The Cumulative Effect of Unemployment on Risks for Acute Myocardial Infarction

Matthew E. Dupre, PhD; Linda K. George, PhD; Guangya Liu, PhD; Eric D. Peterson, MD, MPH

Background: Employment instability is a major source of strain affecting an increasing number of adults in the United States. Little is known about the cumulative effect of multiple job losses and unemployment on the risks for acute myocardial infarction (AMI).

Methods: We investigated the associations between different dimensions of unemployment and the risks for AMI in US adults in a prospective cohort study of adults (N=13,451) aged 51 to 75 years in the Health and Retirement Study with biennial follow-up interviews from 1992 to 2010. Unadjusted rates of age-specific AMI were used to demonstrate observed differences by employment status, cumulative number of job losses, and cumulative time unemployed. Cox proportional hazards models were used to examine the multivariate effects of cumulative work histories on AMI while adjusting for sociodemographic background and confounding risk factors.

Results: The median age of the study cohort was 62 years, and 1061 AMI events (7.9%) occurred during the 165,169 person-years of observation. Among the sample, 14.0% of subjects were unemployed at baseline, 69.7% had 1 or more cumulative job losses, and 35.1% had spent time unemployed. Unadjusted plots showed that age-specific rates of AMI differed significantly for each dimension of work history. Multivariate models showed that AMI risks were significantly higher among the unemployed (hazard ratio, 1.35 [95% CI, 1.10-1.66]) and that risks increased incrementally from 1 job loss (1.22 [1.04-1.42]) to 4 or more cumulative job losses (1.63 [1.29-2.07]) compared with no job loss. Risks for AMI were particularly elevated within the first year of unemployment (hazard ratio, 1.27 [95% CI, 1.01-1.60]) but not thereafter. Results were robust after adjustments for multiple clinical, socioeconomic, and behavioral risk factors.

Conclusions: Unemployment status, multiple job losses, and short periods without work are all significant risk factors for acute cardiovascular events.

MORE THAN 1 MILLION Americans experienced a first or a recurrent acute myocardial infarction (AMI) in 2010, and more than half died as a result.1-4 Although major risk factors for coronary heart disease have been well documented (eg, inactivity, obesity, hypertension),5-8 the effect of social stressors on AMI are still poorly understood. For more than a century, studies have shown that the lack of employment is a direct or indirect risk factor for poor health.9-14 Unemployment has now been linked to a myriad of risk factors and deficient resources that may contribute to elevated rates of cardiovascular disease.15-21 To date, however, the evidence has been based almost entirely on cross-sectional associations that ignore lifetime variability in employment, with its immediate and long-term consequences for cardiovascular health.13,21-25

According to the US Department of Labor, most adults will have had multiple jobs by middle age, and most will have had 1 or more periods of unemployment.26-29

See Invited Commentary at end of article

Although recent research has shown that job loss at older ages substantially increased risks of AMI,30 the longitudinal evidence linking unemployment to cardiovascular events has been limited and inconclusive.31,31 The purpose of the present study was to extend these findings and provide the first prospective investigation of the short- and long-term effects of multiple dimensions on risks for AMI. We used data from a nationally representa-
tive sample of middle-aged and older adults followed up biennially from 1992 to 2010 to examine the effect of unemployment status, cumulative job losses, and duration of unemployment on risks for AMI. The associations were examined with adjustments for multiple socioeconomic, behavioral, psychological, and clinical factors. We also examined whether the associations between job instability and AMI risk differed by sex and race/ethnicity.

METHODS

STUDY POPULATION

We used nationally representative data from the Health and Retirement Study (HRS) for analysis. The HRS is an ongoing prospective cohort study of US adults older than 50 years sponsored by the National Institute on Aging and the Institute for Social Research at the University of Michigan, Ann Arbor. The original HRS cohort included 9824 age-eligible respondents (ie, ages 51-61 years) who have been interviewed biennially since 1992. The initial participation rate was 81.7%, and reinterview rates were 93.7% for 1994 through 2010, with low rates of attrition due to nonresponse and lost tracking. Since 1998, the HRS has been supplemented with age-selective birth cohorts to replenish the nationally representative sample of older adults. Details of the multistage sampling design, implementation, and response rates have been documented in detail elsewhere.32,33

The analytic sample for the study included 13 451 participants from the original HRS birth cohort (1931-1941), the war baby cohort (1942-1947), and early baby-boomer cohort (1948-1953) who were first interviewed in 1992, 1998, and 2004, respectively, and reinterviewed through 2010. A person-year file was constructed from the respondents’ age-specific cumulative exposure to AMI so that each observation was a record for every additional year beyond their age at entry in the study. Analyses were restricted to adults aged 51 to 75 years who reported having ever worked (95.8%). On average, HRS participants contributed approximately 8 person-years of exposure during the 18-year study period. A total of 1061 AMI events (7.9%) were reported during the 165 169 person-years of observation.

MEASUREMENT

We used more than 50 years of prospective and retrospective data from the HRS to reconstruct employment histories for each study participant. Information about past employment was collected at the respondents’ baseline interview, and information about current jobs (and changes) was obtained from the prospective interviews. Work-history timing was ascertained from detailed responses to questions about the beginning and ending dates (in years and/or months) of all jobs reported by HRS participants. Although we could not confirm the retrospective dates of employment status and change, studies have shown substantial congruence between dates reported retrospectively and those reported by the same individuals in a panel design.34 Nevertheless, recall or omissions (eg, brief employment in early adulthood) may have led to undercounts of the total number of jobs—and potential job losses—reported for some participants. The subjects’ month- and year-specific information was converted to age-specific data using the dates of birth, interview, and event. Established literature and extensive preliminary analyses were used to determine the measures that were most psychometrically sound and substantively appropriate for analysis.

The complex coding of study measures was facilitated by using RAND HRS data files provided by the RAND Center for the Study of Aging and funded by the National Institute on Aging and the Social Security Administration.35 Time-varying measures for each dimension of employment history were categorized as follows: employment status (employed or unemployed, excluding retirement), cumulative number of job losses (0, 1, 2, 3, or ≥4), and cumulative time unemployed (0, >0 to 1, 2 to 4, or ≥5 years). Job losses and their respective time-varying durations were defined by the age-specific ending and beginning dates of employment statuses. Retirement status (without active employment) also was included as a time-varying control (yes or no), and retirement status, transitions, and duration were excluded from the respective work-history measures. Adjustments for persons out of the labor force were not significant, and the variable was dropped from the analysis. Persons who were not employed and not retired were considered unemployed in this study. Preliminary analyses showed that bivariate correlations were relatively low among employment history variables (coefficients were 0.01 to 0.33, with a mean correlation of <0.10).

Multivariate models were adjusted for background sociodemographic factors, including age at study entry, sex, race/ethnicity (non-Hispanic white, non-Hispanic black, or Hispanic), marital status (married or not married), and geographic region (South or other). Several previously identified cardiovascular risks also were examined as possible factors contributing to the associations and included educational level (<high school education or ≥high school education), household income (lowest quartile or upper quartiles), health insurance coverage from any source (yes or no), current smoking status (yes or no), alcohol use (0, 1-2, or ≥3 drinks per day), vigorous physical exercise (<3 or ≥3 times per week), regular cholesterol screenings (within 24 months, yes or no), body mass index (calculated as weight in kilograms divided by height in meters squared; 23.0-29.9 [overweight] or ≥30.0 [obese]), hypertension (yes or no), diabetes mellitus (yes or no), any limitations in activities of daily living (yes or no), and number of depressive symptoms measured by the 8-item Center for Epidemiologic Studies Depression Scale. Preliminary analyses also included variables to adjust for the sampling of cohorts, number of children, timing of first employment, and primary occupational status; however, results were not significant and the variables were dropped from the final models. With the exception of baseline age, sex, and race/ethnicity, all covariates were time varying and time lagged (observed at the previous year) in the prospective analyses to establish temporal order when estimating the effects of the covariates on subsequent AMI, as previously shown.36-37

OUTCOME

Incidence of AMI was the main outcome for analysis. Study participants were asked whether they had “a heart attack or myocardial infarction” at each interview and in what year (and month after 1994) it occurred. Although subjects’ reports of AMI are less precise than clinical data, studies have shown considerable consistency between diagnostic reports of health events from survey respondents and those from medical evaluations.38-42 The short time between interviews (approximately 24 months) and the life-threatening nature of these events also minimized the potential for recall bias. For persons who experienced AMI, the outcome corresponds to the age of the event (calculated from the dates of birth and the event). For persons not experiencing AMI, the outcome corresponds to the age when respondents were last observed to be free of disease. Forty-one adults reported an AMI before baseline and were excluded. Three hundred twenty-nine subjects (2.4%) died dur-
Table 1. Characteristics of Study Participants From the Health and Retirement Study at Baseline

<table>
<thead>
<tr>
<th></th>
<th>All (N = 13,451)</th>
<th>AMI Group (n = 1,061)</th>
<th>Non-AMI Group (n = 12,390)</th>
<th>P Valueb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sociodemographic background</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, mean (SD), y</td>
<td>55.2 (3.3)</td>
<td>56.0 (3.5)</td>
<td>55.1 (3.3)</td>
<td><.001</td>
</tr>
<tr>
<td>Male sex</td>
<td>6890 (51.2)</td>
<td>698 (65.9)</td>
<td>6191 (50.0)</td>
<td><.001</td>
</tr>
<tr>
<td>Non-Hispanic black</td>
<td>2192 (16.3)</td>
<td>168 (15.8)</td>
<td>2025 (16.3)</td>
<td>.67</td>
</tr>
<tr>
<td>Hispanic</td>
<td>1232 (9.2)</td>
<td>72 (6.8)</td>
<td>1160 (9.4)</td>
<td>.005</td>
</tr>
<tr>
<td>Not married</td>
<td>3609 (26.8)</td>
<td>273 (25.7)</td>
<td>3336 (26.9)</td>
<td>.39</td>
</tr>
<tr>
<td>Living in the South</td>
<td>5378 (40.0)</td>
<td>490 (46.2)</td>
<td>4888 (39.5)</td>
<td><.001</td>
</tr>
<tr>
<td>Employment status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employed</td>
<td>9924 (73.8)</td>
<td>687 (64.8)</td>
<td>9237 (74.6)</td>
<td><.001</td>
</tr>
<tr>
<td>Unemployed</td>
<td>1881 (14.0)</td>
<td>179 (16.0)</td>
<td>1711 (13.8)</td>
<td></td>
</tr>
<tr>
<td>Retired</td>
<td>1646 (12.2)</td>
<td>204 (19.2)</td>
<td>1442 (11.6)</td>
<td></td>
</tr>
<tr>
<td>Cumulative No. of job lossesc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>4079 (30.3)</td>
<td>293 (27.6)</td>
<td>3786 (30.6)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4213 (31.3)</td>
<td>362 (34.1)</td>
<td>3851 (31.1)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2538 (18.9)</td>
<td>188 (17.7)</td>
<td>2350 (19.0)</td>
<td>.31</td>
</tr>
<tr>
<td>3</td>
<td>1344 (10.0)</td>
<td>116 (10.9)</td>
<td>1228 (9.9)</td>
<td></td>
</tr>
<tr>
<td>≥4</td>
<td>1277 (9.5)</td>
<td>102 (9.6)</td>
<td>1175 (9.5)</td>
<td></td>
</tr>
<tr>
<td>Cumulative time unemployed, yd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>8728 (64.9)</td>
<td>708 (66.7)</td>
<td>8020 (64.7)</td>
<td></td>
</tr>
<tr>
<td>>0 to 1</td>
<td>801 (6.0)</td>
<td>87 (8.2)</td>
<td>714 (5.8)</td>
<td></td>
</tr>
<tr>
<td>2 to 4</td>
<td>1700 (12.6)</td>
<td>128 (12.1)</td>
<td>1572 (12.7)</td>
<td>.007</td>
</tr>
<tr>
<td>≥5</td>
<td>2222 (16.5)</td>
<td>138 (13.0)</td>
<td>2084 (16.8)</td>
<td></td>
</tr>
<tr>
<td>Socioeconomic factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><High school educational level</td>
<td>3109 (23.1)</td>
<td>342 (32.2)</td>
<td>2767 (22.3)</td>
<td><.001</td>
</tr>
<tr>
<td>Household income in lowest quartile</td>
<td>3156 (23.5)</td>
<td>312 (29.4)</td>
<td>2844 (23.0)</td>
<td><.001</td>
</tr>
<tr>
<td>No health insurance</td>
<td>2079 (15.5)</td>
<td>196 (18.5)</td>
<td>1883 (15.2)</td>
<td>.005</td>
</tr>
<tr>
<td>Behavioral factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current smoker</td>
<td>3469 (25.8)</td>
<td>398 (37.5)</td>
<td>3071 (24.8)</td>
<td><.001</td>
</tr>
<tr>
<td>No alcohol consumption</td>
<td>4918 (36.8)</td>
<td>461 (43.4)</td>
<td>4457 (36.0)</td>
<td><.001</td>
</tr>
<tr>
<td>Excess alcohol consumption</td>
<td>1636 (12.2)</td>
<td>89 (8.4)</td>
<td>1547 (12.5)</td>
<td><.001</td>
</tr>
<tr>
<td>No vigorous exercise</td>
<td>9889 (74.3)</td>
<td>856 (80.7)</td>
<td>9133 (73.7)</td>
<td><.001</td>
</tr>
<tr>
<td>No cholesterol screening</td>
<td>6616 (49.2)</td>
<td>375 (35.3)</td>
<td>6241 (50.4)</td>
<td><.001</td>
</tr>
<tr>
<td>Clinical and psychological factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overweight (BMI, 25.0-29.9)</td>
<td>5654 (42.0)</td>
<td>479 (45.2)</td>
<td>5175 (41.8)</td>
<td>.03</td>
</tr>
<tr>
<td>Obese (BMI, ≥30.0)</td>
<td>3389 (25.2)</td>
<td>318 (30.0)</td>
<td>3071 (24.8)</td>
<td><.001</td>
</tr>
<tr>
<td>Hypertension</td>
<td>4498 (33.4)</td>
<td>513 (48.4)</td>
<td>3985 (32.2)</td>
<td><.001</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>1246 (9.3)</td>
<td>180 (17.0)</td>
<td>1066 (8.6)</td>
<td><.001</td>
</tr>
<tr>
<td>ADL disability</td>
<td>1265 (9.4)</td>
<td>184 (17.3)</td>
<td>1081 (8.7)</td>
<td><.001</td>
</tr>
<tr>
<td>CES-D depressive symptoms, mean (SD)</td>
<td>1.9 (2.0)</td>
<td>2.6 (2.2)</td>
<td>1.8 (2.0)</td>
<td><.001</td>
</tr>
</tbody>
</table>

Abbreviations: ADL, activities of daily living; AMI, acute myocardial infarction; BMI, body mass index (calculated as weight in kilograms divided by height in meters squared); CES-D, Center for Epidemiologic Studies Depression Scale.

b Unless otherwise indicated, data are expressed as number (percentage) of participants. Percentages have been rounded and might not total 100.

c Based on the cumulative number of job losses and years unemployed.

d Based on the cumulative number of job losses, and cumulative time unemployed.

©2012 American Medical Association. All rights reserved.

—

STATISTICAL ANALYSIS

Baseline characteristics of the HRS sample were computed for all participants and by outcome. Comparisons by outcome were calculated with 2-tailed t tests for continuous and counted variables and χ² tests for categorical variables. We based P values on 2-tailed tests and considered P < .05 to represent statistical significance. Unadjusted plots were used to describe differences in age-specific rates of AMI for each time-varying dimension of employment. Cox proportional hazards models were used to estimate the hazard ratios (HRs) and 95% confidence intervals of AMI associated with employment status, cumulative number of job losses, and cumulative time unemployed. This method is particularly effective for using the rich time-varying data and for taking into account the temporal order of exposure to unemployment and AMI events. The number of tied events relative to the number at risk was low (<1%), and partial likelihood estimation was nearly identical using Breslow (reported herein) and Efron approximations.

The first set of multivariate models examined the unadjusted associations for each of the 3 groups of work-history measures and AMI and adjusted associations that included age, sex, race/ethnicity, marital status, retirement, and geographic region. The second set of multivariate analyses examined the associations for all the work-history variables and AMI while adjusting for age, sex, race/ethnicity, marital status, retirement, and region. A final model adjusted for the confounding effects of additional cardiovascular risk factors. Variance inflation factors, tolerance levels, and condition values were used to confirm the absence of multicollinearity in the fitted models. Interactions also were examined by sex and race/ethnicity.
Characteristics of the study participants are presented in Table 1. Adults who had an AMI were more likely to be older, male, non-Hispanic, and living in the South than those without an event. Those who had low levels of education and income, had no health insurance, smoked, abstained from alcohol, failed to exercise, were overweight or obese, had been diagnosed with hypertension or diabetes mellitus, were disabled in their activities of daily living, or had depressive symptoms also had substantially higher levels of AMI than their counterparts. Rates of AMI were significantly higher in study participants who were unemployed and retired compared with employed participants ($P < .001$). Distributions of AMI were not significantly different for the cumulative number of job losses ($P = .31$), and there was an inverse trend between cumulative time unemployed and AMI ($P = .007$).

Unadjusted plots shown in Figure 1 demonstrate significant differences ($P < .001$) in age-specific rates of AMI for each time-varying dimension of job history. Figure 2 illustrates the unadjusted and sociodemographically adjusted HRs for the 3 work-history components related to AMI. Results showed that each major dimension of employment instability was significantly associated with incident AMI after adjusting for differences in age, race/ethnicity, marital status, retirement, and geographic region.

Table 2 reports the sociodemographically and fully adjusted associations between all the work-history variables and AMI. The initial model showed that unemployment status, cumulative number of job losses, and cumulative time unemployed were all associated with AMI independent of the other work-history dimensions. Model adjustments for sociodemographic, socioeconomic, behavioral, psychological, and clinical risk factors did not attenuate these effects. The fully adjusted model showed that unemployment status ($HR, 1.35 [95\% CI, 1.10-1.66]$) and 1 (1.22 [1.04-1.42]), 2 (1.27 [1.05-1.54]), 3 (1.52 [1.22-1.90]), and 4 or more cumulative job losses (1.63 [1.29-2.07]) were independently associated with incident AMI. Risks of AMI were significantly elevated within the first year of being out of work ($HR, 1.27 [95\% CI, 1.01-1.60]$) but not after longer periods of unemployment. The multivariate findings were significant and comparable to other major risk factors in the model, such as smoking ($HR, 1.44 [95\% CI, 1.24-1.68]$), diabetes mellitus (1.51 [1.30-1.75]), and hypertension (1.62 [1.42-1.86]).

Although the magnitudes of the HRs were generally greater among men, Hispanics, and non-Hispanic blacks than among women and non-Hispanic whites, none of the interaction terms for sex and race/ethnicity were statistically significant.

Our study is the first, to our knowledge, to examine the cumulative effect of multiple dimensions of unemployment on the risks for AMI. Results demonstrated that several features of one’s past and present employment increased risks for a cardiovascular event. Although the risks for AMI were most significant in the first year after job loss, unemployment status, cumulative number of job losses, and cumulative time unemployed were each independently associated with increased risk for AMI. Disruptions in employment remained significant after adjustments for established cardiovascular risk factors. We found that the elevated risks associated with multiple job
losses were of the magnitude of other traditional risk factors, such as smoking, diabetes mellitus, and hypertension. In the context of the current US economy and projected increases in job instability and unemployment among workers, additional studies should investigate the mechanisms contributing to work-related disparities in AMI to identify viable targets for successful interventions.

The present study demonstrates that cumulative exposure to unemployment increased risks for AMI and that the associations were not accounted for by conventional social, behavioral, psychological, or clinical factors. Overall, our results remained robust after adjustments for more than a dozen confounding factors. In addition, we found no evidence that differences in educational level, children, or/and health status were related to the incidence of AMI when the 3 dimensions of employment history were taken into account. These findings were consistent in men and women and major race/ethnic groups, and they corroborate recent evidence linking involuntary job loss and AMI in older adults.

The findings for the longitudinal association between employment instability and AMI complement and extend our understanding of lifetime exposure to cardiovascular risks. The association between job loss and AMI is analogous to risks attributable to smoking. Although current smoking status is a known risk factor for cardiovascular events, long-term patterns of tobacco use (ie, pack-years) are more powerful predictors of risk. Likewise, the onset of hypertension or type 2 diabetes mellitus does not increase the risk for AMI; instead, the strain that these illnesses exact on the cardiovascular system over time increases the risk. Our findings for employment history largely mirror these protracted and cumulative associations.

Eliminating or lessening exposure to acquired risk factors undoubtedly reduces their toll on health outcomes, although lifetime risks may persist. Smoking cessation, for example, reduces the risk for AMI; however, it does not eliminate the effect of total pack-years of tobacco use. Likewise, reemployment may only in part diminish the negative effects of past disruptions and cumulative losses. An important area for future research will be to identify the extent to which reducing long-term exposure to risk factors lowers the odds of AMI and other health outcomes. A related line of inquiry should investigate whether unemployment earlier in adulthood can be ameliorated by biomedical, psychological, and social resources acquired later in life.

Major strengths of this study included the use of panel data from a large representative sample of middle-aged and older US adults, the use of retrospective histories and prospective data spanning almost 20 years, and multivariate hazards models that used time-varying covariates to estimate risks for AMI. Nonetheless, the study was
not without limitations. Although the data were rich in the number and scope of measured covariates, we lacked data on certain clinical factors. For example, data were not available for the treatment and control of hypertension, diabetes mellitus, and hyperlipidemia before AMI or other prophylactic measures to reduce the likelihood of infarction (eg, prior revascularization). We also could not identify the characteristics of all jobs and the reasons for job loss. Studies have shown that the nature of work (eg, job strain and decision latitude) plays a role in the association between employment and AMI. Although detailed measures of employment characteristics were not available, preliminary analyses showed that primary lifetime occupation had no effect on the findings. In addition, results indicated that voluntary transitions out of work (ie, retirement) were not associated with increased AMI, independent of age, health status, and other confounders. Future studies should consider whether other job-related factors (eg, seasonal employment, underemployment, multiple jobs, or family demands) may be sources of employment instability, stress, and increased cardiovascular events. The timing of job loss (eg, young vs old or in the context of family) is an additional dimension of unemployment that warrants investigation. Finally, although this study adjusts for a number of confounding risk factors, additional studies should examine the mechanisms by which different dimensions of employment history affect AMI at older ages.

CONCLUSIONS

Results from our large prospective cohort study demonstrated the powerful effect of one's lifetime employment history and cumulative job losses on risks for a major cardiovascular event. As rates of job instability continue to increase and unemployment reaches 30-year highs after recent contractions to the US economy, the cardiovascular costs of repeated job losses in younger cohorts are yet unknown. Although employment background is not amenable to medical intervention, knowledge about employment status, number of job losses, and the amount of time unemployed may help to identify individuals at elevated risk for AMI. Additional studies are needed to assess how such information can be used to target and aggressively treat vulnerable segments of the population.

References

Dupe and colleagues have analyzed data from the Health and Retirement Study to explore whether job losses that occur toward the end of workers’ careers are associated with an elevated risk for acute myocardial infarction (AMI) and whether repeated exposure to job loss exacerbates this risk. Several decades of research in this field, provoked by a phenomenon introduced to the US labor market with the advent of international competition in capital-intensive industries in the late 1970s, have demonstrated a fairly convincing relationship between job loss and adverse health outcomes. Although the most robust association is arguably with mental health, evidence of the somatic effects of job loss is mounting, particularly among workers nearing normal retirement age. The findings presented by Dupe et al—which suggest that job loss raises the risk for AMI, and that risk accumulates with repeated exposure—extend this literature in the domain of physical health. I will discuss what I believe are 3 distinguishing attributes of the study by Dupe et al in this literature. Thereafter I will offer some suggestions for the evolution of research in this field. The gist of my argument is that the report by Dupe et al should mark the end of an era in which outcomes studies of unemployment have been pursued. Plenty of compelling evidence exists to move on. Egregiously absent is research on why and how a socioeconomic exposure, such as job loss, influences health. Explorations of these questions, however limited, should mark the beginning of the next period of research.

TEMPORAL ORDERING OF JOB LOSS AND AMI

The study by Dupre et al is one of few to explore an outcome (in this case, AMI) that can be ensured to occur after the job loss exposure, in which case appropriate causal inference can be drawn. This inference is important because temporal ordering is perhaps the most vexing matter for scientists in this field of inquiry. Job loss is classically investigated via analysis of observational panel data, which are extracted from national or regional population surveys. The typical study of job loss pairs a static outcome measure (eg, How would you rate your current health?) with retrospectively derived labor force information (Have you lost a job since we last interviewed you?), normally within a 2-period, interwave, cohort design. In this scheme, a follow-up (time 2) health outcome (eg, self-rated health) is analyzed as a function of job loss, which occurs between baseline (time 1) and follow-up, and covariates, some of which are measured at baseline and others of which capture changes between the observation points. Although this approach has numerous appealing qualities, it cannot guarantee that the job loss occurred before any decline in self-rated health. Change in self-rated health is inferred by comparing subjective health

INVITED COMMENTARY

Evolution of Research on the Effect of Unemployment on Acute Myocardial Infarction Risk

43. StataCorp. Stata Statistical Software: Release 12. College Station, TX: StataCorp LP; 2011.