Abstract

Considerable progress has been made in adapting existing and developing new technologies to enable increasingly detailed phenotypic information to be obtained in embryonic and newborn mice. Sophisticated methods for imaging mouse embryos and newborns are available and include ultrasound and magnetic resonance imaging (MRI) for in vivo imaging, and MRI, vascular corrosion casts, microcomputed tomography, and optical projection tomography (OPT) for postmortem imaging. In addition, Doppler and M-mode ultrasound are useful noninvasive tools to monitor cardiac and vascular hemodynamics in vivo in embryos and newborns. The developmental stage of the animals being phenotyped is an important consideration when selecting the appropriate technique for anesthesia or euthanasia and for labeling animals in longitudinal studies. Study design also needs to control for possible differences between inter- and intralitter variability, and for possible long-term developmental effects caused by anesthesia and/or procedures. Noninvasive or minimally invasive intravenous or intracardiac injections or blood sampling, and arterial pressure and electrocardiography (ECG) measurements are feasible in newborns. Whereas microinjection techniques are available for embryos as young as 6.5 days of gestation, further advances are required to enable minimally invasive fluid or tissue samples, or blood pressure or ECG measurements, to be obtained from mouse embryos in utero. The growing repertoire of techniques available for phenotyping mouse embryos and newborns promises to accelerate knowledge gained from studies using genetically engineered mice to understand molecular regulation of morphogenesis and the etiology of congenital diseases.

Key Words: anesthesia; corrosion casting; embryo; magnetic resonance imaging; microinjections; phenotype; tomography; ultrasonography

Genetic mouse models have yielded remarkable insights into the gene products that control morphological development in the embryo (Bruneau 2003; Conway et al. 2003; Copp 1995), and valuable new models of human congenital diseases have been developed (e.g., Bruneau 2003). When exploring the function of genes that cause congenital diseases and/or embryonic or neonatal lethality, it is necessary to evaluate the phenotype in the critical developmental period. Clearly, the major challenge when phenotyping mouse embryos is their small size (Figure 1); embryos weigh ≤1 g throughout most of gestation (Figure 2). Nevertheless, we have documented that detailed phenotypic information can be obtained from embryos and/or neonates using both noninvasive in vivo and acute invasive approaches.

In this article, we describe a variety of in vivo and acute invasive methods for phenotyping embryonic and newborn mice. Remarkable advances in imaging technology are enabling images of increasingly high resolution to be obtained.

Figure 1 Images of embryos and placentas obtained using a light microscope at gestational days 9.5, 14.5, and 17.5. The embryo at day 9.5 of gestation is nearly transparent. The scale bar is in mm.
from embryonic and newborn mice. High-resolution ultrasound imaging of embryos and newborns has proven valuable as a phenotyping tool, and sophisticated new magnetic resonance imaging (MRI) and microcomputed tomography (micro-CT) technologies are generating remarkably detailed images of mice in this age group. We also describe the application of an existing technology, vascular corrosion casting, and an exciting new technology, optical projection tomography (OPT), as phenotyping tools for mouse embryos and newborns. The applications and special features of these imaging modalities are compared in Table 1. Invasive methods that permit direct visualization of the mouse embryo using light microscopic techniques have also been used. Confocal microscopy has been used to image key events in early embryonic development, including embryonic turning and closure of the neural tube (Jones et al. 2002), and to quantify blood velocity in the developing vasculature of the yolk sac in whole mouse embryos in culture (Jones et al. 2004). Intravital videomicroscopy has been used to image the beating heart after surgical exposure of the embryo (Keller et al. 1996).

Most imaging techniques require animals to be immobilized using anesthesia or euthanasia, so we begin by discussing these topics with special reference to pregnant and newborn mice. This section is followed by a brief discussion of the special experimental and statistical considerations that pertain to studies of this age group. Methods for accessing the vasculature for blood collection or injection, and for evaluating cardiovascular function using electrocardiography (ECG), blood pressure, and Doppler blood velocity in newborn and/or embryonic mice, are also described.

Anesthesia of Pregnant and Newborn Mice

Anesthetic agents are frequently used to immobilize mice to reduce motion artifacts during image acquisition or other procedures. Isoflurane, an inhalation anesthetic that is relatively safe when used at appropriate concentrations for both the mice and the human operators (Stimpfel and Gershey 1991), and pentobarbital or ketamine and xylazine given by intraperitoneal injection, are effective in pregnant mice (Furukawa et al. 1998). The advantages of inhalation anesthesia in pregnant and newborn mice include elimination of the risk of intrauterine trauma associated with injectables, similar and readily adjustable dosage regardless of animal age or size, control of the duration of anesthesia, and rapid induction and postanesthetic recovery. In newborns (within a few days of birth), hypothermia is also an effective method of short- and long-term anesthesia (Danneman and Mandrell

1Abbreviations used in this article: 2D, two-dimensional; 3D, three-dimensional; CT, computed tomography; ECG, electrocardiography; micro-CT, microcomputed tomography; MRI, magnetic resonance imaging; OPT, optical projection tomography; SEM, scanning electron microscope; UBM, ultrasound biomicroscope.
| Table 1 Characteristics of small animal imaging systems suitable for embryonic and newborn mice^a |
|---|---|---|---|---|---|---|---|---|---|
| **MRI**
1) In vivo and
postmortem
2) Acquisition: 30-180 min
Analysis: 5-10 min |
| Overall anatomical imaging | 25-100μm | Unlimited in mice | Room size, requires a special site, stationary | > 1 million | Strong magnetic field | 3D, diverse contrast mechanisms (tissue density, water composition and compartmentalization, fluid velocity, and available contrast agents) | Motion artifacts | Chatham and Blackband 2001
Nieman et al. 2005. |
| **Vascular Corrosion Casting and SEM**
1) Postmortem
2) Acquisition: 1-2 days
Analysis: 120 min |
| Vascular anatomy of embryo, placenta and newborn (including organs) | < 1 μm | Unlimited for embryonic and neonatal mice | Portable tabletop surgical microscope and stationary SEM | ~350,000 | Avoid skin contact with casting compound and inhaling vapours | 3D, simple and inexpensive | Sample preparation time, limited quantitative analysis | Adamson et al. 2002
Kondo 1998
Whitney et al. 2006. |
| **Micro-CT**
1) In vivo and
postmortem
2) Acquisition: 120 min
Analysis: 30-60 min |
| Skeleton, vascular anatomy of embryo, placenta and newborn organs | 1-50μm | System and resolution dependent, usually <10cm³ | Tabletop systems available, most systems stationary | >100,000 | Radiation levels of <1μSv/h at scanner surface | 3D, high resolution, quantitative analysis | Sample preparation time | Ritman 2004 |
| **OPT**
1) Postmortem
2) Acquisition: 30-120 min
Analysis: 2-20 min |
| Overall anatomical imaging, patterns of gene expression of whole embryos or whole organs | 1-25 μm | System and resolution dependent, usually 1cm³ | Tabletop size and portable | >100,000 | Avoid skin contact with clearing agent | 3D, molecular specificity, high resolution | Specimen coverage | Sharpe et al. 2002
Sharpe 2004 |
| **UBM**
1) In vivo
2) Acquisition: 15-45 min
Analysis: 20-30 min |
| Most internal organs | ~ 50 μm | Limited by depth of penetration through tissue (~1cm) | 150 x 70 x 70 cm, Movable rolling cart | ~250,000 | None | Real time images up to 100 frames/sec, contrast agents available | Imaging depth of penetration, Poor tissue contrast | Foster et al 2000, 2002
Zhou et al. 2002 |

^a3D, three-dimensional; MRI, magnetic resonance imaging; SEM, scanning electron microscopy; micro-CT, microcomputed tomography; OPT, optical projection tomography; UBM, ultrasound biomicroscope.
Injectable anesthetics (e.g., ketamine and pentobarbital) are not as safe or effective as inhalation anesthetics or hypothermia in newborn rodents (Danneman and Mandrell 1997).

The efficacy of euthanasia techniques also differs between mouse embryos and newborns and adult mice. The best form of euthanasia is one that occurs with minimal stress and pain. Pain perception in mouse embryos up to gestation day 15 is considered unlikely because cerebral cortical and subcortical neural development is minimal. Embryos up to gestational day 15 are nonviable so they can be euthanized humanely by euthanizing the pregnant mother and removing the embryos. After embryonic day 15, when embryos become viable and neural development advances to the stage where pain perception occurs, removed embryos can be euthanized by decapitation, cervical dislocation, carbon dioxide asphyxiation, or anesthesia followed by rapid freezing or fixation (http://oacu.od.nih.gov/ARAC/euthmous.pdf).

In pregnant mice, we induce isoflurane anesthesia in a chamber supplied with 5% isoflurane in oxygen. Anesthesia is maintained using a face mask supplied with 1 to 2% isoflurane in oxygen (i.e., the minimum concentration required to suppress spontaneous body movements). We monitor maternal body temperature using a rectal thermometer and maintain it between 36 and 38°C using a heating pad and lamp. Maintenance of appropriate maternal body temperature (e.g., see Table 2) and ventilation and oxygenation (Tobita et al. 2002) is critically important for maintaining normal maternal and embryonic cardiovascular function. The same procedure is used for newborns, except that we induce anesthesia by holding the newborn’s face in the anesthetic mask supplied with 5% isoflurane. We monitor body temperature using a rectal probe in newborns more than 14 days of age, but not in younger mice because even though smaller probes are available, it is difficult to insert them safely. We use the same heat and anesthetic conditions for the younger and older newborns.

Single or repeated exposure to anesthesia may have long-term effects on embryonic and newborn mice, but these effects have not been studied in detail. It has been reported that chronic exposure to light isoflurane anesthesia (4 hr/day daily from embryonic days 6-15) reduced embryonic growth and increased the incidence of cleft palate (Mazze et al. 1985); however, the effect of repeated exposure to deeper levels of anesthesia is largely unexplored. We observed minimal effects on newborn mouse growth and cardiac diastolic function after repeated ultrasound examinations under isoflurane anesthesia (Zhou et al. 2003). Nevertheless, anesthesia and/or procedures (e.g., ultrasound or MRI) may affect physiological development, so appropriate controls are necessary.

Experimental Design and Statistical Considerations

Labeling Newborns for Longitudinal Studies

A major advantage of noninvasive in vivo phenotyping techniques such as ultrasound and MRI is that longitudinal studies can be performed in the same animal. A longitudinal study design reduces the number of animals required by allowing the same animal to contribute to multiple time points, reduces variability in the data so that fewer animals are required to achieve statistical significance, and, in cases where a phenotype has incomplete penetrance, it allows progression or regression of the phenotype to be studied in affected individuals. A requirement of longitudinal studies is the ability to identify individual animals and their contributions to the study data.

Newborns can be labeled on a short-term basis using permanent marker. The label must be refreshed daily. Tatooing provides a longer lasting label (Iwaki et al. 1989). We tattoo newborns on the bottom of the paw so the mark is still readily visible after the hair grows in (Figure 3). This procedure is performed by holding the newborn in one hand with the paw extended between the thumb and forefinger.

<table>
<thead>
<tr>
<th>No. of embryos</th>
<th>Normal 36.5-37.5°C</th>
<th>Low 34.5-35.0°C</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR (bpm)</td>
<td>11</td>
<td>228 ± 36</td>
<td>167 ± 31</td>
</tr>
<tr>
<td>ICT (ms)</td>
<td>11</td>
<td>25.6 ± 5</td>
<td>48.2 ± 12</td>
</tr>
<tr>
<td>IRT (ms)</td>
<td>11</td>
<td>31.8 ± 3.9</td>
<td>48.1 ± 5.5</td>
</tr>
<tr>
<td>ET (ms)</td>
<td>11</td>
<td>111 ± 16</td>
<td>142 ± 22</td>
</tr>
<tr>
<td>Tei index</td>
<td>11</td>
<td>0.52 ± 0.05</td>
<td>0.68 ± 0.04</td>
</tr>
<tr>
<td>%FS</td>
<td>5</td>
<td>57.7 ± 3.6</td>
<td>46.2 ± 6.5</td>
</tr>
</tbody>
</table>

*HR, heart rate; ICT, isovolumic contraction time; IRT, isovolumic relaxation time; ET, ejection time; %FS, fractional shortening. Tei index (Myocardial Performance Index) is an index of global myocardial function (Broberg et al. 2003). Tei index = ([IRT + ICT]/ET). All cardiac parameters in the embryos were significantly altered in mothers exposed to the lower temperature.
and then placing an empty 29-gauge needle coated with India ink (a nontoxic suspension of carbon particles) onto the paw. The needle is inserted into the superficial layer of the skin and is advanced parallel to the skin surface along the length of the paw (Figure 3). Newborns can be uniquely identified by tattooing a combination of the four paws. Tattooing lasts for a minimum of 4 wk. At this stage mice are weaned, and ear clipping can be used for subsequent identification. Ideally, embryos studied in utero should be "tattooed" so they can be identified after birth. In future, it may be possible to accomplish this goal by using ultrasound-guided injections.

Inter- and Intralitter Variability

When determining the number of embryos or newborns to study, it is important to consider the degree of variability within and between litters. Even when different litters are identical genetically, variability within a litter may be considerably less than between litters. Therefore in terms of generalizing results to an entire population, \(N = 10 \) from one litter is not as useful as \(N = 1 \) from 10 litters. Developmental stages may differ by up to 1 day (Thiel et al. 1993) within a litter, possibly due to differences in the timing of fertilization. A more precise determination of gestational age can be achieved by staging embryos based on their morphological development (e.g., number of somites) (Papaioannou and Behringer 2005) or by size using ultrasound (Chang et al. 2003). Other factors that contribute to interlitter variability include differences in maternal physiology during pregnancy and maternal care of newborns. For example, we found that the coefficient of variation in newborn body weight was 5% within litters and 14% between litters on the day of birth (based on 60 newborns from 11 litters). A similar significant two-fold increase in variation was observed between litters for heart rate and an index of global myocardial function called the myocardial performance index (Broberg et al. 2003), whereas between- and within-litter variation did not differ significantly for other cardiovascular variables tested. Thus, if the goal is to generalize the results to the entire population, it is more efficient to study a subset of embryos or newborns from many litters. As a rule of thumb, we study one to four embryos or newborns from at least three, and usually five or more, litters.

Appropriate Controls

Choosing appropriate controls for the mutant can be problematic because many mutants are a hybrid of two or more strains, and large strain-dependent differences often exist in phenotypes (e.g., Mouse Phenome Database at The Jackson Laboratory, www.jax.org/phenome). Ideally, the only genetic difference between the mutant and control animals would be the targeted locus or transgene, but some compromises are usually necessary, as discussed in the literature (Sigmund 2000). This issue is also important when studying embryos and newborns because of the large differences in maternal body weight, embryo weight, and placental weight between strains, as illustrated in Figure 2.

Gestational and Postnatal Ages

In our laboratory, females are considered to be at day 0.5 of gestation at noon on the day a copulation plug is found in the vagina. However, the presence of a plug means that mating has occurred, not that the mouse is pregnant. The first indication of pregnancy may be an increasing maternal body weight. In ICR mice, successful pregnancy is detectable by \(\sim \)day 4.5 of gestation, whereas it takes longer to detect pregnancy in the C57Bl/6J strain by monitoring maternal weight gain (Figure 2A). Uterine implantation sites can usually be detected by palpating the maternal abdomen by \(\sim \)day 10.5. In our laboratory, we consider newborn mice to have a postnatal age of 0 day on the day of birth.

Phenotyping Methods for Use in Embryonic and Newborn Mice

Injection and Blood Sampling of Embryonic and Newborn Mice

A method for percutaneous injection of newborn mice between 0 and 4 days of age has been described (Sands and Barker 1999). Volumes up to 100 \(\mu \)L can be injected into the superficial temporal vein at this stage. In embryos at 6.5 days of gestation or older, microinjection of labeled cells or other agents into tissues or cavities of the embryo or placenta has been performed through the exteriorized uterus under image guidance by ultrasound (Slevin et al. 2006; Liu...
et al. 1998) or transillumination, or based on visible extra-
uterine or transuterine landmarks (Mitchell et al. 2000; Pa-
paioannou 1990). We have found that intravascular
microinjection into the cardiac ventricles or large hepatic
veins is possible in embryos ages 12.5 to 14.5 days using an
ultrasound biomicroscope (UBM1) (Vev0660; VisualSon-
ics, Toronto, Ontario, Canada) for image guidance (Slevin
et al. 2006). Embryonic survival after cardiac microinjec-
tion of cells averaged 56% (85 of 115 injected embryos
from 18 litters were alive when assessed 3 days after injec-
tion). This procedure can also be used to administer intra-
cardiac microinjections of ~250 nL of india ink (Figure 4),
Nagy and coauthors (2003) have reported using india ink to
visualize the mouse embryonic vasculature by injecting into
the vitelline vein of the yolk sac of embryo day 12.5 or older
with aid of a mouth pipette. It is possible to inject ink with
ultrasound guidance into the embryonic (days 12.5 to 14.5)
left ventricle through a pulled-glass pipette (tip outer diam-
eter <100 µm) at 23 nL/sec using a microinjector pump.
After allowing the embryonic circulation to continue for
several minutes to distribute the ink, the whole embryo was
excised and immersed in fixative overnight before it was
dehydrated through graded methanol solutions (25%-
100%). Tissues were then cleared with a benzyl alcohol and
benzyl benzoate 1:2 mixture to allow for three-dimensional
(3D1) visualization of the vasculature (Figure 4).

Small volumes of blood may be collected from anesthe-
tized newborns by cardiac puncture, and it may be possible
to collect small volumes from the superficial temporal vein
(Sands and Barker 1999). Larger volumes of blood can be
obtained from the trunk after decapitation of newborns. As
an example, ~40 µL (range 30-50 µL) was obtained by this
method from ICR mouse newborns at 1 day postnatal age
(body weight ~1.5 g). Embryonic blood can be obtained
after cesarean delivery from the umbilical cord, by cardiac
puncture, or after decapitation. Because we have found that
it is possible to microinject into the heart of embryos under
ultrasound guidance, it may also be possible to collect small
volumes of blood via this route especially near the end of
gestation, when embryos are relatively large.

Electrocardiography, Blood Pressure, and Heart Rate

We record ECG signals from isoflurane-anesthetized neo-
natal mice using copper tape to connect their paws to trans-
cutaneous electrodes designed for adult mice (Indus
Instruments, Houston, TX). Others report methods for re-
cording ECG in awake newborn mice in specially designed
chambers from 1 to 14 days postnatal age (Wang et al.
2000).

It is difficult to measure blood pressure in newborn
mice. Tail cuff blood pressure systems cannot be used in
mice before weaning because their tails are too short. It is
also difficult to obtain high-fidelity arterial pressures using
vascular catheters due to the relatively poor frequency re-
sponse of such small diameter catheters (e.g., internal di-
ameter of carotid artery is ~250 µm in 3- to 7-day-old
newborns) and due to the capacitance of standard strain
gauge transducers, which is high relative to the low blood
volume in newborn mice. However, it is possible to measure
blood pressure invasively in mouse embryos (Ishiwata et al.
2003) and in anesthetized newborn mice as young as the day
of birth (Ishii et al. 2001) using a pulled-glass pipette and
servo-null pressure recording system. ECG may not have
been successfully measured in embryonic mice due to the
difficulty in maintaining hemodynamic stability in exposed
embryos as well as difficulties caused by size and low signal
to noise ratios.

Doppler Ultrasound

Doppler instruments measure blood velocity by detecting
the Doppler frequency shift in the signal reflected from
moving red blood cells. Doppler signals can be used to
assess systolic and diastolic cardiac function, to calculate
vascular blood flow using vessel area, and to detect valvular
defects, stenosis, and abnormalities in upstream or down-
stream vascular resistance. We measured intraventricular
Doppler blood velocity waveforms in the left ventricle of
postnatal mice from the day of birth in a study investigating
diastolic function (Zhou et al. 2003). While performing this
study, we found that strong Doppler signals could be readily
obtained from the heart and from other vessels as early as
the day of birth. As in adult mice (Hartley et al. 2002), this
method provides a relatively inexpensive and effective tool
for noninvasive phenotyping of cardiovascular function in
newborns. However, skill and practice are required because

![Figure 4 Vascular visualization of whole mount embryo after an in vivo intracardiac microinjection of india ink. (A) Control embryo at day 13.5; vasculature is poorly seen without ink. (B) Day 13.5 embryo after left ventricular microinjection of india ink in utero under ultrasound guidance. The ink has been distributed throughout the embryonic vascular system. Embryo tissues were cleared with a benzyl alcohol:benzyl benzoate mixture. H, heart; Li, liver.](https://academic.oup.com/ilarjournal/article-abstract/47/2/103/670289)
the Doppler sample volume must be placed without the benefit of a two-dimensional (2D) ultrasound image for guidance. In embryos visualized after surgical exposure, Doppler ultrasound has been used to evaluate cardiac function in association with simultaneous measurements of cardiac dimensions using videomicroscopy (Keller et al. 1996).

Ultrasound Systems

Ultrasound systems can be used to obtain noninvasive real-time images from which one can obtain quantitative measurements of dimensions and assess areas and structural morphology. The image is also useful for placing the Doppler sample volume within vessels or the heart to obtain blood velocity information and for placing the “M-mode” cursor over the heart to obtain information on the motion and dimensions of the cardiac chambers over time. While clinical ultrasound systems have been used to phenotype embryonic and newborn mice, recent advances in ultrasound technology have led to the development of the UBM designed specifically for high-resolution imaging of mice (Foster et al. 2000, 2002).

Clinical ultrasound systems with relatively high-frequency transducers (~15 MHz) have been used to measure the size of the decidual sac from 7.5 days to obtain a noninvasive estimate of gestational age (Chang et al. 2003) and to measure embryonic size from 12.5 days to assist in phenotypic characterization (Leatherbury et al. 2003). Using this instrumentation, Doppler signals can also be obtained from the embryonic heart from ~12.5 days of gestation (Gui et al. 1996; Leatherbury et al. 2003) and M-mode recordings for evaluation of cardiac function from ~15.5 days (Leatherbury et al. 2003). However, the resolution of images generated using clinical ultrasound systems is poor (200-500 μm) compared with the resolution (~50 μm) of images using much higher frequency transducers (~40 MHz) of the UBM (Zhou et al. 2002). Indeed, the UBM can be used to measure the gestational sac from day 6.5 (Figure 5A) and to obtain Doppler measurements from embryos as soon as the heart begins to beat on day 8.5 of gestation (Figure 5, B and C) (Ji et al. 2003). Furthermore,

Figure 5 Ultrasound biomicroscope images, and Doppler and M-mode recordings from mouse embryos at various gestational ages. (A) Mouse embryo at 6.5 day of gestation (~2 days after implantation). Implantation sites are visible. (B) At day 8.5, cardiac size can be quantified by measuring the maximal width and length of the embryonic heart. (C) Flow velocity in the cardiac region is first detectable at day 8.5. Doppler waveforms can be used to quantify embryonic heart rate and detect arrhythmias. (D) Blood flow velocity in the vitelline circulation to the yolk sac is also first detectable at day 8.5. (E) At day 10.5, the vitelline artery and the umbilical cord are clearly visible. (F) At day 13.5, the four-chamber view of both ventricles and both atria can be obtained. (G) M-mode recording of embryo heart at day 13.5. H, heart; VT, vitelline artery; UC, umbilical cord; LA, left atrium; RA, right atrium; LV, left ventricle; P, placenta; RV, right ventricle; d, diastole; s, systole. Smallest units on scale bars in A, B, and G are 100 μm. Scale bars in C and D are in cm/sec.
the higher image resolution and smaller Doppler sample volume allow for more precise placement of the sample volume. The ability of this instrumentation to detect low blood velocities is important when studying low blood velocities in the embryonic circulation (Phoon et al. 2000; Zhou et al. 2002).

We have found that the age of lethality can be estimated using UBM B-mode imaging by determining the number of viable and nonviable implantation sites visible within the uterus as a function of gestational age. The absence of a heartbeat can be used to detect nonviable embryos on or after day 8.5 of gestation (Figure 5, B and C). However, an echolucent gestational sac surrounded by a relatively echobright region of trophoblast cells is visible by day 6.5 (Figure 5A). Size can be quantified using the UBM calipers. Implantation sites that are abnormally small with abnormal morphology contain nonviable resorbing embryos in our experience (23 of 23 abnormal sites contained nonviable embryos when examined between day 10.5 and 18.5 of gestation). It is important to note that some embryos may be missed when viewing with any ultrasound system, and this problem is particularly common when litter size is large. For example, when we compared the number of viable and nonviable embryos determined using the UBM with the number determined the same day by dissection, we found that we had missed 11% (23/262) of the live embryos and 21% (6/29) of the dead or resorbing embryos using the UBM. In this study, the mean litter size was seven (range 1-12) and the mean number of mice examined per day from 10.5 to 18.5 days was three (range 1-6). It is also important to note that with the exception of the embryos adjacent to the cervical attachment of the uterus, the same embryo may not be imaged on subsequent days even when found in the same intra-abdominal position because of the mobility of the uterine horns during pregnancy.

The UBM has been used for morphological, functional, and hemodynamic phenotyping of embryonic and newborn mice (Fatkin et al. 1999; Foster et al. 2003; Ji et al. 2003; Lickert et al. 2004; Phoon and Turnbull 2003; Phoon et al. 2000, 2004; Zhou et al. 2002, 2003). The amount of detailed phenotypic information that can be obtained by UBM imaging increases as gestation advances. In our experience, at day 6.5 of gestation (∼2 days after implantation), the size of the implantation site can be quantified using calipers (Fig-

Figure 6 Embryonic structures visualized by ultrasound biomicroscope from day 10.5 to 17.5 of gestation. (A) Axial view of the embryonic head at day 10.5 showing the cerebral ventricles in the brain. (B) Long-axis view can be used to quantify embryo size by measuring the maximal width and length of the embryo. (C) Short-axis view can be used to quantify embryo size by determining the area of the embryo. B-mode images of embryonic eye (D), forepaw (E), liver and lung (F). Br, brain; P, placenta; Em, embryo; E, eye; FP, forepaw; Lu, lung; Li, liver; H, heart.
ure 5A). By day 8.5, when the embryonic heart has started to beat, it is possible to use Doppler to measure heart rate and to detect arrhythmias, and to use calipers to measure cardiac size (Figure 5, B and C). Blood flow velocity in the vitelline circulation to the yolk sac is also first detected at this stage (Figure 5D). By day 9.5, the umbilical circulation has formed (Figure 5E), and Doppler arterial waveforms can be obtained from the umbilical artery (Phoon et al. 2000) and from the inflow or outflow tracts of the heart (Zhou et al. 2002). Calipers can be used to measure embryonic size and cross-sectional area (e.g., Figure 6, B and C). By day 13.5 of gestation, when embryos are in a suitable orientation to obtain a four-chamber view of both ventricles and both atria (Figure 5F), the pulsed Doppler sample volume can be placed within the left or right ventricular chamber to record the mitral or tricuspid inflow, or within the ascending aorta to record the outflow blood velocity waveforms (e.g., Figure 7). By 13.5 days of gestation, when embryos are in a

Figure 7 Doppler blood velocity waveforms obtained at various sites in the embryonic circulation. Scale bars in cm/sec.
suitable orientation to obtain a long-axis view of the left and right ventricles, it is possible to obtain M-mode recordings of the motion of the heart walls, in addition to the intraventricular waveforms (e.g., Figure 5G). Additionally, other structures can be examined for phenotypic analyses, including the brain, eyes, paws, lungs, and liver (Figure 6, A and D-F). Eye morphogenesis has been studied in vivo during development using this method (Foster et al. 2003). Doppler waveforms can also be obtained at other sites such as the ascending and descending aorta, the pulmonary artery, the umbilical and vitelline arteries, and the umbilical vein, ductus venosus, and inferior vena cava (Figure 7).

Using the methods described above, we have detected a variety of mutant phenotypes, including arrhythmia, abnormal umbilical arterial velocity waveforms (unpublished) similar to those observed in pathological human pregnancies (Harman and Baschat 2003), and abnormal kidney development (Figure 8). The UBM can be used to obtain similar information in newborn mice. Imaging tends to be easier in postnatal animals because the operator has more freedom to adjust body position and transducer angle to obtain the best imaging plane.

The bioeffects of diagnostic levels of ultrasound on mouse embryonic development appear to be modest or nonexistent after a single exposure although small transient reductions in postnatal body weight have been observed (Brown et al. 2004; Hande and Devi 1993). Pending further information on bioeffects, we limit each ultrasound examination to 60 min per pregnant mouse or newborn (from the onset of anesthesia to arousal), and we limit the number of ultrasound sessions in longitudinal studies to a maximum of five.

Magnetic Resonance Imaging

MRI detects the oscillations of nuclei whose spins produce a net magnetic moment in the presence of a strong magnetic field (Chatham and Blackband 2001). The most commonly imaged nucleus is the proton in water, which has magnetic
resonance properties that depend on its chemical environment and which provides good soft tissue contrast in images. MRI is advantageous for in vivo phenotyping because it presents realistic 3D anatomy without the shrinkage and distortion inherent in 2D serial histological sections.

Recent advances in MRI technology have increased image resolution approximately 10-fold so that it is now possible to obtain images in mice with a diagnostic quality similar to that obtained in humans using clinical MRI systems. This result has been achieved by using more powerful magnets (~5-12 tesla) than are typically used in clinical MRI systems (~1.5-3.0 tesla) and by using much smaller radiofrequency coils, thereby greatly increasing sensitivity. It is also possible to use long imaging times to increase image resolution. MRI can be used to image the entire newborn with an isotropic resolution of 100 μm. Because the tissue contrast is also similar to that of human MRI, translational studies are possible with mouse models of disease (Nieman et al. 2005). However, to probe the underlying cytoarchitecture, histology is still needed because MRI lacks the fidelity to resolve detail at the cellular level.

In Figure 9, an example of an MRI image of the head region of a live 6-day-old mouse newborn is shown. The mouse was given Mn$^{2+}$ as a contrast agent (Watanabe et al. 2004), and the resolution of the 3D image is 100 μm isotropic. The image reveals good detail for analyzing gross brain anatomy. Despite the fact that it takes 3 hr to produce such an image, which is a drawback in MRI, multimouse MRI can considerably increase the throughput in a study (Bock et al. 2003). MRI is also sensitive to motion, so gating techniques (Cassidy et al. 2004) are needed when imaging near the heart and lungs in newborns. Motion artifacts are problematic when imaging mouse embryos in vivo, although some progress has been made (e.g., Hogers et al. 2000). Thus embryos are usually imaged postmortem and after fixation (Smith 2000). Gadolinium contrast agents may be infused to enhance visualization of the cardiovascular system (Smith 2000). Postmortem imaging enables isotropic image resolutions of up to 25 μm (Schneider et al. 2003) by eliminating motion artifacts and by permitting much longer imaging times.

Vascular Corrosion Casting

Vascular corrosion casting is an acute invasive method that is available for investigating normal and abnormal vascular anatomy of the mouse embryonic and placental circulations. Plastic casts permit 3D visualization of the structure of the blood spaces. Casts are made by clearing the blood from the vessels of interest and then infusing a liquid plastic such as methyl methacrylate (Polysciences, Inc., Warrington, PA), which hardens within the vessels. To cast the uteroplacental vasculature, a catheter is placed in the descending thoracic aorta of the pregnant mouse, and the casting compound is infused into the lower body vasculature including the uterus and placentas. A fine-tipped glass cannula attached to a double-lumen catheter is used to instill the same casting compound into either the vessels of the embryonic side of the placenta or the embryonic circulation via the umbilical artery or vein. After polymerization of the casting compound, tissues are digested from the hardened casts using a concentrated base solution (20% KOH). The washed and dried casts are then available for light or scanning electron microscopy (SEM3) (Kondo 1998; Whiteley et al. 2006). This method has been used to cast the mouse uteroplacental vasculature from 5.5 to 18.5 days gestation, and the vasculature of the embryonic side of the placenta and embryonic vasculatures from 12.5 days gestation to term (Adamson et al. 2002; Kondo 1998) (Figure 10).

Vascular casts can provide both qualitative and quantitative information on vessel number and diameter. The blood spaces so obvious in vascular casts often collapse during tissue dissection and processing for histology, leaving them barely detectable on histological sections. In addition, casts provide information on the surface morphology of cells lining the blood-perfused spaces. This feature can be used to distinguish blood spaces that are lined by arterial or venous endothelial cells, or by trophoblast cells (Adamson et al. 2002). When viewed with an SEM, individual capillaries are visible in vascular corrosion casts (e.g., Figure 10A). Depending on their location within the cast, dissection or trimming of the plastic cast may be necessary to

![Figure 9 Magnetic resonance images of a live 6-day-old mouse pup showing three orthogonal slices—(A) coronal, (B) horizontal, and (C) sagittal—obtained from a three-dimensional (3D) image of the skull and brain. The mouse was given Mn$^{2+}$ as a contrast agent. The resolution of the 3D image was 100 μm isotropic. The image shows good detail for analyzing gross brain anatomy.](image-url)
expose vessels of interest. Alternatively, partial filling of the embryonic (Figure 10C) or placental circulations (Adamson et al. 2002) from either the arterial or venous sides is possible.

Microcomputed Tomography

Microcomputed tomography (micro-CT\(^1\)) (Ritman 2004), is a rapidly advancing X-ray technology stimulated by the recent demand for small animal imaging. Air, fatty tissue, nonfatty tissue, and bone can be distinguished in micro-CT images (Ritman 2004). Other spaces can be discerned by using X-ray contrast agents. To image the vasculature, contrast is obtained by perfusing the specimen with a radio-opaque polymer that sets within the vascular space. Because the surrounding tissue is relatively transparent to X-rays, the tissue masceration required for other casting techniques is not needed when preparing a specimen for micro-CT. Moreover, the ability to produce 3D data sets affords more flexibility in visualization and analysis than light or electron microscopy. Tabletop micro-CT systems can resolve 20-μm diameters and larger vessels over a 2- to 3-cm field of view (Bentley et al. 2002; Marxen et al. 2004), and synchrotron-based systems have been demonstrated with 1-μm resolution (Heinzer et al. 2004), sufficient to resolve individual capillaries. Given the field of view, micro-CT is limited to studying vascular networks in individual organs in adult mice but can be used to visualize the entire vascular network of embryos and their placentas.

Figure 10 Vascular corrosion casts of the placental and embryonic circulations. (A) Image of a vascular corrosion cast of the embryonic side of the placental microcirculation at 17.5 days of gestation obtained using a scanning electron microscope (SEM). (B) Image of the venous circulation of a mouse embryo at 15.5 days of gestation obtained using a SEM. (C) Image of a cast showing the major arterial vasculature of a 17.5 day mouse embryo obtained using a SEM. Infusion of the casting compound was stopped before reaching the small arterioles and capillaries to prevent them from obscuring the view of the larger vessels. La, labyrinth; Li, liver; K, kidney; Pa, pulmonary arteries; Ao, descending aorta.

Figure 11 Microcomputed tomography (micro-CT) image of the embryonic side of the placental circulation at day 15.5 of gestation. The contrast agent was injected into (A) the umbilical artery until the capillaries started to fill to visualize the arterial side of the placental circulation, and into (B) the umbilical vein until the capillaries started to fill to visualize the venous side of the circulation. Micro-CT was unable to resolve individual capillaries, thus the capillary beds have not been included in these images. The absence of the capillaries permits an unobstructed view of the arterial and venous circulation. The voxel size for the reconstructed images was 13 μm.
To obtain the images shown in Figure 11, the arterial or venous circulations of the embryonic side of the placental circulation were perfused with Microfil (Flow Tech Inc., Carver, MA) contrast agent using the infusion method described in Vascular Corrosion Casting above. Specimens were scanned in an MS-9 micro-CT scanner (GE Medical Systems, London, Ontario) to produce data sets with a voxel size of 13 μm. Reconstruction produced 3D images and enabled generation of geometric models of the lumen surface, excluding capillaries. Lumen surface renderings are shown in Figure 11 for arterial and venous casts of the embryonic side of the placental circulation. Using computer-based analysis, geometric properties such as surface area and vessel diameter distributions can be derived (Rennie et al. 2005; Sled et al. 2004). Automation of these measurements facilitates population studies and the characterization of disease models.

Optical Projection Tomography

Optical projection tomography (OPT), a new technique that is now commercially available (www.bioptonics.com), generates very high resolution images of clarified embryos or whole organs. It is essentially an optical version of micro-CT that uses image-forming optics and optical contrast agents to create cellular resolution 3D images of whole specimens up to 1 cubic centimeter in size (Sharpe 2004; Sharpe et al. 2002). In the OPT method, a specimen is embedded in agarose, clarified in a 1:2 solution of benzyl alcohol:benzyl benzoate, and then affixed to a rotating stage. The specimen is rotated stepwise through a complete revolution, and at each step an image is acquired using a microscope and a charge-coupled device camera. The images are used in a typical backprojection algorithm to reconstruct a 3D image of the complete specimen. The final result is a 3D data set that can be viewed in a slice-by-slice manner (Figure 12, B and C), or surface or volume rendered to obtain a true 3D representation of the data (Figure 12A).

OPT can be used in either transmission or fluorescent mode, which are similar to brightfield and fluorescence microscopy, respectively. Each mode can take advantage of the multitude of absorbing and fluorescent molecularly specific contrast agents that have been developed over many years of microscopy. Gene-specific markers can be used to study the pattern of gene expression throughout the entire specimen (Ballock et al. 2003) or to enhance visualization of a structure of interest (Lickert et al. 2004). Optical filters are used to separate the molecular marker signal from the autofluorescence signal in order to acquire two sets of images at each view angle, and thus two overlapping 3D OPT data sets. In this manner, the position of the pattern or structure with respect to the rest of the specimen is maintained. Mutant/wild-type comparisons performed with OPT (Lickert et al. 2004; von Both et al. 2004) are more sensitive to spatial complexity than comparisons performed using serial sectioning techniques that may alter subtle morphology.

Summary and Conclusion

Although the small size of mouse embryos and newborns presents a challenge, considerable progress has been made in adapting and miniaturizing technology to obtain increasingly detailed phenotypic information in embryonic and neonatal mice. The developmental stage of the animals being phenotyped is an important consideration when selecting the appropriate technique for anesthesia or euthanasia, and for labeling animals in longitudinal studies. It is also essential to maintain normal maternal cardiorespiratory state and body temperature before acquiring physiological data from embryos. In addition, it is important to control for possible study design differences between inter- and intralitter variability, and for possible long-term developmental effects caused by anesthesia and/or other procedures. Non-invasive or minimally invasive intravenous or intracardiac injections or blood sampling as well as arterial pressure and ECG measurements are feasible in newborns. Whereas microinjection techniques are available for embryos as young as 6.5 days of gestation, further development is required to obtain minimally invasive fluid or tissue samples, or blood pressure or ECG measurements, from mouse embryos in utero. Doppler and M-mode ultrasound can be used noninvasively to monitor cardiac and vascular hemodynamics in
vivo in embryos and newborns. In addition, sophisticated methods for imaging mouse embryos and newborns are available and include in vivo ultrasound and MRI, postmortem MRI, vascular corrosion casts, micro-CT, and OPT. This growing repertoire of techniques available for phenotyping mouse embryos and newborns is critical to gain maximal benefit from genetically engineered mice as models for advancing our understanding of the genesis of congenital diseases, and our knowledge of gene function during development.

Acknowledgments

This work was funded by operating and/or equipment grants from the Canadian Institutes of Health Research, the Canadian Foundation for Innovation, Ontario Innovation Trust, Ontario Research and Development Challenge Fund, National Cancer Institute of Canada, Burroughs Wellcome Fund, National Institutes of Health, and the Richard Ivey Foundation. S.L.A. is a member of the Scientific Advisory Board of the VisualSonics Company and has no financial interests in the company.

References

