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Abstract

The concept of autonomy is fundamental for understanding
biological organization and the evolutionary transitions of liv-
ing systems. Understanding how a system constitutes itself
as an individual, cohesive, self-organized entity is a funda-
mental challenge for the understanding of life. However, it is
generally a difficult task to determine whether the system or
its environment has generated the correlations that allow an
observer to trace the boundary of a living system as a coher-
ent unit. Inspired by the framework of integrated information
theory, we propose a measure of the level of integration of a
system as the response of a system to partitions that introduce
perturbations in the interaction between subsystems, without
assuming the existence of a stationary distribution. With the
goal of characterizing transitions in integrated information in
the thermodynamic limit, we apply this measure to kinetic
Ising models of infinite size using mean field techniques. Our
findings suggest that, in order to preserve the integration of
causal influences of a system as it grows in size, a living en-
tity must be poised near critical points maximizing its sensi-
tivity to perturbations in the interaction between subsystems.
Moreover, we observe how such a measure is able to delimit
an agent and its environment, being able to characterize sim-
ple instances of agent-environment asymmetries in which the
agent has the ability to modulate its coupling with the envi-
ronment.

Introduction
Many open questions in biology are related to major evolu-
tionary transitions in biological organization. How do living
systems arise from non-living matter? How does biological
individuality emerge from networks of complex chemical re-
actions? How do autonomous agents constitute themselves
in front of their environment? Understanding the difference
between the living and the non-living, the cognitive and non-
cognitive, implies understanding how these transitions work.
It has been proposed that the transitions related with the ori-
gin of life may be akin to physical transitions (as thermody-
namic phase transitions) associated with a shift in the causal
structure of a system (Walker and Davies, 2013)

The challenge is to define and quantify the type of or-
ganization that emerges in these transitions. Although the
number of open questions regarding this issue is dauntingly

large, one property of living organization that has sparked
interest during the last decades is the idea of autonomy.
Roughly, autonomous systems can be described as form-
ing a unitary whole that emerges from the interaction of
its components in a self-organized manner (Maturana and
Varela, 1980; Moreno and Mossio, 2015). That is, they are
able to preserve themselves as entities with self-defined and
self-maintained boundaries while facing internal and exter-
nal perturbations.

Although the idea of autonomy presents an exciting
theoretical perspective, in practice quantifying autonomy
presents some formidable difficulties. Many of these diffi-
culties are related to the fact that autonomy requires a system
to constitute itself as a unified whole that can be regarded
as distinct from the environment, yet in ongoing interaction
with it. Hence, the question lies in how to distinguish be-
tween a living entity and its environment that are constituted
as distinct entities at a macroscopic level, while remaining
meshed together in the material interactions at the micro-
scopic level.

Recent efforts to characterize autonomous organiza-
tion have used information theory in dynamical systems
(Bertschinger et al., 2008). Nevertheless, these approaches,
based on measuring correlations between variables at dif-
ferent times, present some limitations for distinguishing be-
tween system and environment. Typically, while these non-
linear correlations can be described in dynamical or infor-
mation theoretical terms, it is not possible to capture what
are the contributions of the system and environment, making
the task to inferring the boundary between the two difficult.

Instead of analyzing mere correlations, it has been pro-
posed that interventionist notions of causality are better
suited to characterize autonomous organization (Marshall
et al., 2017). That is, instead of assessing whether a sys-
tem is unified into a coherent whole by analyzing its be-
haviour in stable conditions, one could capture the causal
forces integrating the behaviour of the system by observ-
ing its behaviour under perturbations. Specifically, Marshall
et al. (2017) have used the framework of integrated infor-
mation theory (IIT, Oizumi et al., 2014) for delimiting the
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boundaries of biological models. Although interventionist
approaches have been used before in the analysis of complex
systems, IIT is particularly interesting because it proposes a
rigorous information theoretical framework for measuring
the effects in interventions in the system in terms of the ir-
reducibility of its components. Additionally, IIT does not
require the existence of stationary conditions.

IIT postulates that any subset of elements of the system is
a mechanism integrating information if its intrinsic cause-
effect power (i.e., its ability to determine past and future
states) is irreducible. Irreducibility is measured in terms of
the integrated information ϕ, which when larger than 0 in-
dicates that the subset of elements at its current state con-
strains the past and future states of the system in a way that
cannot be decomposed in two or more independent cause-
effect sets of relations. That is, ϕ captures the level of irre-
ducibility of the system, understood in the sense that even
the least disrupting bipartition of the system in two discon-
nected halves (this is called the minimum information parti-
tion, MIP) would imply a loss of information in the causal
power of the system. Aside from computing integrated in-
formation at the level of mechanisms, IIT postulates a com-
posite measure Φ, which is computed from the set of all
mechanisms (each one defined by a value of ϕ) computed
in the original system and the system under bidiriectional
partitions. A system with Φ > 0 is described as forming an
irreducible unitary whole. Since many subsets of the system
may present Φ > 0, the causal boundaries of the system are
defined around the subset with larger Φ.

In general, IIT has been tested in small toy models (e.g.
logic gates, Oizumi et al., 2014). Due to the computational
complexity of IIT measures, it is not feasible to apply them
to larger systems (some alternative formulations try to cir-
cumvent this problem, e.g. Oizumi et al., 2016). However,
a serious attempt to capture aspects of biological autonomy
should think about autonomy as an organizational property
of a system, which is able to scale as it grows in size. In this
article, we compute integrated information measures using
mean field approximations in an infinite range Ising model.
Our approach simplifies some aspects of the IIT framework
and proposes some modifications in order to measure inte-
grated information correctly as a system scales to very large
sizes. We introduce a simple kinetic Ising model with quasi-
homogeneous connectivity, which presents an exact mean
field solution that we use to simplify the calculation of in-
tegrated information ϕ of the mechanisms of a system. As
the model with infinite size has an exact mean field solution
for some combinations of parameters, this allows us to test
the application of ideas from IIT to systems near the ther-
modynamic limits. We argue that some minor changes are
necessary in the current postulates of IIT to capture the di-
verging properties of very large systems. In addition, using
some variations of the model we exemplify the case of deter-
mining the boundary of a system interacting with an exter-

nal environment, which is described by comparing the dif-
ference between integrated information in the system alone
and the joint agent-environment system. Our intent is not to
propose a complete framework to measure integrated infor-
mation, but to test how integrated information behaves with
systems of diverging sizes, as well as to explore tentative
routes to adapt IIT measures to these cases. We find that in
some examples the specific value of integrated information
of a system is not as informative as other properties as how
it diverges with different spatial and temporal scales.

The results presented here represent a first attempt for
using integrated information theory to delimit the causal
boundaries of a family of infinite size systems that can be
formally solved. The interest of the study is twofold. First,
it allow us to check some of the assumptions of IIT and pro-
pose some modifications to maintain its consistency in the
large thermodynamic limit, and to propose a way to adapt
IIT measures in very large systems. Second, although the
results presented are obtained from relatively simple cases,
they offer an opportunity to speculate about how the causal
integrative forces of a system (both its internal cohesion and
the coupling with its environment) might scale up when a
system approaches the thermodynamic limit, as well as what
type of transitions we might expect for understanding the
evolutionary history of living organisms.

We proceed as follows. First, we introduce our model and
a mean field approximation for solving it. Then we intro-
duce integrated information theory and how it can be com-
puted using mean field approximations, and illustrate this in
a simple homogeneous model. Then, we present the results
of our method in two scenarios in which the model is modi-
fied to represent asymmetric interactions of the type that we
could expect from agent-environment interactions. Finally,
we discuss the possible generalization and implications of
our results.

Approximating Integrated Information for a
Mean Field Kinetic Ising Model

First, we define a general model defining causal temporal
interactions between variables. Looking for generality, we
use the least structured statistical model defining causal cor-
relations between pairs of units from one time step to the
next. We study a kinetic Ising model where N Ising spins si
evolve in discrete time, with synchronous parallel dynamics
(Figure 1.A). Given the configuration of spins at time t− 1,
s(t − 1) = {s1(t − 1), . . . , sN (t − 1)}, the spins si(t) are
independent random variables drawn from the distribution:

P (si(t)|s(t− 1)) =
eβsi(t)hi(t)

2 cosh(βhi(t))
(1)

where
hi(t) = Hi +

∑
j

Jijsj(t− 1) (2)
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The parameters Hi and Jij represent the local fields at each
spin and the couplings between pairs of spins and β is the
inverse temperature of the model. Without loss of generality,
we can assume an β = 1.

Mean Field Approximation
We focus on the particular case of a system of infinite size
where Hi = 0. The system is divided into different regions
(from 1 to 3 depending on the example), and the coupling
values Jij are positive and homogeneous for each intra- or
inter-region connections Jij = 1

NR
JSR, whereR and S are

regions of the system with sizes NR, NS and i ∈ S, j ∈ R.
For a system of infinite size (and all regions with also in-

finite size), a mean field approximation allows to calculate
the field of all units i belonging to the region S as

hi(t) =
∑
R
JSRmR(t− 1),

mR(t− 1) =
1

NR

∑
j∈R

sj(t− 1)
(3)

where mR(t− 1) is the mean field of regionR(t− 1). Now
we can exactly define the update of the mean field variables
using Equation 1 as:

mS(t) = tanh(
∑
R
JSRmR(t− 1)) (4)

Integrated Information
We use a simplified version of the integrated effect infor-
mation described by IIT (Oizumi et al., 2014), implement-
ing some modifications to correctly measure the scaling of
integrated information in the thermodynamic limit. In IIT,
both causes and effects of a state are taken into account. For
simplicity, we consider only the effects of a particular state.
Also, although IIT is defined only for the immediate effects
after one update of the state of the system, we define inte-
grated information ϕ(τ) for an arbitrary number of updates
of the system. See Appendix for a list of the differences
between IIT and the measure employed here.

Given an initial state s(τ0), we define a ‘mechanism’
M (following IIT’s nomenclature) as a subset of units
{si(τ0)}i∈M. Integrated information of mechanism M,
ϕM, is defined as the distance between the behaviour of the
original system to a system in which a partition (from the set
of possible bipartitions) is applied over the units inM. Fig-
ure 1.B depicts an example of a partition. When a partition is
applied, the input coming from the partitioned connections
of the system is replaced by a random unconstrained noise
(binary white noise in the case of an Ising model).

Once the partition is applied, the probability of the state
s(τ0+τ) systems is computed after τ updates injecting noise
at the partitioned elements. Then, integrated information is

defined as the distance D between the conditional probabil-
ity distributions at t+ τ :

ϕcutM (τ) = D(p(s(τ0 + τ)|s(τ0)), pcut(s(τ0 + τ)|s(τ0)))
(5)

where D(p1, p2) refers to the Wasserstein distance (also
known as earth mover’s distance) used by IIT to quantify the
statistical distance between probability distributions. Here
cut specifies the partition applied over the elements of mech-
anism M, cut = {Sc1, Sc2, Sf1 , Sf2 }, where Sc1, S

c
2 design

the blocks of a bipartition of the mechanism at the current
state {si(t)}i∈M, and Sf1 , S

f
2 refer to the blocks of a bipar-

tition (not necessarily the same) of the updated state of the
units {si(t + 1)}i∈M. Figure 1.B represents the partition
cut = {{s1(t), s2(t)}, {s3(t)}, {s1(t+ 1), s2(t+ 1), s3(t+
1)}, {}}.

Specifically, IIT computes integrated information as the
value of ϕcut under the minimum information partition
(MIP), which is the partition of mechanism with the least
difference to the original partition (i.e., ϕMIP

M (τ) =
mincut ϕ

cut
M (τ)). We use ϕM(τ) to denote the minimum

information partition integrated information ϕMIP
M (τ).

Note that some important modifications have been made.
The most important one is that IIT considers the element
outside of the mechanism as unconstrained sources of noise.
To preserve the consistency of our results, we let elements
outside the mechanism operate normally (see Appendix).
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Figure 1: (A) Description of the infinite size kinetic Ising
model. (B) Description of the partition schema used to de-
fine perturbations. Partitioned connections (black arrows)
are injected with random noise.

Integrated Information in the Mean-Field Model
We now show how integrated information can be com-
puted for the mean field approximation of the Ising model.
Thanks to the mean field approximation we can simplify
the calculation of the probability distributions of trajectories
p(s(τ0+τ)|s(τ0)), pcut(s(τ0+τ)|s(τ0)) to a Markovian dis-
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tribution dependent on the mean field at the previous step:

p(s(τ0 + τ)|s(τ0))

=

∫
p(s(τ0 + τ)|h(τ0 + τ))p(h(τ0 + τ)|s(τ0))dh(τ0 + τ)

(6)
Moreover, for the system of infinite size described above,
the evolution of h(t) is deterministic and governed by Equa-
tion 4, and given the mean field value received by each
unit their posterior probability distribution is independent,
so p(si(τ0 + τ)|s(τ0)) = p(si(τ0 + τ)|hi(τ0 + τ)). In
this context, the calculation of the Wasserstein distance D
is drastically simplified, and we can compute ϕ as the sum
of distances between independent binary variables:

ϕcutM (τ) =
∑
i

D(p(si(τ0 + τ)|hi(τ0 + τ)),

pcut(si(τ0 + τ)|hi(τ0 + τ)))

=
1

2

∑
R
NR|mR(τ0 + τ)−mcut

R (τ0 + τ)|
(7)

Once we can calculate ϕ, we still have the problem of
finding the MIP of the system. Luckily, since the connectiv-
ity of the system is homogeneous for all nodes in the same
region, finding the MIP is equivalent to finding the parti-
tion that cuts the lowest number of connections. For infinte
size systems where inter-region connections are not zero, the
MIP will be one of the possible partitions that isolate just one
node of the system. Also, the partition that isolates a single
unit in time t always has a smallest value of ϕ than the par-
tition isolating a node at time t + 1, since partitioning the
posterior distribution corresponds to a larger difference be-
tweenmR(τ0 +τ) andmcut

R (τ0 +τ). Thus, finding the MIP
corresponds to finding which regionR of the system affects
less future states when one node of the region is isolated in
the partition at time t (e.g. Figure 1.B).

Finally, we define a function FR(m(τ0), τ, {JS,R}) that
recursively applies the update rule in Equation 4 for τ
steps starting from an initial value with a mean field value
m(τ0), such that mR(τ0 + τ) = FR(m(τ0), τ, J). In our
mean field approximation, applying the MIP to the quasi-
homogeneous system described here is equivalent to just re-
moving one connection1 between one or more pairs of re-
gions {S,R}cut, whereas the connections between the rest
of regions {S,R}uncut remain intact. Therefore the up-
date rule applied by function F to the partitioned system
is F (m(τ0), τ, {{JS,R}uncut, {(1− 1

NR
)JS,R}cut}).

Assuming that the number of units per region is equal to
NR = rRN and

∑
rR = 1, we get a simplified expression

1Note that cutting a connection implies injecting uniform noise,
which in the mean field approximation is equivalent to substitute
the input by a zero mean field or just removing the connection.
This is an important approximation that allow us to obtain the main
results of the paper, although it will only be valid when the size of
the system is infinite and τ is larger than 1.

for the partitioned and unpartitioned terms:

F R
cut

(m0, τ, x)

= FR(m0, τ, {{JS,R}uncut, {(1−
x

rR
)JS,R}cut})|

(8)

where m0 = m(τ0) and x = 1
N in the partitioned case

and x = 0 otherwise. Now, computing the unparti-
tioned and partitioned cases case is equivalent to calculating
F R
cut

(m0, τ, 0) and F R
cut

(m0, τ,
1
N ) respectively. Given this,

assuming N →∞ we calculate the final form of ϕ as a sum
of the derivatives of function F R

cut
(m0, τ, x):

ϕcutM (τ)

= lim
N→∞

1

2

∑
R
NR|F R

cut
(m0, τ, 0)− F R

cut
(m0, τ,

1

N
)|

=
1

2

∑
R
|rRF ′R

cut
(m0, τ, 0)|

(9)

where F ′(m0, τ, x) = dF ′(m0,τ,x)
dx . Note that this defines

integrated information in similar terms as the magnetic sus-
ceptibility typically used in Ising model to identify critical
points, although in this case the mean field of the system is
differentiated along the parametrical direction of the MIP.

Integrated Information in the Kinetic Ising Model
As an example, we compute numerically the value of
ϕMN

(τ) for a homogeneous kinetic Ising model contain-
ing just one region (as in Figure 1.A). The system only has
one parameter J describing all connections in the system.

For different values of J , we compute ϕ for the system
starting from a state in the stationary solution. For doing
so, we need to know how to compute Fcut(m0, τ, x), that is,
how to compute the mean field of units at a particular time.

First, we numerically compute Fcut(m0, τ, x) and ϕMN

for different values of J for the largest mechanism MN

of size N , and different values of τ and m(τ0) equal to
the value at the stationary solution of the system. We
estimate the values of the derivative as F ′cut(m0, τ, 0) =
(Fcut(m0, τ, dx)− Fcut(m0, τ, 0))/dx, using a value dx =
10−10. As we observe in Figure 2.B, the value of ϕMN

(τ)
appears to diverge as τ grows2.

Similarly, we numerically compute ϕMN
(τ → ∞) by

using the mean field of the model iterating the equation
m(t) = tanh(Jm(t − 1)) until the difference in the up-
date is smaller than 10−15. In Figure 2.C we observe how
ϕMN

(τ → ∞) shows an apparent divergence around J =
1. Also, we compute the value of ϕMM

(τ → ∞) for dif-
ferent mechanisms of size M as a fraction of N . As shown
in Figure 2.D, the resulting value of integrated information

2Note that for larger τ the partition is applied for a longer period
of time, and therefore yielding larger integration in some cases.
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still diverges but is smaller than the value of ϕMN
(τ) of the

whole system, indicating that the system is irreducible.
We can go beyond numerical computations and calculate

the analytic value of ϕMN
(τ →∞) near the point of diver-

gence by approximating the values of Fcut(m0, τ → ∞, 0)
around J = 1 as the value ofm that solvesm = tanh(Jm).
Note that, more generally, we can compute Fcut(m0, τ →
∞, x) just by substituting J ← J(1− x).

The system has a trivial solution at m = 0. Also, for
J > 1 the solution at m = 0 becomes unstable and a pair of
solutions in a pitchfork bifurcation (Figure 2.A). Although
there is no analytic solution of the problem, we can compute
the value of m near J = 1 by approximating the hyperbolic
tangent by the first two terms of its Taylor series, finding that
in the limit J → 1+ we approximate:

Fcut(m0, τ →∞, x) = ±
√

3(J(1− x)− 1)

(J(1− x))3

ϕMN
(τ →∞) =

1

2

∣∣∣∣ √3 (2J − 3)

2
√
J3(J − 1)

∣∣∣∣
(10)

Thus, we can confirm that the value of integrated informa-
tion ϕMN

(τ → ∞) diverges when J → 1+. This has in-
teresting implications. The value of integrated information
per unit ϕMN

(τ →∞)/N of the system would tend to 0 at
any position but in the critical point. Thus, if a system must
maintain its levels of integration per unit as it size increases,
it may need to be poised near a critical point that shows a
divergence of the values of ϕ.

Integrated Information for Measuring
Agent-Environment Asymmetries

We apply the proposed measure of integrated information
to the problem of determining the causal boundaries of an
agent interacting with an environment. One of the central as-
pects of agency is the existence of agent-environment asym-
metries (Barandiaran et al., 2009), in which the part of the
system corresponding to the agent is able (to an extent) to
define the terms in which it relates to the surrounding mi-
lieu. We test our measure in two simple cases of systems
presenting asymmetries in their interaction.

Bidirectional Agent-Environment Interaction
We model a minimal case of agent-environment bidirec-
tional interaction with two regions, where only the region
corresponding to the ‘agent’ has the capacity to self-regulate
through recurrent connections (Figure 3.A). In this case,
we have two regions A and E, only A presenting self-
connections. The mean field of the system is updated as:

mA(t+ 1) = tanh(
1

2
(JAAmA(t) + JAEmE(t)))

mE(t+ 1) = tanh(JEAmA(t))
(11)

A

1.0 1.5 2.0

J

−1

0

1

m

B

1.0 1.5 2.0

J

0

1

2

ϕ

τ = 1

τ = 2

τ = 4

τ = 8

τ = 16
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1.0 1.5 2.0

J

0

1

2

3

ϕ
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1.0 1.5 2.0

J

0

1

2

3

ϕ

M = 0.2N

M = 0.4N

M = 0.6N

M = 0.8N

M = N

Figure 2: (A) Magnetization of the infinite size kinetic Ising
model. (B) Value of ϕMN

(τ) for different temporal spans.
(C) Value of ϕMN

(τ → ∞) for an infinite temporal span.
(D) Value of ϕMM

(τ → ∞) for different mechanisms of
size M and an infinite temporal span.

For simplicity, we study the case where agent-environment
connections are symmetric JAE = JEA = Jc, and JAA =
Jr. We numerically compute that the system has an sim-
ilar solution than the previous case, presenting a pitchfork
bifurcation at a critical point (Figure 3.B,D).

Moreover, we compute the value of ϕM(τ → ∞) for
different mechanisms. For the case of the mechanism cov-
ering the whole system M = AE, we look for the MIP
of the system by isolating single units of the mechanism at
s(t) (Figure 1.B). If we isolate a unit from region A, two
connections are cut (one with value Jr and one with value
Jc). Otherwise, if we isolate a unit from region E, only one
connection with value Jc is cut. Thus, this second partition
is always the MIP of the system (MIPAE). For M = A,
the only candidate for the MIP is isolating one node from
A, therefore cutting one connection with value Jr (MIPA).
Finally, for mechanism E there are no connections within
the mechanism and we can directly conclude that ϕE = 0.

Now, the question is: can we consider A as an individual
system or should we consider instead the coupled system
AE as an integrated unit? Assuming rA = rE = 0.5, we
define the values of integrated information as:

ϕA =
1

4
(|
∑
R=A,E

F ′ R
MIPA

(m0, τ, 0)|)

ϕAE =
1

4
(|
∑
R=A,E

F ′ R
MIPAE

(m0, τ, 0)|)
(12)

In Figure 3.C,E we estimate the value of ϕA, ϕAE for τ →
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Figure 3: (A) Basic agent connected to an environment. (B,C, D, E) Values of the mean fields (only positive values are shown)
of the stable solution (top) and ϕ(τ →∞) (bottom) for the agent and environment nodes of the model at stability for Jc = 0.8
(left) and Jc = 1.2 (right) and different values of Jr. (F) location of the critical point in the parameter space for different
combinations of Jr, Jc. (G) Constants multiplying ϕA(τ → ∞) and ϕAE(τ → ∞) near the critical point, showing which is
the most irreducible unit of the system.

∞ an initial value m0 corresponding to the stationary so-
lution of the system, and values of Jc = 0.8 (left) and
Jc = 1.2 (right). We observe that in all cases the values
of ϕA, ϕAE diverge next to the critical point. Neverthe-
less, in the first case when agent-environment connections
are weaker ϕA > ϕAE next to the critical point. In con-
trast, for stronger couplings between agent and environment
ϕA < ϕAE in the vicinity of the critical point.

We validate this results by solving Equation 11 near crit-
icality. We do this by transforming it into a system of one
equation mA = tanh( 1

2 (JAAmA + JAE tanh(JEAmA)))
and finding its Taylor series near mA = 0. We obtain that
near the critical point:

FA(m0, τ →∞, 0) =

√
3(JAA + JAEJEA − 2)

JAEJ3
EA + 1

4 (JAA + JAEJEA)3

FE(m0, τ →∞, 0) = tanh(JEAFA(m0, τ →∞, 0))
(13)

Similarly, FA(m0, τ →∞, x) and FE(m0, τ →∞, x) are
easily calculated by adding a (1−x) factor to the partitioned
connections. Thus, we find that the location of the critical
point which is the one satisfying JAA + JAEJEA = 2 (Fig-
ure 3.F). From here, we get:

F
′

A
MIPA

(m0, τ, 0) =
3

2
JAA

1

JAEJ3
EA + 1

4 (JAA + JAEJEA)3

·(
1

4
(JAA + JAEJEA) · FA(m0, τ →∞, 0)−

1

FA(m0, τ →∞, 0)
)

F
′

E
MIPA

(m0, τ, 0) =
JEA

cosh(JEAFA(m0, τ →∞, 0))2
F

′
A

MIPA

(m0, τ, 0)

F
′

A
MIPAE

(m0, τ, 0) =
3

2
JAEJEE

1

JAEJ3
EA + 1

4 (JAA + JAEJEA)3

·(
J2
EA

3
+

1

4
(JAA + JAEJEA) · FA(m0, τ →∞, 0)−

1

FA(m0, τ →∞, 0)
)

F
′

E
MIPAE

(m0, τ, 0) =
JEA

cosh(JEAFA(m0, τ →∞, 0))2

·(F ′
A

MIPAE

(m0, τ, 0)− FA(m0, τ →∞, 0))

Near the critical point at (JAA + JAEJEA) → 2+ the val-
ues of integrated information are approximated by the expo-
nents:

ϕA = JAAK(JAA + JAEJEA − 2)−1/2,

ϕAE = JAEJEAK(JAA + JAEJEA − 2)−1/2,

K =
3(1 + JEA)√

JAEJ3
EA + 1

4 (JAA + JAEJEA)3

(14)

by defining KA = JAAK and KAE = JAEJEAK we de-
scribe with these variables the level of integrated informa-
tion of the agent and the whole agent-environment system
near the critical point. In Figure 3.G we observe that there
is a transition from the agent being the system with highest
integration to the agent-environment.

This illustrates that, near a critical point, the value of
integrated information scales up indefinitely in an agent-
environment system. In the case of symmetric interaction
only for some cases the agent can be identified as the pre-
dominant integrated unit in the system, while in others the
agent-environment system is the predominant unit.
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Figure 4: (A) Basic sensorimotor agent connected to an environment. (B,C,D,E) Values of the mean fields (only positive values
are shown) of the stable solution (top) and ϕ(τ → ∞) (bottom) for the agent and environment nodes of the model at stability
for Jc = 0.8 (left) and Jc = 1.2 (right) and different values of Jr. (F) Approximated values of ϕ(τ → ∞) near the critical
point (approximated by dx = 10−10), showing which is the most irreducible unit of the system.

Basic Sensorimotor Loop
We have just used integrated information for delimiting an
agent interacting with a ‘passive’ environment showing no
self-interaction. This is not a common scenario, since typ-
ically environments display their own dynamics. In order
to portray a scenario with an agent regulating its interaction
with an environment with ‘active’ dynamics, we model a
‘sensorimotor agent’ able to receive input from the environ-
ment in one region of its system, and affect the environment
from the activity in other region (Figure 4.A).

mS(t+ 1)

= tanh(
1

3
(JSSmS(t) + JSMmM (t) + JSEmE(t)))

mM (t+ 1) = tanh(
1

2
(JMSmS(t) + JMMmM (t)))

mE(t+ 1) = tanh(
1

2
(JEMmM (t) + JEEmE(t)))

(15)
A key aspect of autonomy is the ability of an agent to mod-
ulate the coupling with its environment (Barandiaran et al.,
2009), generating an interactional asymmetry between agent
and environment. We represent this by defining a basic
structure of couplings JSE = JMS = JEM = Jc and
self-couplings JSS = JMM = JEE = 1. Finally, we
add a recurrent connection in which the motor region feeds
back into the sensor region JSM = Jr. We also assume
rS = rM = rE = 1/3. We calculate ϕ as in previous cases,
although here different candidates for MIP are tested (from
all possible cuts affecting just one element) and the one min-

imizing integrated information is chosen.
For Jc = 0.8, we observe in Figures 4.C,E that the sub-

system presenting a higher degree of integrated information
corresponds to the agent SM , diverging at a critical point
similar than in previous cases. However, if the coupling in-
creases and Jc = 1.2, the agent is only the most integrated
unit for large values of Jr, while the critical point of di-
vergence shows that the most integrated unit is the whole
agent-environment system SME.

Moreover, we approximate Equation 15 using the first
term of the Taylor series of the hyperbolic tangents to find
the position of the critical point, finding it at Ja = (2 −
Jc3)/Jc. Although in this case we cannot approximate the
constant multiplying the diverging values of ϕ, we can ap-
proximate its values close to the critical point. For exam-
ple, we approximate the value of F ′(m0, τ → ∞, 0) ≈
(F (m0, τ → ∞, dx) − F (m0, τ → ∞, 0))/dx for differ-
ent partitions for a point close to the critical point, using a
value of dx = 10−10. In Figure 4.F, we observe a simi-
lar transition than in the previous case, from a case where
ϕSM is dominant to a case where ϕSME is the principal in-
tegrated unit. Yet in this case, maybe due to a highest degree
of agent-environment asymmetry, the region where ϕSM is
dominant is slightly wider.

Discussion
We have presented a method to compute integrated informa-
tion for infinite size mean field kinetic Ising models with
quasi-homogeneous infinite-range connectivity. We have
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shown how integrated information measures diverge when
our models are near critical points. Furthermore, we have
shown how integrated information can be used to effectively
define the causal boundaries between a system and its envi-
ronment. For doing so, some of the assumptions of current
formulations of IIT had to be modified.

Our models, although highly idealized, allow us to spec-
ulate about some of the properties of autonomous organi-
zation and the nature of the transitions related to it. First,
we observe that, despite the infinite size of the models, the
amount of integrated information is bounded for most of its
parameter space. Only near critical points the level of to-
tal integrated information diverges, suggesting that systems
that are organized into coherent autonomous entities need to
organize themselves close to critical points in their param-
eter space to maintain their level of integration as their size
grows. This is relevant for some questions in origins of life
research, such as why life appears as a jump in biochemical
organization with no apparent intermediate steps.

Our results connect the intensity of this causal boundary
with some phenomena related to criticality. Systems near
critical points are maximally sensitive to changes in some
directions of its parameter space (generally measured as the
susceptibility of the system). Here, integrated information
measures are captured by applying different partitions to the
system which were interpreted as changes in particular di-
rections of the parameter space of the system. Thus, the
level of integrated information of the system corresponds to
the susceptibility of the system for the minimum informa-
tion partition, i.e., the partition with the less significant ef-
fect on the system causal powers. In the framework of IIT,
systems highly sensitive to their minimum information par-
tition are interpreted as maximally irreducible units. This
connects ideas from IIT with properties that have been pos-
tulated as pervasive of living beings such as self-organized
criticality. We can speculate that living autonomy consists in
systems capable of self-organizing near points in which they
can maintain maximal sensitivity to the integrity of their in-
ternal organization while they interact with the environment.
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Appendix
Measures in this paper are inspired by the IIT framework, although
we apply some modifications and simplifications. First, as we men-
tioned in the paper, we only compute the value of ϕ for the effects
of the current system in a posterior state t+ τ , while IIT computes
the minimum of ϕcause and ϕeffect at t− 1 and t+ 1.

In IIT, integrated information of a mechanism ϕMIP
M is eval-

uated not only for a particular mechanism M, but also for a
purview P . If the mechanism defines which units of {si(t)}i∈M
we take into account, the purview defines which units of the fu-
ture state {si(t + τ)}i∈P we take into account. Given these sub-
set of present and future states, partitions are computed over the
join space of {si(t)}i∈M and {si(t + τ)}i∈P , and the purview
P with maximum integrated information for its MIP is selected.
Here for simplicity, we apply the partition over {si(t)}i∈M and
{si(t + τ)}i∈M, making the mechanism and purview coincide,
and the distance for computing integrated information is measured
for the distance of all elements of the system, not only the elements
contained in the purview.

More importantly, there are significant differences from the IIT
framework in the way we treat the elements that are outside of the
evaluated mechanismM. In IIT, elements outside the mechanism
are assumed to be unconstrained (i.e., as random as possible). We
decided to modify this assumption because it can have dramatic ef-
fects when measuring the behaviour of large systems. Specifically,
assuming unconstrained elements outside the mechanism create an
artifact that provokes a shift in the critical point of the system (this
will be detailed in future work).

We simplify the calculation of the probabilites p({si(t +
τ)}i∈M|{si(t)}i∈M) and pcut{si(t + τ)}i∈M|{si(t)}i∈M) by
using a mean field approximation. In IIT, cutting connections in-
jects uniform noise on the input node. In the mean field approxi-
mation, this would be equivalent to inject a zero mean field signal,
which is equivalent to removing the connection.

Finally, once ϕ is computed, IIT proposes a second level of cal-
culations for computing Φ where new bidirecional partitions are
applied to the system. In our case, given the homogeneity of the
system applying a second level of partitions produces similar re-
sults and for simplicity we did not apply it.
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