SECOND COVER APPLICATION

<table>
<thead>
<tr>
<th>Treatment/Rate form/ha</th>
<th>Avg TSSM/leaf</th>
<th>Avg PP/leaf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agri-Mek 15 EC +</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orchex 796 oil .25%</td>
<td>22.13a</td>
<td>9.34a</td>
</tr>
<tr>
<td>Agri-Mek 15 EC + Kinetic</td>
<td>33.00a</td>
<td>15.43a</td>
</tr>
<tr>
<td>Control</td>
<td>10.50a</td>
<td>7.40a</td>
</tr>
</tbody>
</table>

Means within columns followed by the same letter are not significantly different (P = 0.05; Fisher's protected LSD).

PEAR: Pyrus communis L. 'Bosc'
Pear psylla (PP): Cacopsylla pyricola Foerster
Twospotted spider mite (TSSM): Tetranychus urticae Koch
Philip VanBuskirk and Richard Hilton
Oregon State University
Southern Oregon Experiment Station
569 Hanley Road
Medford, Oregon 97502

PEAR, AGRI-MEK DILUTE AND CONCENTRATE EVALUATION, 1992:
The orchard consisted of mature 'Bosc' pear trees planted on a 7.6 m by 7.6 m spacing. Treatments were applied: 11 Jun (2nd cover) by using an air carrier sprayer set to deliver 2338.2 liter/ha (dilute) or 935.3 liter/ha (concentrate).

Plots consisted of 4 x 5 tree rectangles replicated 3 times in a randomized block design. Additional sprays applied to the entire orchard during the trial were Imidan 50% WP 5.69 kg/ha applied 2 Jul. Treatments were evaluated at 1-wk intervals. Samples consisted of 20 leaves from the tree centers and 20 leaves from the middle of 20 terminal shoots selected at random. Arthropods were removed from leaves using a mite brushing machine and PP eggs and nymphs, and TSSM eggs and post-egg stages were counted with the aid of a dissecting microscope.

There were no significant differences between any of the four treatments. However, TSSM control was consistently better with Agri-Mek and oil as compared to Agri-Mek and Kinetic whether the materials were applied in a dilute or a concentrate spray.

PEAR: Pyrus communis L. 'Bartlett'
Pear psylla (PP): Cacopsylla pyricola Foerster
Twospotted spider mite (TSSM): Tetranychus urticae Koch
Philip VanBuskirk and Richard Hilton
Oregon State University
Southern Oregon Experiment Station
569 Hanley Road
Medford, Oregon 97502

PEAR, LIME-SULFUR TIMING STUDY, 1992:
The purpose of the trial was to compare effectiveness of lime-sulfur plus oil treatments when applied post-harvest (PH), post-harvest plus delayed dormant (PH + DD), or delayed dormant (DD). Plots of mature Bartlett trees, 0.5 ha in size were replicated 3 times in a randomized block design. Lime-sulfur was applied at the rate of 112.2 liter/ha and combined with oil at 37.4 liter/ha. PH applications were made on 16 Oct at 1870.5 liter/ha and the DD application were made 24 & 25 Feb at 1143.5 liter/ha. All treatments were made using conventional air-carrier equipment. An additional spray applied to the entire orchard was 56.1 liters/ha Orchex 796 spray oil applied on 5 Feb. Samples were made biweekly by randomly selecting 10 fruit buds or clusters per replicate and counting PP (eggs and nymphs) and TSSM (eggs and immatures) with the aid of a dissecting microscope. Adult PP were counted from 5-beating-tray samples per replicate.

The PH application of lime-sulfur had virtually no effect on the subsequent PP or TSSM levels. This lack of efficacy may well have been due to the mobility of PP and the dispersal pattern of the overwintering form. Both PH + DD and DD treatments were statistically better in reducing adult and immature PP levels, as well as TSSM. The data on PP eggs and nymphs however, points to the possibility of increased effectiveness with the PD + DD application.