The rate of aging is affected by genetic, behavioral, and emotional mechanisms; one possibly additional mechanism may be sensory responsiveness. Sensory responsiveness is the ability of the nervous system to sense and react appropriately to inputs from the environment. Thus, it is possible that sensory responsiveness subtype was not significantly associated with rate of aging (linear regression, r = 0.211; p = 0.038). High sensory responsiveness subtype was not significantly associated with rate of aging (linear regression, r = -0.02; p = 0.843). Low sensory responsiveness may help to assess aging trajectory and offer a suitable behavioral intervention goal.

We aimed to determine the effects of exposure to violence on estimation of biological age as a measure of rate of aging within the ethnic minority of Muslims in Israel. We have conducted a cross-sectional study that included 375 participants age 50.5±6.9 years, of which 61% women. Biological age was estimated using the Klemera-Doubal method and physiological biomarkers; exposure to violence was measured using the Screen for Adolescent Violence Exposure questionnaire followed by a principal component analysis. The average total score of violence exposure was 1.83±0.36 (range 1-5, 1 corresponds with lower exposure). We found a positive and significant relationship among biological age, the "direct evidence of violence" component, and the "evidence of severe violence in the immediate environment" component (r = 0.119, p<0.05; r = 0.111, p<0.05, respectively). These results demonstrate that exposure to violence negatively affects health and accelerates aging within Israel's Muslim minority. Comprehensive, culturally- and gender-adapted programs are required to reduce violence and address its contribution to the negative aging trajectory in this population.