FOCUS GROUP STUDY
OLDER ADULTS DURING THE COVID-19 ERA: A
REDEFINING OBESITY: A RATIO OF FAT AND
MUSCLE MASS COMPARED TO BODY MASS INDEX IN
OLDER ADULTS (16 men, 87 women; mean age 75.7 ± 7.19 years; BMI 26.8 ± 5.22 kg/m²) for SMM, FM, and body fat percentage (BF%).

SMM showed weak correlation with both FM/SMM (r = 0.826, z = 12.217, p < 0.001) than BMI (r = 0.702, p < 0.001), and a Fisher's r-to-Z analysis indicates that the difference is significant (95% CI [0.826, 0.926], z = 12.217, p < 0.001) than BMI (r = 0.702, p < 0.001), and a Fisher's r-to-Z analysis indicates that the difference is significant.

Muscle mass compared to body mass index (BMI) is currently the standard used to categorize clinical thresholds for body composition (underweight, normal weight, overweight, obesity). However, BMI may be misleading for key aspects of body composition like skeletal muscle mass and fat mass (FM). This can lead to misclassification and inaccurate inferences about metabolic health. A FM/SMM ratio may better capture age-related changes in body composition and its ability to predict metabolic and musculoskeletal health.

Muscle mass compared to body mass index (BMI) is currently the standard used to categorize clinical thresholds for body composition (underweight, normal weight, overweight, obesity). However, BMI may be misleading for key aspects of body composition like skeletal muscle mass and fat mass (FM). This can lead to misclassification and inaccurate inferences about metabolic health. A FM/SMM ratio may better capture age-related changes in body composition and its ability to predict metabolic and musculoskeletal health.

Muscle mass compared to body mass index (BMI) is currently the standard used to categorize clinical thresholds for body composition (underweight, normal weight, overweight, obesity). However, BMI may be misleading for key aspects of body composition like skeletal muscle mass and fat mass (FM). This can lead to misclassification and inaccurate inferences about metabolic health. A FM/SMM ratio may better capture age-related changes in body composition and its ability to predict metabolic and musculoskeletal health.

Muscle mass compared to body mass index (BMI) is currently the standard used to categorize clinical thresholds for body composition (underweight, normal weight, overweight, obesity). However, BMI may be misleading for key aspects of body composition like skeletal muscle mass and fat mass (FM). This can lead to misclassification and inaccurate inferences about metabolic health. A FM/SMM ratio may better capture age-related changes in body composition and its ability to predict metabolic and musculoskeletal health.

Muscle mass compared to body mass index (BMI) is currently the standard used to categorize clinical thresholds for body composition (underweight, normal weight, overweight, obesity). However, BMI may be misleading for key aspects of body composition like skeletal muscle mass and fat mass (FM). This can lead to misclassification and inaccurate inferences about metabolic health. A FM/SMM ratio may better capture age-related changes in body composition and its ability to predict metabolic and musculoskeletal health.

Muscle mass compared to body mass index (BMI) is currently the standard used to categorize clinical thresholds for body composition (underweight, normal weight, overweight, obesity). However, BMI may be misleading for key aspects of body composition like skeletal muscle mass and fat mass (FM). This can lead to misclassification and inaccurate inferences about metabolic health. A FM/SMM ratio may better capture age-related changes in body composition and its ability to predict metabolic and musculoskeletal health.