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Abstract

Animals develop spatial recognition through visuomotor in-
tegrated experiences. In nature, animals change their behav-
ior during development and develop spatial recognition. The
developmental process of spatial recognition has been previ-
ously studied. However, it is unclear how behavior during
development affects the development of spatial recognition.
To investigate the effect of movement pattern (behavior) on
spatial recognition, we simulated the development of spatial
recognition using controlled behaviors. Hierarchical recur-
rent neural networks (HRNNs) with multiple time scales were
trained to predict visuomotor sequences of a simulated mo-
bile agent. The spatial recognition developed with HRNNs
was compared for various values of randomness of the agent’s
movement. The experimental results show that spatial recog-
nition was not developed for movements with a randomness
that was too small or too large but for movements with inter-
mediate randomness.

Introduction

Animals can recognize their own spatial position, which is

an objective concept, although they sense subjective sensory

inputs like vision. They have an internal model of the spa-

tial structure of the external world, which is called a cog-

nitive map (Tolman, 1948). Animals develop spatial recog-

nition through the integration of visual and motion experi-

ences (Held and Hein, 1963), and the recognition of spatial

position can be developed. Although animals can develop

spatial recognition through only subjective visuomotor se-

quences, the subjective visuomotor sequences depend on the

animals’ behavior, and there should be appropriate behavior

for developing spatial recognition.

The behavior of animals changes depending on their

recognition. Thus, behavior and recognition develop

through interaction with each other. In the case of spatial

recognition, it was observed that the spatial behavior of a rat

changed along with the development of spatial representa-

tion in its brain (Wills et al., 2010). However, because the

behavior and spatial recognition changes simultaneously, it

is unclear how behavior affects the development of spatial

recognition.

In this study, we simulate the development of spatial

recognition using controlled behaviors. In our simulation,

objective information such as spatial coordinates were not

used with the developmental model. Simulation models that

develop spatial recognition through the learning of subjec-

tive visual sequences have been previously studied (Franz-

ius et al., 2007; Wyss et al., 2006). These models could ex-

tract spatial positions as slowly changing features in visual

sequences. We also use a model with similar concepts in

which the spatial position was recognized as slowly chang-

ing features of vision. The model used in this study is a

recurrent neural network (RNN) with a hierarchical struc-

ture with multiple time scales. The model learns to predict

the visuomotor sequences of a simulated mobile agent as a

simulation of the development of spatial recognition. We

previously demonstrated that spatial recognition can be de-

veloped in hierarchical recurrent neural networks (HRNNs)

through learning to predict the visuomotor sequences of

such a simulated agent in a visuomotor-integrated manner

(Noguchi et al., 2017a). In this paper, we focus on the re-

lation between the complexity of spatial behavior and the

development of spatial recognition. How the developed spa-

tial recognition depends on the complexity of the behaviors

is investigated. The complexity of the behaviors is inter-

preted as the randomness of the spatial movement pattern.

The model is trained on visuomotor sequences with move-

ments of different values of randomness. It is expected that

the developed recognition is different for different random-

ness of the movement, and the effect of the movement pat-

tern on the developed spatial recognition is investigated.

Simulation

A mobile robot was made to move around in the simu-

lation environment. It was modeled as an agent that can

move around in a two-dimensional �at arena. The agent

can sense visual images through an attached camera on its

head and proprioceptive self-motion. The movement pattern

is controlled by the randomness parameter �. Visuomotor

sequences for different randomness � are prepared for the

simulation of the development of spatial recognition.
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Figure 1: (a)Overview of the simulated environment. (b) Examples of the agent’s vision. (c)Hierarchical recurrent neural

network (HRNN).

Figure 2: Examples of the agent’s movement pattern for var-

ious values of � during 1,000 steps.

Simulation environment The simulation environment is

shown in Figs. 1 (a) and (b). There are several �oating ob-

jects that constitute a landscape for the agent’s visual experi-

ences. The agent moved within the arena that is indicated by

the �oor having a checkered pattern. The arena wherein the

agent could move around is enclosed by an invisible fence.

The fence is low and does not obstruct the agent’s view. The

size of the arena is 20 � 20 units of distance.

Movement pattern of the simulated agent The agent

moved by unit distance in one simulation step. The mov-

ing direction was the same as the agent’s heading direc-

tion. The head direction changed with every time step. The

new head direction was obtained by adding a random value

� � N (0; �2) to the value of the current head direction.

Thus, the value of � (the standard deviation of �) determined

the randomness of the exploration by the agent in the arena.

The unit of � is degree. If the agent hits the fence as a result

of movement, the agent rebounded at the fence and the head

direction was changed at the beginning of the next step (new

head direction was perturbed by �). The examples of move-

ment pattern for different values of � are shown in Fig. 2.

Visuomotor sequences The agent’s motion mt is repre-

sented as two-dimensional vectors calculated using � as fol-

lows:

mt = (cos(�); sin(�)): (1)

When the agent collided with the fence, the motion mt was

determined so that the moving direction was re�ected at the

fence.

The size of the visual image captured by agent’s camera

vt was 32� 32, and each pixel of the image had three chan-

nels (RGB). The agent receives the motion and vision result-

ing from the movement in one simulation step, and only the

subjective motion and vision are the inputs from the envi-

ronment to the agent.

Model

We investigated how the movement pattern affects the de-

velopment of spatial recognition. It is necessary to simu-

late the development of spatial recognition from the learn-

ing of subjective visuomotor sequences without a priori

knowledge regarding the external spatial structure. We used

an HRNN model for simulating the developmental pro-

cess. The HRNN model can develop spatial recognition

through prediction learning of subjective visuomotor se-

quences (Noguchi et al., 2017a,b). The details of the HRNN

used in our simulation are described below.

Architecture of model

The HRNN model comprised two recurrent layers with mul-

tiple time scales and input/output processing layers for vi-

sion and motion. A schematic of the HRNN is shown in

Fig. 1 (c). The two recurrent layers comprised fast and slow

RNNs according to the time scales. The fast RNN interacts

with visuomotor sensory inputs and generates visuomotor

outputs as predictions. The slow RNN interacts not with

external visuomotor inputs but with the fast RNN, and can

extract slowly changing features in visuomotor sequences.

The input and output layers are used for extracting visual

and motion features and generating a prediction of vision

and motion. For the visual inputs and outputs, the convo-

lutional neural network (CNN) is used, and the HRNN can

deal with complex visual images (LeCun et al., 1998).
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Table 1: Structure of CNNrec and CNNgen

CNN
rec

Layer Type Size Channel Kernel size Stride Padding

1 input (vt) 32 � 32 3 - - -

2 convoluion 16 � 16 8 3 � 3 2 � 2 1 � 1

3 convoluion 8 � 8 16 3 � 3 2 � 2 1 � 1

4 convoluion 4 � 4 32 3 � 3 2 � 2 1 � 1

5 fully connected 1 � 1 64 - - -

CNN
gen

Layer Type Size Channel Kernel size Stride Padding

1 input (f̂
v

t ) 1 � 1 64 - - -

2 fully connected 4 � 4 64 - - -

3 convoluion 4 � 4 32 3 � 3 1 � 1 1 � 1

4 upsample 8 � 8 32 - - -

5 convoluion 8 � 8 16 3 � 3 1 � 1 1 � 1

6 upsample 16 � 16 16 - - -

7 convoluion 16 � 16 16 3 � 3 1 � 1 1 � 1

8 upsample 32 � 32 16 - - -

9 convoluion 32 � 32 3 3 � 3 1 � 1 1 � 1

An RNN is an arti�cial neural network that has recur-
rent connections. An RNN can use historical information
as it receives the previous output vectors of itself, which
is called an internal state, via recurrent connections. To
implement the different time scales in this study, we used
a continuous-time RNN (CTRNN) (Beer, 1995; Yamashita
and Tani, 2008). A CTRNN has a time constant parameter
� , which determines the time scale. The potential of neurons
ut and the output ht of the CTRNN at time t are calculated
as follows:

ut =
�

1�
1

�

�

ut�1 +
1

�

(Wxxt +Whht�1 + b) (2)

ht = tanh(ut): (3)

where Wx, Wh, and b are the connection weight ma-

trix from the current input vector xt, recurrent connection

weight matrix from a previous output vector (internal states)

ht�1, and bias, respectively. As indicated in equation (2),

the larger � is, the more slowly the potential ut changes.

If the functions of the fast and slow RNNs, which are

CTRNNs, are expressed as RNNF and RNNS, respectively,

the equations of these two layers in one-step processing can

be expressed as follows:

hF
t = RNNF((fv

t ;fm
t ;hS

t�1);u
F
t�1;hF

t�1); (4)

hS
t = RNNS(hF

t�1;uS
t�1;hS

t�1); (5)

where fv
t and fm

t are the features of the visual vt and mo-

tion mt inputs, respectively. The �rst arguments of the RNN

function are used as xt in equation (2). The visual feature

fv
t and motion feature fm

t are calculated as follows:

fv
t = CNNrec(vt); (6)

fm
t = ReLU(Wmmt + bm); (7)

where CNNrec is a CNN visual image recognizer, ReLU is

the recti�ed linear unit as the activation function, and Wm

and bm are the weights matrix and bias vector, respectively.

After the processing of the RNNs, the decoded features f̂
v

t

and f̂
m

t are calculated in the same form as shown in equation

(7); however, different weights and biases are used, and mt
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Figure 3: Error in vision predicted from vision and motion

(a) and that predicted from only motion (b) during the train-

ing. Errors are shown for � = 0; 10; and 100 (HRNN-0�,

HRNN-10�, and HRNN-100�).

in equation (7) is replaced by hF
t . The visual output vt+1

and motion output mt+1 are generated as follows using f̂
v

t

and f̂
m

t :

v̂t+1 = CNNgen(f̂
v

t ); (8)

m̂t+1 = tanh(Ŵmf̂
m

t + b̂m); (9)

where CNNgen is the CNN with upsampling for generating

visual images from the visual feature vector f̂
v

t . Each con-

volution layer in CNNrec and CNNgen is followed by the

ReLU activation function except in the case of the last layer

of CNNgen, at which the logistic sigmoid is used for visual

image generation.

Training

The objective of the training was to minimize the prediction

error of each step for both motion and vision. As multi-

modal integration, the HRNN learns to predict vision and

motion even when either one of the external vision and mo-

tion is not available. The training of prediction for motion

was implemented to keep consistent with our previous mod-

els (Noguchi et al., 2017a,b). However, the next motion was

determined with random �uctuations so that what the HRNN

can predict is mt+1 = (0; 1), which is the expected value of

motion calculated from � in all conditions. Thus, the motion

prediction would not contribute results.

The error is calculated from the squared error between the

predictive output and true input as follows:

E =
X

t

X

i

�

v̂i
t+1 � vi

t+1

�2
+

X

t

X

i

�

m̂i
t+1 � mi

t+1

�2
: (10)

The errors are summed along with each dimension and time

for both motion and vision. The gradient of error E was cal-

culated using the backpropagation through time algorithm

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/alife2018/30/147/1904890/isal_a_00035.pdf by guest on 18 Septem
ber 2021



(a) (b)

0 10 100
0

1000

2000

3000

4000

5000

6000

E
rr

o
r

of test sequence

0 10 100
0

1000

2000

3000

4000

5000

6000

E
rr

o
r

of test sequence

Ground truth

Figure 4: (a) Examples of visual images predicted by trained HRNNs, along with a movement with � = 0. Top: the true visual

images. Middle: predicted visual images. Bottom: visual images predicted using only motion. The results for different HRNNs

with � = 0; 10; and 100 (HRNN-0�, HRNN-10�, and HRNN-100�) are shown. (b) Errors in vision predicted when the agent

moves along each � motion sequence. Top: the errors in the vision predicted using vision and motion. Bottom: the errors in the

vision predicted using only motion.

(Williams and Zipser, 1995). The gradient was calculated

for each small segment divided from a single training se-

quence. We implemented the HRNN using the PyTorch li-

brary (Paszke et al., 2017), and the training procedure was

accelerated using GPU computation.

Experiment

The HRNN was trained to predict the agent visuomotor se-

quences. Different HRNNs were trained with the sequences

produced for various �. We describe an HRNN trained the

with the motion sequences for � = � as per HRNN-�� be-

low (e.g., HRNN-10� is the HRNN trained with the motion

sequences of � = 10).

Training Settings

For collecting the sequences, the agent moved in the arena

as follows. First, the agent was placed at a random posi-

tion in the arena with a random head direction. The agent

then moved 500 steps following the movement pattern de-

�ned by �, and the motion and visual inputs were stored as

training sequences. One hundred sequences with different

initial positions and directions were prepared for the train-

ing. The random initial condition of the agent is required for

exploring the entire arena when � is very small and the agent

moves monotonically and periodically.

The HRNN comprised 256 and 128 neurons for the fast

and slow RNNs, respectively. The time constant � of the

fast and slow RNNs was 2 and 25, respectively. The num-

ber of dimensions for fv
t , fm

t , f̂
v

t , and f̂
m

t was 64. The

structures of CNNrec and CNNgen are shown in Tab. 1. In

order to prevent the HRNN from over�tting to the train-

ing sequences, an L1-norm of the HRNNs parameters was

added to the objective of minimization with coef�cients of

10�3. The length of each visuomotor segment for the actual

training is 50 (a single training sequence is divided into 10

segments). The parameters of the HRNN were optimized

by using the Adam algorithm (Kingma and Ba, 2014) for

minimizing E.

Results

We prepared visuomotor sequences with � = 0; 10; and100.

Three different HRNNs for different values of � were trained

200 times over training sequences. The obtained abilities of

the trained HRNNs are shown below.

Prediction ability Figure 3 shows the errors of vision dur-

ing training. The prediction errors for vision from both the

previous vision and motion inputs and from only the mo-

tion inputs are shown for each HRNN trained with a dif-

ferent values of �. The larger � is, the slower the rate of

decrease in the error. Moreover, the error of vision predicted

from only motion using HRNN-100� remained almost the

same. Figure 4 (a) shows examples of the visual images pre-

dicted by the trained HRNNs. The movement when � is 0

was used to obtain the results for all the HRNNs. It was

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/alife2018/30/147/1904890/isal_a_00035.pdf by guest on 18 Septem
ber 2021



Figure 5: Internal states of slow RNN while predicting visuomotor sequences. The states of the various HRNNs trained with

� = 0; 10; and 100 (HRNN-0�, HRNN-10�, and HRNN-100�). Each point of the states is colored corresponding to the agent’s

current position as described in the main text.

shown that the trained HRNNs�except for HRNN-100��

can predict visual images as a result of training. In the case

of HRNN-100�, the predicted vision does not clearly con-

tain any colored landmark. This is because, in cases wherein

� is large, the movement pattern is almost random and the

HRNN could not predict visual sequences at all. The vi-

sual images predicted using only motion are shown in Fig. 4

(a) (bottom), and it shows how well the trained HRNN con-

structed the internal model of the external environment. The

vision for HRNN-0� with colored landmarks using only mo-

tion was predicted almost correctly although the �oor pat-

tern was not predicted. HRNN-10� was also able to predict

the colored landmarks using only motion although the pre-

dicted vision is blurry. HRNN-100� could not predict vision

as in the above results. Figure 4 (b) shows the average of

the visual prediction errors produced when the agent moves

along each � motion sequence. The errors in the vision pre-

dicted using vision and motion (Fig. 4 (b) top) and the vision

predicted using only motion (Fig. 4 (b) bottom) are shown.

The errors increased with the increase in � if the HRNN pre-

dicted vision clearly. If the predicted vision was blurry, the

errors were almost the same for the various values of �. This

results quantitatively show that the HRNN could not obtain

prediction ability if � was too large.

These results indicate that the HRNN was able to de-

rive the internal model of the environment that was asso-

ciated with external visual sequences if the randomness of

the agent’s movement (�) was not too high during training.

Internal states analysis We visualize the internal states

of the trained HRNNs for investigating the obtained inter-

nal recognition in the trained HRNNs. In order to visual-

ize the internal states of the RNN layers, the dimensionality

of the states was reduced to two dimensions with a princi-

pal component analysis. Figure 5 shows the visualized in-

ternal states of the slow RNN. The internal states for the

HRNNs trained with various values of � are shown in the

�gure. The internal states were colored according to the cur-

Figure 6: Internal states of slow RNN of HRNN-10� while

predicting visuomotor sequences of unexperienced move-

ment patterns with � = 0 and 100.

rent agent’s position. For coloring the internal states, RGB

values were assigned to each position. Red, blue, green,

and yellow corresponded to the four corners of the arena,

and linearly interpolated colors were assigned to other po-

sitions. In the case of HRNN-10�, the internal states were

organized by color, i.e., spatial position, and it is considered

that the HRNN recognized the spatial structure of the envi-

ronment. In the cases of HRNN-0� and HRNN-100�, the

internal states were somewhat organized by color, but dif-

ferent colors overlapped each other. These internal states

are not considered as the internal model of space because

these states were not arranged corresponding to the topolog-

ical layout of the environment wherein the agent moved. It

should be noted that the HRNN-0� did not obtain the inter-

nal model of the spatial structure while the HRNN-0� could

predict the visual sequences from motion only. This may be

because the structure obtained for HRNN-0� is not spatial

but sequential. These results show that development of spa-

tial recognition requires appropriate randomness of move-

ment.

Figure 6 shows the internal states of HRNN-10� when the

HRNN-10� received visuomotor sequences produced with
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