PEAR, PEAR PSYLLA CONTROL, 1979: Three concentrations of Highway Plant Spray, a soap designed for washing ornamental plants, were applied with 4%

stem to drip.

Twospotted spider mite: Tetranychus urticae Koch

Twospotted mite: Tetranychus urticae Koch

European red mite: Panonychus ulmi (Koch)

European red mite: Panonychus ulmi (Koch)

Twospotted mite: Tetranychus urticae Koch

European red mite: Panonychus ulmi (Koch)

Twospotted mite: Tetranychus urticae Koch

European red mite: Panonychus ulmi (Koch)

Twospotted mite: Tetranychus urticae Koch

Pear psylla: Psylla pyricola Foerster

Codling moth: Larra pyrina (L.)

European red mite: Panonychus ulmi (Koch)

Twospotted spider mite: Tetranychus urticae Koch

Pear rust mite: Phyllostylops pyri (Nalepa)

PEAR, MITE CONTROL, 1979: Handgun sprays were applied to 10-yr-old Bartlett and d'Anjou pear trees to evaluate candidate acaricides and to check

for phytotoxicity. Plots consisted of two 10-tree replicates, one of each variety. Mites were counted from 50-leaf samples from each replicate using the stan­

standard leaf brushing technique.

Mite densities were low at the time sprays were applied. Populations of twospotted mite built up after treatment on check trees but remained low on trees

in all treated plots. European red mite density remained low throughout the test period and no trends were apparent in check or treated plots. There was no sig­

ificant difference in effectiveness between any of the treatments. Omite WP caused severe foliage burn and moderate fruit russetting on both varieties. None of the other treatments produced observable phytotoxicity.

PEAR, GRAPE MEALYBUG CONTROL, 1979: Parathion was applied at the recommended dosages to determine the most effective time of application.

Four treatments, including check, each consisting of 5 single-tree replicates were arranged in a completely randomized design. Sprays were applied until

run-off with a handgun sprayer operating at 600 psi. Treatments were timed according to free phenology. Spurs or suckers, 25/treatment, were taken at

intervals until crawler emergence ceased. Live crawlers and nymphs were recorded.

The delayed dormant and cluster bud sprays provided good control of the crawlers exposed at the time of application. The early summer spray was not

effective.

PEAR, EREVALUATION OF SEVERAL EXPERIMENTAL INSECTICIDES IN SEASONAL CONTROL PROGRAMS, 1979: Tests were carried out in a 2.2-acre

pear block at the University of California Deciduous Fruit Field Station in San Joaquin, California, to compare spray programs with synthetic pyrethroids and an

insect growth regulator to standard chemicals and assess their effect on target and nontarget arthropods. Five treatments (including the check) each consisting of

36- to 64-tree (8 x 8) replicates were arranged in a completely randomized design. Three of the 5 treatments were later split to accommodate additional

variations in spray programs. Each program consisted of a delayed dormant application followed by a cluster bud spray (oil treatments only) and 2 or 3 cover

sprays. Sprays were applied until run-off with a hydraulic handgun sprayer operating at 300 psi. Leaf samples (500/treatment) were taken at ca. 2-wk inter­

vals to record pear psylla eggs and nymphs, spider mites, and phytophagous predators. Leaves were flushed for rust mites. The limb-top method was used to

assess populations of adult pear psylla and macropredators (60 trays/treatment). Fruit was inspected for codling moth damage at midseason and at harvest

(300/treatment) and was rated for russet (75/treatment, at harvest only).