and Swat 8 EC (0.5 lb [AI]/acre). No phytotoxicity was observed with any treatments.

Larvin 3.2 EC (0.6 lb [AI]/acre) still providing the best control. At 14 DAT, populations for all treatments were significantly lower than for the untreated control. However, populations had increased in the plots treated with Larvin 3.2 EC (0.6 and 0.45 lb [AI]/acre).

Means in a column followed by the same letter are not significantly different (P > 0.05; least squares).

**ALFALFA: Medicago sativa L. 'Fla. 77'

James W. Lee and Sharron Quisenberry

Department of Entomology

Louisiana State University

Baton Rouge, LA 70803

(504) 388-1837

**ALFALFA WEEVIL CONTROL, 1988:** Insecticides were evaluated on a 3-yr-old stand of 'Fla. 77' alfalfa at the Dean Lee Research Station near Alexandria, La. Plots of 15 by 40 ft were arranged in randomized complete block design with 4 replicates. Insecticide treatments were applied 11 Mar with a CO₂-powered backpack sprayer delivering 18.6 gal/acre at 30 psi with 8002 flat-fan nozzles on a 7-ft boom. The alfalfa height was 20 cm when treated.

Winds at treatment were less than 5 mph, air temperature was 71°F, and water temperature was 65°F. Pretreatment and 3, 7, and 14 DAT counts were taken with 10 pendulum sweeps with a standard 15-inch sweep net.

**ALFALFA WEEVIL CONTROL, 1988:** Insecticides were evaluated on a 3-yr-old stand of 'Fla. 77' alfalfa at the Dean Lee Research Station near Alexandria, La. Plots of 15 by 40 ft were arranged in randomized complete block design with 4 replicates. Insecticide treatments were applied 11 Mar with a CO₂-powered backpack sprayer delivering 18.6 gal/acre at 30 psi with 8002 flat-fan nozzles on a 7-ft boom. The alfalfa height was 20 cm when treated.

Winds at treatment were less than 5 mph, air temperature was 71°F, and water temperature was 65°F. Pretreatment and 3, 7, and 14 DAT counts were taken with 10 pendulum sweeps with a standard 15-inch sweep net.

At 3 DAT only 1 treatment, Larvin 3.2 EC (0.6 lb [AI]/acre) had resulted in significantly lower numbers of AW larvae than the untreated control. At 7 DAT, all treatments except Karate 1 EC (0.025 lb [AI]/acre), Baythroid 2 EC (0.033 lb [AI]/acre), and Swat 8 EC (0.15 lb [AI]/acre), were significantly lower than the untreated control, with Larvin 3.2 EC (0.6 lb [AI]/acre) still providing the best control. At 14 DAT, populations for all treatments were significantly lower than for the untreated control. However, populations had increased in the plots treated with Larvin 3.2 EC (0.6 and 0.45 lb [AI]/acre) and Swat 8 EC (0.5 lb [AI]/acre). No phytotoxicity was observed with any treatments.

Means in a column followed by the same letter are not significantly different (P > 0.05; least squares).

**ALFALFA: Medicago sativa L. 'Funk G2800'

Hassan Oloumi-Sadeghi, Karl Kinney, Doyle Dazey, (10F)

Office of Agricultural Entomology

University of Illinois

Champaign, IL 61820

(217) 333-2399

**ALFALFA WEEVIL CONTROL, 1988:** Lorsban and Penncap (1 rate each) and an insect growth regulator (IGR), UBI-A1335 (3 rates) were evaluated in a 3-yr-old stand of alfalfa near Highland, Madison County, Ill. Plots were 20 by 30 ft replicated 4 times in a randomized complete block design. All treatments were applied on 29 Apr when AW population counts averaged 9.6 first and second instars/sweep and 4.0 third and fourth instars/sweep. Insecticides were applied using a tractor-mounted 10-ft boom equipped with flat-fan nozzles (XR 8004) at the rate of 21 gal/acre at 40 psi. Insect samples were collected 2, 4, 7, 11, 14, and 19 DAT with a 15-inch-diam in 10-20 pendulum sweeps from each plot. Thirty-five stems were randomly removed from each plot at 7,