Session 3135 (Symposium)

THE NEW FACES AND NEW PLACES OF GEROSCIENCE
Chair: Felipe Sierra

The field of geroscience is rapidly evolving, as well as expanding worldwide. The Program will highlight new approaches and players in the field. Notably, geroscience was initiated as an effort to improve recognition of the role played by basic aging biology in our efforts to improve the health of older adults. Substantial recognition by multiple players of that role of basic aging biology have resulted in significant interest on the part of clinicians and translational biology practitioners. The program will highlight examples of hand-picked efforts in industry and academia, both in the US and in Europe, and will bring into the same stage researchers interested in the various facets of geroscience, from basic biology, translation, clinical and, ultimately, industry viewpoints.

INSPIRE: A NEW EFFORT ON GEROSCIENCE IN TOULOUSE, FRANCE
Bruno Vellas,1 and Felipe Sierra,2 1. CHU Toulouse: Centre Hospitalier Universitaire de Toulouse, Gérontopôle de Toulouse, Institut du Vieillissement, Midi-Pyrenees, France, 2. Toulouse, Midi-Pyrenees, France

The Inspire project of the Toulouse Hospital System is a comprehensive approach to health care in older adults, focused on maintenance of health and physical function. At the core of the project are human, mouse and killifish cohorts, which in the case of humans, is comprised of 1,000 subjects of ages 20 and above, which are followed for a total of 10 years, both via visits to the clinic, and electronic follow-up via the ICOPE app. At recruitment they are stratified as robust, pre-frail or frail according to Fried’s criteria, and then followed for loss of Intrinsic Capacities, as defined by WHO. A parallel cohort of Swiss mice with enhanced (exercise) and decreased (high fat diet) health will be used to measure concordant parameters. The project is generating a significant biorepository that is being used to pursue research in several areas where Toulouse has a significant research strength.

THE RISE AND THE DEATH OF SENESCENT CELLS: FROM MECHANISMS TO INTERVENTIONS
Marco Demaria, Medical Faculty, Groningen, Groningen, Netherlands

Aging is at the root of age-related diseases and therapies targeting basic age-associated mechanisms have the potential to extend healthy lifespan. A common feature of older organisms is the accumulation of senescent cells – cells that have irreversibly lost the capacity to undergo replication. Senescent cells are characterized by an irreversible cell cycle arrest and by the Senescence-Associated Secretory Phenotype (SASP), which include many tissue remodeling and pro-inflammatory factors. Senescent cells are intermittently present during embryogenesis and in young organisms. On the contrary senescent cells accumulate and persist in aging tissues. Significantly, these persistent senescent cells can drive low-grade chronic inflammation, and their genetic or pharmacological elimination is sufficient to delay a number of diseases and to improve health span. Here, I will discuss the mechanisms by which senescent cells can promote tissue aging and dysfunction and the potential of targeting senescent cells to delay human aging.

Session 3140 (Symposium)

THE OLDER AMERICANS ACT, THE AGING NETWORK, AND THE PANDEMIC
Chair: Brian Lindberg

This session provides insights into how the pandemic challenged the capabilities and ingenuity of the Older Americans Act (OAA) programs and the aging network and what it means for in-home and community aging services now and in the future. Speakers will include key aging network stakeholders, who will discuss the overnight evolution of programs serving often isolated older adults.