Hispanics regarding their level of anxiety, as measured by the Generalized Anxiety Disorder – 2 (GAD-2) measure. AA and Hispanics are significantly more likely to exhibit anxiety than their European-American counterparts. Minority older adults with a higher rate of surgeries are not substantially more likely to be depressed, according to the PHQ-2. Minority older adults who reported having a difficult time falling asleep are considerably more depressed than older minority adults who did not endorse depressive symptomatology on the PHQ-2. Minority older adults who had two or more social supports in their lives have lower levels of anxiety compared to older minority adults who have less than two social supports in their lives. The findings from this study serves as groundwork to promote equity between majority and minority older adults, which will improve their abilities to perform independent activities of daily living successfully.

COMPARTMENTAL FEMUR CORTICAL THICKNESS IN OLDER ADULTS DIFFERS BY DEMOGRAPHICS AND PHYSICAL FUNCTION
Justin Lam,1 Delanie Lynch,2 Diana Madrid Fuentes,2 Karan Devane,1 Marjorie Howard,2 Kristen Beavers,3 and Ashley Weaver2
1. Carnegie Mellon University, Pittsburgh, Pennsylvania, United States, 2. Wake Forest School of Medicine, Winston Salem, North Carolina, United States, 3. Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States, 6. Wake Forest University, Winston-Salem, North Carolina, United States

Previous studies have examined the relationship between cortical bone properties and fracture risk in older populations, but they have yet to examine how these properties change within the femur. Most hip fractures are classified by their location: femoral neck, intertrochanteric, or subtrochanteric fractures. Since cortical thickness can vary throughout the femur, a quantitative method of examining thickness by region was developed using a cortical mapping approach applied to computed tomography (CT) scans. Subject-specific finite element (FE) models of proximal femurs were created from baseline CT scans of 107 older adults (ages 60 – 85; 70% White; 72% Female) with obesity as classified by BMI (33.8 ± 4 kg/m²). An existing FE model was morphed to the segmented geometry of each subject’s proximal femur. A nearest neighbor search assigned cortical thickness values to the nearest finite element model node. Cortical thickness was grouped into four femoral compartments: femoral head, femoral neck, intertrochanteric and subtrochanteric regions. Pairwise paired t-tests indicated that cortical thickness differed between femoral compartments (p < 0.05). Multivariate regression models showed greater cortical thicknesses in femoral head, neck, and intertrochanteric regions in African Americans compared to Whites (p < 0.05). Additionally, these models suggest an association between cortical thickness and physical function assessments, such as the timed up-and-go test and leg muscle strength test. Since cortical thickness is not constant throughout the femur, future studies can use the framework developed here to assess each compartment individually and investigate the relationships between cortical thickness, demographics, and functional assessments.

ACCELERATED BRAIN AGING IS ASSOCIATED WITH MORTALITY ACROSS RACE
Ramón Casanova,1 Andrea Anderson,1 Ryan Barnard,1 Keenan Walker,2 Timothy Hughes,1 Stephen Kritchevsky,1 and Lynne Wagenknecht1
1. Wake Forest School of Medicine, Winston-Salem, North Carolina, United States, 2. National Institute of Health, Baltimore, Maryland, United States

There is an increasing interest in using machine learning and artificial intelligence to estimate chronological age using neuroimaging data. The gap between chronological age and estimated brain age (brain age gap, BAG) is used as a measure of accelerated/resilient brain aging. Accelerated brain aging has been associated with increased mortality risk. However, these reports are based on cohorts mostly composed by white individuals. Here we capitalized on the racially diverse nature of the Atherosclerosis Risk in Communities Study (ARIC) cohort to investigate associations of brain across race. We used brain MRI scans from 1172 cognitively normal ARIC participants that were collected at ARIC Visit 5. Of those 772 were White and 366 were African Americans. We used Cox regression models to investigate BAG values associated with mortality. There were 163 deaths (dw = 124 and dda = 39) over 8 years of follow-up. Participants were stratified by tertiles according to BAG values. We found that, compared to those individuals with BAG scores in the highest tertile (>=1.15), those who scored in the lowest tertile (<= -1.3 years) to be associated with significantly lower mortality among the White (HR=0.41, 95% CI, [0.26–0.66], p < 0.001) and Black (HR=0.43, 95% CI, [0.20–0.92], p = 0.03) participants after adjusting for age, race, sex, education, diabetes, smoking and hypertension. Our analyses show that our approach to estimate chronological age using high-dimensional elastic net regression, produces BAG values which are associated with mortality not only in White individuals but also in African Americans.

WHITE MATTER CHANGE NEAR CEREBRAL MICROBLEEDS AFTER MTBI INVOLVES AGE AND SEX DEPENDENT COGNITIVE DECLINE
Andrei Irimia1, Van Ngo1, Nikhil Chaudhari1, Fan Zhang,2 Shantanu Joshi,1 Lauren O’Donnell,2 Nasim Sheikh-Bahaei,1 and Helena Chui1
1. University of Southern California, Los Angeles, California, United States, 2. Harvard Medical School, Boston, Massachusetts, United States, 3. University of California, Los Angeles, Los Angeles, California, United States

We tested the null hypothesis that, after mild traumatic brain injury (mTBI), white matter changes near cerebral microbleeds (CMBs) are associated with cognitive decline. Magnetic resonance images were acquired from 62 adults with mTBI and from 203 matched healthy controls. A week post-injury, mTBI participants had 2.7±2.6 traumatic CMBs in WM, located 6.1±4.4 mm from the cortical mantle. About 6 months later, 97% of CMBs were associated with significant reductions (34%±11%, q < 0.05) in the fractional anisotropy (FA) of WM streamlines within ~1 cm of CMBs. Male sex and older age were significant risk factors for larger reductions (q < 0.05). CMBs in the corpus callosum, cingulum bundle, inferior and middle longitudinal fasciculi were associated with FA changes that

SEX DEPENDENT COGNITIVE DECLINE