careers among underrepresented students as Excellent. Quality ratings of components such as pay, research placements, group training and group mentorship were rated as Excellent or Good by 96%. Relative student component rankings, specific suggestions for improvements, plus Mentee and Mentor perspectives on research-specific training needs, will also be presented. Based upon these experiences and data, the authors will make specific suggestions for future URM research training, mentorship program content, and expanded delivery modalities.

NEURON-SPECIFIC MECHANISMS CONTROL THE MITOCHONDRIAL REGULATOR PGC-1A
Eric McGregor,1 Dylan Souder,2 Josef Clark,2 Timothy Rhoads,2 Kevin Elicieri,2 Mark Beasley,3 Darcie Moore,2 and Rozalyn Anderson,4 1. University of Wisconsin–Madison, Madison, Wisconsin, United States, 2. University of Wisconsin-Madison, Madison, Wisconsin, United States, 3. University of Alabama at Birmingham, University of Alabama at Birmingham, Alabama, United States, 4. University of Wisconsin College of Medicine, Madison, Wisconsin, Madison, United States

Mitochondrial dysfunction has been proposed as a hallmark of the aging process. Specifically, as a function of aging, mitochondria appear to have decreased enzyme activity and respiratory capacity and increase reactive oxygen species production. Brain aging is associated with morphological and homeostatic changes, including alterations in brain size, cognitive impairment, and white and grey matter integrity. However, the causes of these changes remain an open and actively pursued field of study. The ubiquitously expressed transcriptional coactivator peroxisome proliferator-activated receptor gamma-coactivator 1 (PGC-1a) has been described as the master regulator of mitochondrial function. Despite the emerging connections between PGC-1a and disease vulnerability, the regulation of PGC-1a outside of the skeletal muscle, liver, and adipose tissue is not well defined. This is particularly true in the brain, where PGC-1a is enriched in neurons, and alterations in expression levels have been linked to neurodegenerative disorders. Here we report that astrocytes and neurons differ substantially in mitochondrial status and the transcript variants of PGC-1a expressed, including using a neuron-specific promoter. Taking advantage of the ability of the tau-kinase GSK-3b to influence PGC-1a expression, we investigate how transcript variants are differentially regulated in primary neurons and astrocytes. Neuronal PGC-1a responds robustly to GSK3b inhibition by lithium, switching the dominant promoter, leading to changes in isoform distribution and abundance, while astrocytes are refractory to lithium treatment. The data presented here highlight key mechanisms for neuron-specific metabolic regulation that are likely to be relevant to neurodegenerative diseases that have a link to mitochondrial dysfunction.

NIA COORDINATED ANALYSIS OF DYNAMIC SOCIOEMOTIONAL EXPERIENCES AND WELL-BEING DURING THE PANDEMIC
Shevaun Neupert,1 Sumbleen Ali,2 Isabella Bouklas,3 Rita Hu,4 Reilly Kincaid,4 Nicole Nelson,6 Shiyang Zhang,3 and Stacey Scott,4 1. North Carolina State University, Raleigh, North Carolina, United States, 2. Stony Brook University, State University of New York, New York, United States, 3. Duke University, Durham, North Carolina, United States, 4. Social Work, Ann Arbor, Michigan, United States, 5. Purdue University, West Lafayette, Indiana, United States, 6. University of Notre Dame, University of Notre Dame, Indiana, United States, 7. The University of Texas at Austin, Austin, Texas, United States, 8. Stony Brook University, Stony Brook, New York, United States

We conducted a coordinated analysis of eight longitudinal studies with data collected during the COVID-19 pandemic. Our overarching aim was to examine within-person fluctuations in health and well-being during the pandemic that may differ across the adult lifespan. The studies are from different regions of the U.S. with data collected during different periods of the pandemic. These studies sampled heterogeneous age groups, used diverse methods, and were harmonized on constructs. Four longitudinal studies (Notre Dame Study of Health & Well-being, Within-Family Differences Study, Social Relations Study, and the Einstein Aging Study [EAS] Covid Telephone Interviews) and four intensive, microlongitudinal studies (Daily Experience and Well-being Study, Daily COVID-19 Spring, Daily COVID-19 Fall, EAS), with data collected between March 2020 and August 2021 were analyzed. In three studies, older adults were consistently less variable (i.e., lower within-person standard deviation) in negative emotional well-being such as negative affect and depressive symptoms compared to younger adults. In four studies older adults were also less variable in stress. Evidence of better outcomes associated with social interactions was found in three studies, where within-person variability in social interactions was positively correlated with variability in positive affect across age. These findings point toward the complexities of dynamic socioemotional experiences that unfold across historical periods and across the lifespan. These within-person fluctuations could be used as a benchmark to examine long-term trajectories of well-being.

NON-PHARMACOLOGICAL INTERVENTIONS TO MANAGE TYPE 2 DIABETES IN OLDER HISPANICS: A SYSTEMATIC REVIEW
Edgar Vieira,1 Kayleigh Sherbutt,1 Madison Scanlan,2 and Heather Frederick,1 1. Florida International University, Miami, Florida, United States, 2. Florida international University, Miami, Florida, United States

Type 2 diabetes is a serious public health problem that affects millions of Americans. Hispanics are disproportionately affected and have high incidence of type 2 diabetes. Lifestyle modifications in diet and increased physical activity are recommended in addition to medication. The purpose of this systematic review was to analyze the scientific literature concerning the effects of exercise, nutrition, and combined diet and exercise interventions on type 2 diabetes management in older Hispanics. We searched three databases for studies that included dietary interventions, exercise interventions, or a combination to manage type 2 diabetes in older Hispanics. A total of 653 studies were screened and reviewed, with seven being included in the review. Our findings indicate that physical activity interventions significantly reduce glycosylated hemoglobin, and diet interventions also led to decreased levels of HbA1c. There is a significant effect in HbA1c levels on individuals receiving a combination of diet and exercise...