relative volume (reference related
difference ratio: 86.5%, 1.7%, standard) algorithms:
| and 12.8% (OCT) Quellec et al.>®
0 Shi et al.: TPV, FPV, and PPV for Dolejsi et al.*°
% PED: 84.1%, 0.44% and 81.2% Niemeijer et al.”’
c (OCT)
S Ding et al.>® Sensitivity: 75.2% (OCT) Unclear
8 (conference PPV: 14.8% (OCT)
o abstract)
(D)
(@)
[
Q
(@)
(D)
- 61 ogs . .
o Xu et al. Positive and true negative rate:  Unclear Related algorithm:
<£ 96% and 0.16% (OCT) Chen et al.*®
—_— Coefficient of determination: 0.997
®
c (OCT)
=i
Q CC, coefficient of correlation; FPV, false positive volume; ICC, intraclass correlation; PED, pigment epithelial detachment;
2 PPV, positive predictive value; TPV, true positive volume.
(]
LS
)
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linear boundary is generated for classification,®’
possibly after implicit nonlinear mapping to a
higher-dimensional space. For mapping of the data,
any OCT-derived information can be used. Eight
CAD tools were identified, seven for AMD and one
for PED classification. They had a variety of
readouts and used different approaches (Table 5).
Where available, their sensitivity and specificity
ranged from 0.58 to 1.0 and 0.64 to 1.0, respectively,
against the reference standard of manual classifica-
tion on OCT. As an example, the algorithm by
Srinivasan et al.,*’ distinguished between healthy
retina, dry AMD, and diabetic macular edema
(DME). A relatively small area of the B-scan,
consisting of the 150 central A-scans and only the
40 pixels above and 5 pixels below the mean RPE
level was cropped for analysis. For classification,
histograms of oriented gradients (HOG) descriptors
were used. To compute these, the image was divided
into small spatial cells. For each cell, a contrast-
normalized one-dimensional histogram of the direc-
tions of the spatial gradients, weighted by their
magnitudes, was calculated. This process was per-
formed four times with different properties. Three
SVMs were trained to correctly classify the B-scans
based on the extracted HOG features: normal versus
AMD, normal versus DME, and AMD versus
DME.

Discussion

Most of the algorithms identified perform well
when compared with manual grading. However, the
samples used for assessment of algorithm quality were
small and preselected for the presence of a particular
biomarker and the absence of additional pathology in
most cases. In addition, availability of high-quality
images suitable for algorithm development and
assessment was a prerequisite for inclusion into
studies. Against this background, available algo-
rithms for the automated detection and quantification
of AMD biomarkers on OCT image data are
promising; however, further quality assessment as
well as assessment of their performance in samples
that may contain multiple pathologies, and are thus
more representative of a wider utilization are war-
ranted.

Of all AMD biomarkers, GA was detected most
robustly, while the greatest variability of performance
was observed in algorithms for intra-/subretinal fluid
and PED detection. This might be due to a greater
diversity of how the biomarker fluid can present on

OCT compared with drusen and GA. While the
technical approaches for the different algorithms for
drusen and GA segmentation are very similar for the
respective biomarker, there is a greater variability of
image analysis techniques for intra-/subretinal fluid,
PED, and CAD tools. This might be due to the
availability of very general and easily accessible image
analysis approaches for drusen and GA as well as
their comparatively uniform appearance on OCT.
However, although comparison of the different
algorithms reported is difficult due to a lack of
standardization in their quality assessment, the best
overall performance seems to have been achieved by
CAD tools. This is likely the case as the sole step of
detecting a pathology might be less prone to errors
than the combination of detecting and quantifying it.
The most impeding barrier for the comparison of
identified algorithms is the inconsistency in their
quality assessment. A substantial number of articles
reported repeatability or a numerical comparison of
measurements with the reference standard only. For
most algorithms, it is unclear whether the develop-
ment and evaluation of the algorithm was made in
separate patient samples, which is necessary in order
to prevent risk of bias and achieve reliable validation.
A highly relevant question is whether an algorithm
can be used in a routine, not preselected patient
sample. However, in most of the reviewed studies the
patient pool for testing was preselected for the
respective pathology (e.g., drusen). While this is
reasonable for the first stages of algorithm develop-
ment, it is not representative of typical AMD patients,
in whom multiple AMD biomarkers are present
simultaneously. Few algorithms combining analysis
of different AMD biomarkers were described so far,
like the very general approaches of Chiu et al.”> on
drusen and atrophy and of Chen et al.*® on
“symptomatic exudate-associated derangements” in-
cluding PEDs, intra- and subretinal fluid. Both
algorithms actually measured only one feature, which
comprised the respective biomarkers (RPEDC thick-
ness in the first and fluid regions in the second).
Algorithms for quantitative analysis of retinal
AMD biomarkers are not only available for OCT
images but also for other imaging modalities. A
significant number of algorithms for the analysis of
CFP were extensively reviewed elsewhere.”* Overall,
high accuracy was achieved. These algorithms func-
tioned with image filtering, texture-, threshold-,
clustering-, and edge-based detection, and recently
also included machine learning technology. In our
opinion, the combination of algorithms for different
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imaging modalities like CFP and OCT would be a
promising approach for enhancing algorithm accura-
cy and allowing comprehensive disease classification.

Most of the drusen quantification algorithms for
OCT calculate total drusen area and volume and do
not include individual drusen parameters such as size,
which are necessary for AMD classification (see Table
1). Interesting exceptions are two algorithms, in which
individual drusen size was assessed.' "' Diniz et al.'?
differentiated small (<63 um), intermediate (63—125
pum), and large (>125 pm) drusen, however individual
drusen size was just roughly estimated under the
assumption of all drusen being perfect circles (area =
nr’ — diameter = 2 r). Another study classified AMD
on OCT according to the Age-related Eye Disease
Study Grading System (AGS) using maximum drusen
size and percentage of drusen area within the AGS
grid."" These two algorithms are promising examples
of how automated OCT analysis can be implemented
in AMD classification of early and intermediate
AMD. Classification is also available for other
AMD stages: CAD tools are capable of distinguishing
between healthy and early AMD™ and healthy and
exudative AMD (Schlegl T, et al. IOVS 2015;56:
ARVO E-abstract 5920).°*7 A classifier able to
differentiate early from advanced AMD is the next
step. There is already one algorithm, which partially
fulfills this and can discriminate between DME and
early AMD.®" As ME can also be due to exudative
AMD, this algorithm might also be capable to
differentiate early from wet AMD. Other algorithms
for OCT analysis for relatively unspecific retinal
biomarkers like intraretinal fluid were developed for
unrelated pathology, but might function similarly well
in AMD (e.g., for cystoid ME in vitreoretinal
disgase75 and for microcystic ME in multiple sclero-
sis’”).

So far, no automated quantification of other
retinal AMD biomarkers like pigmentary abnormal-
ities, reticular pseudodrusen (RPD), changes preced-
ing GA, and choroidal neovascularization (CNV) is
available. However, pigmentary changes can be
identified on OCT with a sensitivity of 66.5% and
specificity of 78.7% using hyperreflectivity.”” The
algorithm for combined drusen and GA detection
mentioned above” includes possible RDP within the
analyzed RPEDC, yet differentiation from conven-
tional drusen is not possible. One study quantified
drusen-associated photoreceptor layer thinning semi-
automatically.”®

The strengths of this first review on automated
OCT image analysis of AMD retinal biomarkers are

its systematic approach and the standardized quality
assessment of included algorithms. The main limita-
tion of this study is the absence of a uniform quality
assessment due to an inconsistent assessment of
algorithm quality and performance across studies.

In conclusion, automated analysis of AMD
biomarkers on OCT is promising; however, type
and quality of reported algorithm validation vary
substantially and most validation has been performed
in preselected patients only. The development of
algorithms for combined, simultaneous analysis of
multiple AMD biomarkers including AMD staging
and the agreement on standardized validation proce-
dures would be of considerable translational value for
the clinician and the clinical researcher.

Acknowledgments

This research did not receive any specific grant
from funding agencies in the public, commercial, or
not-for-profit sectors.

Disclosure: M.W.M. Wintergerst, None; T.
Schultz, None; J. Birtel, None; A.K. Schuster, None;
N. Pfeiffer, None; S. Schmitz-Valckenberg, None;
F.G. Holz, None; R.P. Finger, None

References

1. Klein R, Klein BE, Linton KL. Prevalence of age-
related maculopathy. The Beaver Dam Eye
Study. Ophthalmology. 1992;99:933-943.

2. Hee MR, Puliafito CA, Duker JS, et al.
Topography of diabetic macular edema with
optical coherence tomography. Ophthalmology.
1998;105:360-370.

3. Schlanitz FG, Ahlers C, Sacu S, et al. Perfor-
mance of drusen detection by spectral-domain
optical coherence tomography. Invest Ophthalmol
Vis Sci. 2010;51:6715-6721.

4. Schuetze C, Ahlers C, Sacu S, et al. Performance
of OCT segmentation procedures to assess
morphology and extension in geographic atro-
phy. Acta Ophthalmol. 2011;89:235-240.

5. Penha FM, Gregori G, Yehoshua Z, Feuer WJ,
Rosenfeld PJ. Identifying the boundaries of
retinal pigment epithelial detachments using two
spectral-domain optical coherence tomography
instruments. Ophthalmic Surg Lasers Imaging
Retina. 2013;44:10-16.

16

Downloaded from iovs.arvojournals.org on 06/25/2019

TVST | 2017 | Vol. 6 | No. 4 | Article 10



Wintergerst et al.

Jain N, Farsiu S, Khanifar AA, et al. Quantita-
tive comparison of drusen segmented on SD-OCT
versus drusen delineated on color fundus photo-
graphs. Invest Ophthalmol Vis Sci. 2010;51:4875—
4883.

. Farsiu S, Chiu SJ, Izatt JA, Toth CA. Fast

detection and segmentation of drusen in retinal
optical coherence tomography images. Proc.
SPIE 6844, Ophthalmic Technologies XVIII,
68440D February 11, 2008; doi:10.1117/12.
768624.

. Kass M, Witkin A, Terzopoulos D. Snakes: active

contour models. Int J Comp Vis. 1988;1:321-331.

. Chen Q, Leng T, Zheng L, et al. Automated

drusen segmentation and quantification in SD-
OCT images. Med Image Anal. 2013;17:1058—
1072.

de Sisternes L, Simon N, Tibshirani R, Leng T,
Rubin DL. Quantitative SD-OCT imaging bio-
markers as indicators of age-related macular
degeneration progression. Invest Ophthalmol Vis
Sci. 2014;55:7093-7103.

Iwama D, Hangai M, Ooto S, et al. Automated
assessment of drusen using three-dimensional
spectral-domain optical coherence tomography.
Invest Ophthalmol Vis Sci. 2012;53:1576—-1583.
Diniz B, Ribeiro R, Heussen FM, Maia M, Sadda
S. Drusen measurements comparison by fundus
photograph manual delineation versus optical
coherence tomography retinal pigment epithelial
segmentation automated analysis. Retina. 2014;
34:55-62.

Dijkstra EW. A note on two problems in
connexion with graphs. Numerische Mathematik.
1959;1:269-271.

Toth CA, Farsiu S, Chiu SJ, Khanifar AA, Izatt
JA. Automatic drusen segmentation and charac-
terization in spectral domain optical coherence
tomography (SDOCT) images of AMD eyes.
Invest Ophthalmol Vis Sci. 2008;49:5394-5394.
Gregori G, Wang F, Rosenfeld PJ, et al. Spectral
domain optical coherence tomography imaging of
drusen in nonexudative age-related macular
degeneration. Ophthalmology. 2011;118:1373—
1379.

Nittala MG, Ruiz-Garcia H, Sadda SR. Accuracy
and reproducibility of automated drusen segmen-
tation in eyes with non-neovascular age-related
macular degeneration. Invest Ophthalmol Vis Sci.
2012;53:8319-8324.

Yehoshua Z, Gregori G, Sadda SR, et al
Comparison of drusen area detected by spectral
domain optical coherence tomography and color

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

fundus imaging. Invest Ophthalmol Vis Sci. 2013;
54:2429-2434.

Gregori G, Yehoshua Z, Garcia CAD, et al.
Change in drusen area over time compared using
spectral-domain optical coherence tomography
and color fundus imaging. Invest Ophthalmol Vis
Sci. 2014;55:7662-7668.

Yehoshua Z, Wang F, Rosenfeld PJ, Penha FM,
Feuer WJ, Gregori G. Natural history of drusen
morphology in age-related macular degeneration
using spectral domain optical coherence tomog-
raphy. Ophthalmology. 2011;118:2434-2441].
Nathoo NA, Or C, Young M, et al. Optical
coherence tomography-based measurement of
drusen load predicts development of advanced
age-related macular degeneration. Am J Ophthal-
mol. 2014;158:757-761.

Diniz B, Rodger DC, Chavali VR, et al. Drusen
and RPE atrophy automated quantification by
optical coherence tomography in an elderly
population. Eye. 2015;29:272-279.

Ishikawa H, Stein DM, Wollstein G, Beaton S,
Fujimoto JG, Schuman JS. Macular segmenta-
tion with optical coherence tomography. Invest
Ophthalmol Vis Sci. 2005;46:2012-2017.

Chen Q, de Sisternes L, Leng T, Zheng L,
Kutzscher L, Rubin DL. Semi-automatic geo-
graphic atrophy segmentation for SD-OCT im-
ages. Biomed Opt Express. 2013;4:2729-2750.
Yehoshua Z, Garcia Filho CAA, Penha FM, et
al. Comparison of geographic atrophy measure-
ments from the oct fundus image and the sub-
RPE slab image. Ophthalmic Surg Lasers Imaging
Retina. 2013;44:127-132.

Chiu SJ, Izatt JA, O’Connell RV, Winter KP,
Toth CA, Farsiu S. Validated automatic segmen-
tation of AMD pathology including drusen and
geographic atrophy in SD-OCT images. Invest
Ophthalmol Vis Sci. 2012;53:53-61.
Tsechpenakis G, Lujan B, Martinez O, Gregori
G, Rosenfeld PJ. Geometric deformable model
driven by CoCRFs: application to optical coher-
ence tomography. Med Image Comput Comput
Assist Interyv. 2008;11:883—-891.

Hu ZH, Medioni GG, Hernandez M, Hariri A,
Wu XD, Sadda SR. Segmentation of the geo-
graphic atrophy in spectral-domain optical co-
herence tomography and fundus autofluorescence
images. Invest Ophthalmol Vis Sci. 2013;54:8375—
8383.

Li K, Wu X, Chen DZ, Sonka M. Optimal
surface segmentation in volumetric images-a
graph-theoretic approach. IEEE Trans Pattern
Anal Mach Intell. 2006;28:119-134.

6.
7
8
9
10.
11.
12.

3 13

S

2

S 14

(@]

()

+—

J

(b}

2 1s.

Q

(@)

(D)

c

i)

@D 1.

>

©

c

o

e

S 17

)

c

@

LS

)
17

Downloaded from iovs.arvojournals.org on 06/25/2019

TVST | 2017 | Vol. 6 | No. 4 | Article 10



Wintergerst et al.

Gibou F, Fedkiw R, Caflisch R, Osher S. A level
set approach for the numerical simulation of
dendritic growth. J Sci Comp. 2003;19:183-199.

Sethian JA. Level Set Methods and Fast March-
ing Methods: Evolving Interfaces in Computa-
tional Geometry, Fluid Mechanics, Computer
Vision, and Materials Science. New York: Cam-
bridge University Press; 1999.

Niu S, de Sisternes L, Chen Q, Leng T, Rubin
DL. Automated geographic atrophy segmenta-
tion for SD-OCT images using region-based C-V
model via local similarity factor. Biomed Opt
Express. 2016;7:581-600.

Chiu SJ, Li XT, Nicholas P, Toth CA, Izatt JA,
Farsiu S. Automatic segmentation of seven
retinal layers in SDOCT images congruent with
expert manual segmentation. Opt Express. 2010;
18:19413-19428.

Farsiu S, Chiu SJ, O’Connell RV, et al. Quanti-
tative classification of eyes with and without
intermediate age-related macular degeneration
using optical coherence tomography. Ophthal-
mology. 2014;121:162-172.

Folgar FA, Yuan EL, Sevilla MB, et al. Drusen
Volume and retinal pigment epithelium abnormal
thinning volume predict 2-year progression of
age-related macular degeneration. Ophthalmolo-
gy. 2016;123:39-50, e31.

Ahlers C, Simader C, Geitzenauer W, et al.
Automatic segmentation in three-dimensional
analysis of fibrovascular pigmentepithelial de-
tachment using high-definition optical coher-
ence tomography. Br J Ophthalmol. 2008;92:
197-203.

Penha FM, Rosenfeld PJ, Gregori G, et al.
Quantitative imaging of retinal pigment epithelial
detachments using spectral-domain optical coher-
ence tomography. Am J Ophthalmol. 2012;153:
515-523.

Sun Z, Chen H, Shi F, et al. An automated
framework for 3D serous pigment epithelium
detachment segmentation in SD-OCT images. Sci
Reports. 2016;6:21739.

Shi F, Chen X, Zhao H, et al. Automated 3-D
retinal layer segmentation of macular optical
coherence tomography images with serous pig-
ment epithelial detachments. IEEE Trans Med
Imaging. 2014;34:441-452.

Li K, Wu X, Chen DZ, Sonka M. Optimal
surface segmentation in volumetric images—a
graph-theoretic approach. IEEE Trans Pattern
Anal Mach Intell. 2006;28:119-134.

Dolejsi M, Abramoff MD, Sonka M, Kybic J.
Semi-automated segmentation of symptomatic

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

S1.

exudate-associated derangements (SEADs) in
3D OCT using layer segmentation. Presented
at: Biosignal 2010, June 2010, Brno, Czech
Republic.

Zheng Y, Sahni J, Campa C, Stangos AN, Raj
A, Harding SP. Computerized assessment of
intraretinal and subretinal fluid regions in
spectral-domain optical coherence tomography
images of the retina. Am J Ophthalmol. 2013;155:
277-286.

Ho J, Adhi M, Baumal C, et al. Agreement and
reproducibility of retinal pigment epithelial de-
tachment volumetric measurements through op-
tical coherence tomography. Retina. 2015;35:467—
472.

Penha FM, Gregori G, Filho C, Yehoshua Z,
Feuer WJ, Rosenfeld PJ. Quantitative changes in
retinal pigment epithelial detachments as a
predictor for retreatment with anti-VEGF thera-
py. Retina. 2013;33:459-466.

Filho C, Penha FM, Gregori G, Rosenfeld PJ.
Increasing volume of a retinal pigmented epi-
thelial detachment as a predictor of submacular
hemorrhage during anti-VEGF therapy. Oph-
thalmic Surg Lasers Imaging Retina. 2013;44:
204-207.

Lee KM. Segmentations of the Intraretinal Sur-
faces, Optic Disc and Retinal Blood Vessels in 3D-
OCT Scans [doctoral thesis]. Iowa City, IA:
University of Towa; 2009.

Chen X, Niemeijer M, Zhang L, Lee K, Abram-
off MD, Sonka M. Three-dimensional segmenta-
tion of fluid-associated abnormalities in retinal
OCT: probability constrained graph-search-
graph-cut. IEEE Trans Med Imag. 2012;31:
1521-1531.

Boykov Y, Veksler O, Zabih R. Fast approxi-
mate energy minimization via graph cuts. /[EEE
Trans Pattern Anal Mach Intell. 2001;23:1222—
1239.

Haralick RM, Shanmugam K. Textural features
for image classification. IEEE Transactions Syst
Man Cybern B Cybern. 1973;610-621.
Fernandez DC. Delineating fluid-filled region
boundaries in optical coherence tomography
images of the retina. /EEE Trans Med Imag.
2005;24:929-945.

Goldstein T, Bresson X, Osher S. Geometric
applications of the split Bregman method: seg-
mentation and surface reconstruction. J Sci
Comp. 2010;45:272-293.

Goldstein T, Osher S. The split Bregman method
for L1-regularized problems. SIAM J Imag Sci.
2009;2:323-343.

29.
30.
31,
32,
33,
34,
35,

o0

O 3.

)
[
e
(@)
(D]
+—
o3 37,
(D]
O
[
QD
3 3s.
(=
O
R
>
©
€ 39,

°

)

S

h
@ 40,
®
S

e

18

Downloaded from iovs.arvojournals.org on 06/25/2019

TVST | 2017 | Vol. 6 | No. 4 | Article 10



52.

53.

54.

55.

56.

57.

58.

59.

Wintergerst et al.

Pilch M, Stieger K, Wenner Y, et al. Automated
segmentation of pathological cavities in optical
coherence tomography scans. Invest Ophthalmol
Vis Sci. 2013;54:4385-4393.

Cover T, Hart P. Nearest neighbor pattern
classification. IEEE Trans Inf Theory. 1967;13:
21-27.

Hartigan JA. Statistical theory in clustering. J
Classification. 1985;2:63-76.

LeCun Y, Bottou L, Bengio Y, Haffner P.
Gradient-based learning applied to document
recognition. Proc IEEE. 1998;86:2278-2324.
Quellec G, Lee K, Dolejsi M, Garvin MK,
Abramoff MD, Sonka M. Three-dimensional
analysis of retinal layer texture: identification of
fluid-filled regions in SD-OCT of the macula.
IEEE Trans Med Imag. 2010;29:1321-1330.
Niemeijer M, Lee K, Chen X, Zhang L, Sonka M,
Abramoff MD. Automated estimation of fluid
volume in 3D OCT scans of patients with CNV
due to AMD. Invest Ophthalmol Vis Sci. 2012;53:
4074-4074.

Ding W, Young M, Bourgault S, et al. Automatic
detection of subretinal fluid and sub-retinal
pigment epithelium fluid in optical coherence
tomography images. Conf Proc IEEE Eng Med
Biol Soc. 2013;2013:7388-7391.

Garvin MK, Abramoff MD, Kardon R, Russell
SR, Wu X, Sonka M. Intraretinal layer segmen-
tation of macular optical coherence tomography
images using optimal 3-D graph search. /EEE
Trans Med Imag. 2008;27:1495-1505.

Breiman L. Random forests. Machine Learning.
2001;45:5-32.

Xu X, Lee K, Zhang L, Sonka M, Abramoff MD.
Stratified sampling voxel classification for seg-
mentation of intraretinal and subretinal fluid in
longitudinal clinical OCT data. IEEE Trans Med
Imag. 2015;34:1616-1623.

Vapnik V. The Nature of Statistical Learning
Theory. New York: Springer; 1995.

Srinivasan PP, Kim LA, Mettu PS, et al. Fully
automated detection of diabetic macular edema
and dry age-related macular degeneration from
optical coherence tomography images. Biomed
Opt Express. 2014;5:3568-3577.

Liu YY, Ishikawa H, Chen M, et al. Computer-
ized macular pathology diagnosis in spectral
domain optical coherence tomography scans
based on multiscale texture and shape features.
Invest Ophthalmol Vis Sci. 2011;52:8316-8322.
Liu YY, Chen M, Ishikawa H, Wollstein G,
Schuman JS, Rehg JM. Automated macular
pathology diagnosis in retinal OCT images using

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

multi-scale spatial pyramid with local binary
patterns. Med Image Anal. 2011;15:748-759.

Liu YY, Chen M, Ishikawa H, Wollstein G,
Schuman JS, Rehg JM. Automated macular
pathology diagnosis in retinal OCT images using
multi-scale spatial pyramid and local binary
patterns in texture and shape encoding. Med
Image Anal. 2011;15:748-759.

Serrano-Aguilar P, Abreu R, Anton-Canalis L,
et al. Development and validation of a com-
puter-aided diagnostic tool to screen for age-
related macular degeneration by optical coher-
ence tomography. Br J Ophthalmol. 2012;96:
503-507.

Viola P, Jones M. Rapid Object Detection Using
a Boosted Cascade of Simple Features. Presented
at: Proceedings of the 2001 IEEE international
Conference on Symposium on Biomedical Imag-
ing: Computer Vision and Pattern Recognition.
December, 2001; Kauai, HI.

Quinlan J. C4.5 Programs for Machine Learning.
Burlington, MA: Morgan Kaufmann Publishers;
1993.

Lee SY, Stetson PF, Ruiz-Garcia H, Heussen
FM, Sadda SR. Automated characterization of
pigment epithelial detachment by optical coher-
ence tomography. [Invest Ophthalmol Vis Sci.
2012;53:164-170.

Albarrak A, Coenen F, Zheng Y. Age-related
macular degeneration identification in volumetric
optical coherence tomography using decomposi-
tion and local feature extraction. Presented at the
17th Annual Conference in Medical Image
Understanding and Analysis (MIUA), July
2013, University of Birmingham, Birmingham,
UK.

Zhang Y, Zhang B, Coenen F, Xiao J, Lu W.
One-class kernel subspace ensemble for medical
image classification. EURASIP J Adv Signal
Process. 2014;2014:1-13.

Venhuizen FG, van Ginneken B, Bloemen B, et
al. Automated age-related macular degeneration
classification in OCT using unsupervised feature
learning. Proc SPIE. 2015:941411;941411-941471.
Kanagasingam Y, Bhuiyan A, Abramoff MD,
Smith RT, Goldschmidt L, Wong TY. Progress
on retinal image analysis for age related macular
degeneration. Prog Retin Eye Res. 2014;38:20—
42,

Wilkins GR, Houghton OM, Oldenburg AL.
Automated segmentation of intraretinal cystoid
fluid in optical coherence tomography. [EEE
Trans Biomed Eng. 2012;59:1109-1114.

1 60.
o0
S 6l.
o)
[
e
(@)
(D]
+—
oJ 6.
3
S 63
QD
(@]
w
(=
O
()]
2 64
©
c
L=
e
S 45,
)
c
®©
S
)
19

Downloaded from iovs.arvojournals.org on 06/25/2019

TVST | 2017 | Vol. 6 | No. 4 | Article 10



translational vision science & technology

76.

T7.

78.

Wintergerst et al.

Lang A, Carass A, Swingle EK, et al. Automatic
segmentation of microcystic macular edema in
OCT. Biomed Opt Express. 2015;6:155-169.
Folgar FA, Chow JH, Farsiu S, et al. Spatial
correlation between hyperpigmentary changes on
color fundus photography and hyperreflective
foci on SDOCT in intermediate AMD. Invest
Ophthalmol Vis Sci. 2012;53:4626-4633.
Schuman SG, Koreishi AF, Farsiu S, Jung S-h,
Izatt JA, Toth CA. Photoreceptor layer thinning

79.

80.

over drusen in eyes with age-related macular
degeneration imaged in vivo with spectral domain
optical coherence tomography. Ophthalmology.
2009;116:488-496, e482.

Caselles V, Catté F, Coll T, Dibos F. A geometric
model for active contours in image processing.
Numerische Mathematik. 1993;66:1-31.

Xu C, Prince JL. Snakes, shapes, and gradient
vector flow. IEEE Trans Image Process. 1998;7:
359-369.

20

Downloaded from iovs.arvojournals.org on 06/25/2019

TVST | 2017 | Vol. 6 | No. 4 | Article 10



	Introduction
	Methods
	f01
	Results
	f02
	t01
	t01
	t01
	t02
	t02
	t03
	t04
	t04a
	Discussion
	t05
	t05
	b01
	b02
	b03
	b04
	b05
	b06
	b07
	b08
	b09
	b10
	b11
	b12
	b13
	b14
	b15
	b16
	b17
	b18
	b19
	b20
	b21
	b22
	b23
	b24
	b25
	b26
	b27
	b28
	b29
	b30
	b31
	b32
	b33
	b34
	b35
	b36
	b37
	b38
	b39
	b40
	b41
	b42
	b43
	b44
	b45
	b46
	b47
	b48
	b49
	b50
	b51
	b52
	b53
	b54
	b55
	b56
	b57
	b58
	b59
	b60
	b61
	b62
	b63
	b64
	b65
	b66
	b67
	b68
	b69
	b70
	b71
	b72
	b73
	b74
	b75
	b76
	b77
	b78
	b79
	b80

