CONTROL OF WIREWORMS ON FIELD CORN, 1989: An experiment was conducted on 20 May in Northumberland County, VA to determine the effects of several commercially-available granular insecticides and a seed treatment for controlling wireworms on germinating corn seeds. The cropping history for this field included no-till soybeans planted in the spring of 1987 with no subsequent fall planting of a cover crop. In 1988, field corn was planted by the fact that most of the seeds had germinated and produced plants at the fourth-leaf stage of growth. Presumably this resulted from the warm weather accumulated rainfall totalling 0.04 inches.

Significantly less wireworm feeding damage to corn seeds occurred in all insecticide-treated plots when compared with the check. Feeding damage in the check plots averaged 65.5% compared with a range of 1.3 to 8.5% for the insecticide plots indicating superior protection against wireworms by all of the insecticides in this test. No significant differences were detected among any of the treatments with regard to the number of seedlings per plot overall. Each plot consisted of a single, 15-ft row in which furrows were hand dug to a uniform depth of approximately 1.5 inches. Seeds were spaced 6 inches apart within the furrows providing about 30 seeds/plot, or 150 seeds/treatment overall. Each block was separated from adjacent blocks by a distance of 6.3 ft. All granular insecticides were applied in-furrow using pint canning jars (Mason) with lids in which a single opening had been drilled. Lid openings were laboratory-calibrated to providing about 30 seeds/plot, or 150 seeds/treatment overall. Each block was separated from adjacent blocks by a distance of 6.3 ft. All granular insecticides were applied in-furrow using pint canning jars (Mason) with lids in which a single opening had been drilled. Lid openings were laboratory-calibrated to delivering accurately the labeled rate for each insecticide while walking at 3 mph. The possibility of mixing one or more insecticides was avoided by using a separate jar and lid for each treatment. For the treatments involving Agrox D-L Plus, the labeled rate of 2 oz product/bushel of corn seed was used. On 4 Jun entire-plot stand counts were made, and on 5 Jun, the roots and attached seed for each corn seedling, as well as seeds which had not germinated, were removed from the soil and inspected for evidence of feeding damage.

Numbers in columns followed by the same letter are not significantly different (P < 0.05; ANOVA and Tukey).

CONTROL OF WIREWORMS ON FIELD CORN, 1989: An experiment was conducted on 20 May in Northumberland County, VA to determine the effects of several commercially-available granular insecticides and a seed treatment for controlling wireworms on germinating corn seeds. The cropping history for this field included no-till soybeans planted in the spring of 1987 with no subsequent fall planting of a cover crop. In 1988, field corn was planted by the fact that most of the seeds had germinated and produced plants at the fourth-leaf stage of growth. Presumably this resulted from the warm weather accumulated rainfall totalling 0.04 inches.

Significantly less wireworm feeding damage to corn seeds occurred in all insecticide-treated plots when compared with the check. Feeding damage in the check plots averaged 65.5% compared with a range of 1.3 to 8.5% for the insecticide plots indicating superior protection against wireworms by all of the insecticides in this test. No significant differences were detected among any of the treatments with regard to the number of seedlings per plot overall. Each plot consisted of a single, 15-ft row in which furrows were hand dug to a uniform depth of approximately 1.5 inches. Seeds were spaced 6 inches apart within the furrows providing about 30 seeds/plot, or 150 seeds/treatment overall. Each block was separated from adjacent blocks by a distance of 6.3 ft. All granular insecticides were applied in-furrow using pint canning jars (Mason) with lids in which a single opening had been drilled. Lid openings were laboratory-calibrated to delivering accurately the labeled rate for each insecticide while walking at 3 mph. The possibility of mixing one or more insecticides was avoided by using a separate jar and lid for each treatment. For the treatments involving Agrox D-L Plus, the labeled rate of 2 oz product/bushel of corn seed was used. On 4 Jun entire-plot stand counts were made, and on 5 Jun, the roots and attached seed for each corn seedling, as well as seeds which had not germinated, were removed from the soil and inspected for evidence of feeding damage.

Numbers in columns followed by the same letter are not significantly different (P < 0.05; ANOVA and Tukey).

CONTROL OF WIREWORMS ON FIELD CORN, 1989: An experiment was conducted on 20 May in Northumberland County, VA to determine the effects of several commercially-available granular insecticides and a seed treatment for controlling wireworms on germinating corn seeds. The cropping history for this field included no-till soybeans planted in the spring of 1987 with no subsequent fall planting of a cover crop. In 1988, field corn was planted by the fact that most of the seeds had germinated and produced plants at the fourth-leaf stage of growth. Presumably this resulted from the warm weather accumulated rainfall totalling 0.04 inches.

Significantly less wireworm feeding damage to corn seeds occurred in all insecticide-treated plots when compared with the check. Feeding damage in the check plots averaged 65.5% compared with a range of 1.3 to 8.5% for the insecticide plots indicating superior protection against wireworms by all of the insecticides in this test. No significant differences were detected among any of the treatments with regard to the number of seedlings per plot overall. Each plot consisted of a single, 15-ft row in which furrows were hand dug to a uniform depth of approximately 1.5 inches. Seeds were spaced 6 inches apart within the furrows providing about 30 seeds/plot, or 150 seeds/treatment overall. Each block was separated from adjacent blocks by a distance of 6.3 ft. All granular insecticides were applied in-furrow using pint canning jars (Mason) with lids in which a single opening had been drilled. Lid openings were laboratory-calibrated to delivering accurately the labeled rate for each insecticide while walking at 3 mph. The possibility of mixing one or more insecticides was avoided by using a separate jar and lid for each treatment. For the treatments involving Agrox D-L Plus, the labeled rate of 2 oz product/bushel of corn seed was used. On 4 Jun entire-plot stand counts were made, and on 5 Jun, the roots and attached seed for each corn seedling, as well as seeds which had not germinated, were removed from the soil and inspected for evidence of feeding damage.

Numbers in columns followed by the same letter are not significantly different (P < 0.05; ANOVA and Tukey).

CONTROL OF WIREWORMS ON FIELD CORN, 1989: An experiment was conducted on 20 May in Northumberland County, VA to determine the effects of several commercially-available granular insecticides and a seed treatment for controlling wireworms on germinating corn seeds. The cropping history for this field included no-till soybeans planted in the spring of 1987 with no subsequent fall planting of a cover crop. In 1988, field corn was planted by the fact that most of the seeds had germinated and produced plants at the fourth-leaf stage of growth. Presumably this resulted from the warm weather accumulated rainfall totalling 0.04 inches.

Significantly less wireworm feeding damage to corn seeds occurred in all insecticide-treated plots when compared with the check. Feeding damage in the check plots averaged 65.5% compared with a range of 1.3 to 8.5% for the insecticide plots indicating superior protection against wireworms by all of the insecticides in this test. No significant differences were detected among any of the treatments with regard to the number of seedlings per plot overall. Each plot consisted of a single, 15-ft row in which furrows were hand dug to a uniform depth of approximately 1.5 inches. Seeds were spaced 6 inches apart within the furrows providing about 30 seeds/plot, or 150 seeds/treatment overall. Each block was separated from adjacent blocks by a distance of 6.3 ft. All granular insecticides were applied in-furrow using pint canning jars (Mason) with lids in which a single opening had been drilled. Lid openings were laboratory-calibrated to delivering accurately the labeled rate for each insecticide while walking at 3 mph. The possibility of mixing one or more insecticides was avoided by using a separate jar and lid for each treatment. For the treatments involving Agrox D-L Plus, the labeled rate of 2 oz product/bushel of corn seed was used. On 4 Jun entire-plot stand counts were made, and on 5 Jun, the roots and attached seed for each corn seedling, as well as seeds which had not germinated, were removed from the soil and inspected for evidence of feeding damage.

Numbers in columns followed by the same letter are not significantly different (P < 0.05; ANOVA and Tukey).