265 y/o) linked to Medicare claims data was conducted. Four multimorbidity patterns were identified based on the list of 20 chronic conditions and included: ‘cardiovascular-metabolic only’, ‘cardiovascular-metabolic plus other physical conditions’, ‘cardiovascular-metabolic plus mental conditions’, and ‘no cardiovascular-metabolic disease’ patterns. Presence of PIM prescribing was identified using the 2015 American Geriatrics Society Beers Criteria, limited to the list of medications to avoid in older adults. Chi-square tests and logistic regressions were used to identify sex differences in prescribing PIMs across multimorbidity patterns: (1) for PIMs overall and (2) for each PIM drug class. Results indicate that on average women were prescribed PIMs more often than men (39.4% and 32.8%, respectively). Women with cardiovascular-metabolic plus other physical patterns (Adj.OR=1.25, 95% CI: 1.07-1.45) and cardiovascular-metabolic plus mental patterns (Adj.OR=1.25, 95% CI: 1.06-1.48) had higher odds of PIM compared to men, however, there were no sex differences in PIM prescribing in the cardiovascular-metabolic only patterns (Adj.OR=1.13, 95% CI: 0.79-1.62). There was variation by sex across different PIM drug classes. Our study emphasizes the need to further reduce PIM prescribing among older adults, and identifies target populations for potential interventions to improve medication prescribing practices.

THYME AND OREGANO TERPENOIDS ACTIVATE AUTOPHAGY AND PROTECT AGAINST HEPATIC STEATOSIS
Gabriele Civiletto, Guillaume Eric Jacot, Federico Sizzano, Kamila Muller, Aurélie Hermant, Umberto De Marchi, Jerome Feige, and Philipp Gut, Nestlé Research, Lausanne, Vaud, Switzerland

Caloric restriction has been shown to reduce chronic illness in aging and increase life expectancy in most living organisms including mammals. Autophagy, a ubiquitous catabolic pathway of cellular quality control, is a key mechanism mediating the benefits of caloric restriction. In addition, mutations in genes involved in autophagy have been associated with the early onset of age-related diseases such as neurodegeneration, highlighting autophagy as a potential therapeutic target. Here, we aimed to discover autophagy inducers from a library of edible molecules for potential use in food applications. To this end, we developed a novel in vivo high-content screening strategy using fluorescent reporter zebrafish that monitor autophagy flux in skeletal muscle. We identify the thyme and oregano constituent thymol as a novel potent autophagy inducer in zebrafish, human cells and mouse tissues. Mechanistically, thymol triggers an hormetic effect on mitochondria in synergism with a calcium-dependent autophagy response which, in turn, leads to mobilization of intracellular lipid stores. We tested the effects of chronic thymol supplementation in mice fed a high-fat diet and showed that thymol mobilizes fatty acids, reduces liver triglycerides and improves markers of liver damage. In sum, we validate the use of zebrafish screening as a discovery model for autophagy-based therapeutics and demonstrate that thymol is an autophagy inducer with potential for the prevention of chronic metabolic diseases and other age-related conditions.