CONTROL OF LEPIDOPTEROUS PESTS ON CABBAGE, Fall, 1992: 'Blue Vantage' cv. cabbage was transplanted into a Bernow series sandy loam soil on 25 Aug at the Wes Watkins AREC, Lane, OK. Plots one row wide by 4.6 m long were arranged in a randomized complete block design with four replications. One unplanted row between rows and 4.6 m within rows served as spray buffers. Rows were spaced on 91 cm centers and plants were spaced 30 cm apart within rows. Standard cultural practices were used throughout the trial. All treatments were applied with a CO$_2$-powered backpack sprayer calibrated on 3 Sep at 176.2 liters per acre. The sprayer was equipped with two TX-18 spray nozzles spaced 46 cm apart and directed inward toward the plants. Treatments were applied on 18, 26 Sep, 1, 9, and 21 Oct. A spreader-sticker, Agri-Dex @ 2 pt/acre, was added to each of the treatments.

CONTROL OF LEPIDOPTEROUS PESTS ON CABBAGE, Fall, 1992: 'Blue Vantage' cv. cabbage was transplanted into a Bernow series sandy loam soil on 25 Aug at the Wes Watkins AREC, Lane, OK. Plots one row wide by 4.6 m long were arranged in a randomized complete block design with four replications. One unplanted row between rows and 4.6 m within rows served as spray buffers. Rows were spaced on 91 cm centers and plants were spaced 30 cm apart within rows. Standard cultural practices were used throughout the trial. All treatments were applied with a CO$_2$-powered backpack sprayer calibrated on 3 Sep at 176.2 liters per acre. The sprayer was equipped with two TX-18 spray nozzles spaced 46 cm apart and directed inward toward the plants. Treatments were applied on 18, 26 Sep, 1, 9, and 21 Oct. A spreader-sticker, Agri-Dex @ 2 pt/acre, was added to each of the Bacillus thuringiensis products. On each sample date, eight randomly selected plants were sampled from each plot for CL, DBM and other lepidopterous larvae. Insect feeding damage was evaluated on 2 Nov. Each plant was rated according to the following scale: 1 = no wrapper leaf damage, no head damage, 2 = wrapper leaf damage, no head damage, 3 = light head damage, 4 = moderate/severe head damage. Heads rated 1 or 2 were considered marketable according to USDA standards.

CONTROL OF LEPIDOPTEROUS PESTS ON CABBAGE, Fall, 1992: 'Blue Vantage' cv. cabbage was transplanted into a Bernow series sandy loam soil on 25 Aug at the Wes Watkins AREC, Lane, OK. Plots one row wide by 4.6 m long were arranged in a randomized complete block design with four replications. One unplanted row between rows and 4.6 m within rows served as spray buffers. Rows were spaced on 91 cm centers and plants were spaced 30 cm apart within rows. Standard cultural practices were used throughout the trial. All treatments were applied with a CO$_2$-powered backpack sprayer calibrated on 3 Sep at 176.2 liters per acre. The sprayer was equipped with two TX-18 spray nozzles spaced 46 cm apart and directed inward toward the plants. Treatments were applied on 18, 26 Sep, 1, 9, and 21 Oct. A spreader-sticker, Agri-Dex @ 2 pt/acre, was added to each of the Bacillus thuringiensis products. On each sample date, eight randomly selected plants were sampled from each plot for CL, DBM and other lepidopterous larvae. Insect feeding damage was evaluated on 2 Nov. Each plant was rated according to the following scale: 1 = no wrapper leaf damage, no head damage, 2 = wrapper leaf damage, no head damage, 3 = light head damage, 4 = moderate/severe head damage. Heads rated 1 or 2 were considered marketable according to USDA standards.

CONTROL OF LEPIDOPTEROUS PESTS ON CABBAGE, Fall, 1992: 'Blue Vantage' cv. cabbage was transplanted into a Bernow series sandy loam soil on 25 Aug at the Wes Watkins AREC, Lane, OK. Plots one row wide by 4.6 m long were arranged in a randomized complete block design with four replications. One unplanted row between rows and 4.6 m within rows served as spray buffers. Rows were spaced on 91 cm centers and plants were spaced 30 cm apart within rows. Standard cultural practices were used throughout the trial. All treatments were applied with a CO$_2$-powered backpack sprayer calibrated on 3 Sep at 176.2 liters per acre. The sprayer was equipped with two TX-18 spray nozzles spaced 46 cm apart and directed inward toward the plants. Treatments were applied on 18, 26 Sep, 1, 9, and 21 Oct. A spreader-sticker, Agri-Dex @ 2 pt/acre, was added to each of the Bacillus thuringiensis products. On each sample date, eight randomly selected plants were sampled from each plot for CL, DBM and other lepidopterous larvae. Insect feeding damage was evaluated on 2 Nov. Each plant was rated according to the following scale: 1 = no wrapper leaf damage, no head damage, 2 = wrapper leaf damage, no head damage, 3 = light head damage, 4 = moderate/severe head damage. Heads rated 1 or 2 were considered marketable according to USDA standards.

CONTROL OF LEPIDOPTEROUS PESTS ON CABBAGE, Fall, 1992: 'Blue Vantage' cv. cabbage was transplanted into a Bernow series sandy loam soil on 25 Aug at the Wes Watkins AREC, Lane, OK. Plots one row wide by 4.6 m long were arranged in a randomized complete block design with four replications. One unplanted row between rows and 4.6 m within rows served as spray buffers. Rows were spaced on 91 cm centers and plants were spaced 30 cm apart within rows. Standard cultural practices were used throughout the trial. All treatments were applied with a CO$_2$-powered backpack sprayer calibrated on 3 Sep at 176.2 liters per acre. The sprayer was equipped with two TX-18 spray nozzles spaced 46 cm apart and directed inward toward the plants. Treatments were applied on 18, 26 Sep, 1, 9, and 21 Oct. A spreader-sticker, Agri-Dex @ 2 pt/acre, was added to each of the Bacillus thuringiensis products. On each sample date, eight randomly selected plants were sampled from each plot for CL, DBM and other lepidopterous larvae. Insect feeding damage was evaluated on 2 Nov. Each plant was rated according to the following scale: 1 = no wrapper leaf damage, no head damage, 2 = wrapper leaf damage, no head damage, 3 = light head damage, 4 = moderate/severe head damage. Heads rated 1 or 2 were considered marketable according to USDA standards.

CONTROL OF LEPIDOPTEROUS PESTS ON CABBAGE, Fall, 1992: 'Blue Vantage' cv. cabbage was transplanted into a Bernow series sandy loam soil on 25 Aug at the Wes Watkins AREC, Lane, OK. Plots one row wide by 4.6 m long were arranged in a randomized complete block design with four replications. One unplanted row between rows and 4.6 m within rows served as spray buffers. Rows were spaced on 91 cm centers and plants were spaced 30 cm apart within rows. Standard cultural practices were used throughout the trial. All treatments were applied with a CO$_2$-powered backpack sprayer calibrated on 3 Sep at 176.2 liters per acre. The sprayer was equipped with two TX-18 spray nozzles spaced 46 cm apart and directed inward toward the plants. Treatments were applied on 18, 26 Sep, 1, 9, and 21 Oct. A spreader-sticker, Agri-Dex @ 2 pt/acre, was added to each of the Bacillus thuringiensis products. On each sample date, eight randomly selected plants were sampled from each plot for CL, DBM and other lepidopterous larvae. Insect feeding damage was evaluated on 2 Nov. Each plant was rated according to the following scale: 1 = no wrapper leaf damage, no head damage, 2 = wrapper leaf damage, no head damage, 3 = light head damage, 4 = moderate/severe head damage. Heads rated 1 or 2 were considered marketable according to USDA standards.

CONTROL OF LEPIDOPTEROUS PESTS ON CABBAGE, Fall, 1992: 'Blue Vantage' cv. cabbage was transplanted into a Bernow series sandy loam soil on 25 Aug at the Wes Watkins AREC, Lane, OK. Plots one row wide by 4.6 m long were arranged in a randomized complete block design with four replications. One unplanted row between rows and 4.6 m within rows served as spray buffers. Rows were spaced on 91 cm centers and plants were spaced 30 cm apart within rows. Standard cultural practices were used throughout the trial. All treatments were applied with a CO$_2$-powered backpack sprayer calibrated on 3 Sep at 176.2 liters per acre. The sprayer was equipped with two TX-18 spray nozzles spaced 46 cm apart and directed inward toward the plants. Treatments were applied on 18, 26 Sep, 1, 9, and 21 Oct. A spreader-sticker, Agri-Dex @ 2 pt/acre, was added to each of the Bacillus thuringiensis products. On each sample date, eight randomly selected plants were sampled from each plot for CL, DBM and other lepidopterous larvae. Insect feeding damage was evaluated on 2 Nov. Each plant was rated according to the following scale: 1 = no wrapper leaf damage, no head damage, 2 = wrapper leaf damage, no head damage, 3 = light head damage, 4 = moderate/severe head damage. Heads rated 1 or 2 were considered marketable according to USDA standards.

CONTROL OF LEPIDOPTEROUS PESTS ON CABBAGE, Fall, 1992: 'Blue Vantage' cv. cabbage was transplanted into a Bernow series sandy loam soil on 25 Aug at the Wes Watkins AREC, Lane, OK. Plots one row wide by 4.6 m long were arranged in a randomized complete block design with four replications. One unplanted row between rows and 4.6 m within rows served as spray buffers. Rows were spaced on 91 cm centers and plants were spaced 30 cm apart within rows. Standard cultural practices were used throughout the trial. All treatments were applied with a CO$_2$-powered backpack sprayer calibrated on 3 Sep at 176.2 liters per acre. The sprayer was equipped with two TX-18 spray nozzles spaced 46 cm apart and directed inward toward the plants. Treatments were applied on 18, 26 Sep, 1, 9, and 21 Oct. A spreader-sticker, Agri-Dex @ 2 pt/acre, was added to each of the Bacillus thuringiensis products. On each sample date, eight randomly selected plants were sampled from each plot for CL, DBM and other lepidopterous larvae. Insect feeding damage was evaluated on 2 Nov. Each plant was rated according to the following scale: 1 = no wrapper leaf damage, no head damage, 2 = wrapper leaf damage, no head damage, 3 = light head damage, 4 = moderate/severe head damage. Heads rated 1 or 2 were considered marketable according to USDA standards.
### HARLEQUIN BUG CONTROL ON CABBAGE, SPRING, 1992: 'Golden Acres' cv. cabbage was transplanted into a Bernow series fine sandy loam soil covered with black plastic mulch on 6 Mar at the Wes Watkins AREC, Lane, OK. Planting beds were formed on 1.5 m centers with two rows of plants per bed. Plots were one bed wide by 4.6 m long and arranged in a randomized complete block design with four replications. Plants were spaced 30 cm apart within rows. An unplanted buffer 3 m long within and one unplanted row between plots was used to minimize spray drift. Standard cultural practices were used throughout the trial. Treatments were applied on 2 and 9 Jul with a CO$_2$-powered backpack sprayer equipped with two TX-18 spray nozzles spaced 46 cm apart and directed inward towards the plants. The sprayer was calibrated on 28 Jun at 99.6 liters per acre. Eight randomly selected plants per plot were sampled for HB nymphs and adults on 9, 13 and 16 Jul. No pretreatment means for HB were available.

HB populations were high with means reaching over four HB per plant in untreated plots. There were no significant differences at 7 DAT on 9 Jul. However, on 13 Jul, Brigade 10WP and Fury 1.5 EC significantly decreased HB numbers when compared with the untreated check. Brigade 10WP, Fury 1.5 EC, Pounce 3.2 EC and Karate IE achieved the best control, significantly reducing HB numbers when compared with the untreated plots. No phytotoxic plant responses were observed with any of the treatments.