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Abstract

Top-down engineering of biomolecular circuits to perform
specific computational tasks is notoriously hard and time-
consuming. Current circuits have limited complexity and are
brittle and application-specific. Here we propose an alterna-
tive: we design and test a bottom-up constructed Reservoir
Computer (RC) that uses random chemical circuits inspired
by DNA strand displacement reactions. This RC has the po-
tential to be implemented easily and trained for various tasks.
We describe and simulate it by means of a Chemical Reac-
tion Network (CRN) and evaluate its performance on three
computational tasks: the Hamming distance and a short- as
well as a long-term memory. Compared with the deoxyri-
bozyme oscillator RC model simulated by Yahiro et al., our
random chemical RC performs 75.5% better for the short-
term and 67.2% better for the long-term memory task. Our
model requires an 88.5% larger variety of chemical species,
but it relies on random chemical circuits, which can be more
easily realized and scaled up. Thus, our novel random chemi-
cal RC has the potential to simplify the way we build adaptive
biomolecular circuits.

Introduction
Implementing a top-down chemical system relies on reason-
ing about the functioning of the system parts in sequential
causal pathways, well isolated from each other. This rather
conservative approach tries to avoid complications arising
from non-linear dynamics, inherent parallelism, and con-
currency of chemistry, and therefore considers them adver-
sary. Current molecular machines, such as reprogrammable
DNA self-assembly (Woods et al., 2019), require the sets of
molecules and reactions to be explicitly designed. Chemi-
cal systems whose functionalities can be reprogrammed or
adjusted by autonomous learning have been explored us-
ing abstract Chemical Reaction Networks (CRNs) (Blount
et al., 2017; Banda et al., 2013, 2014), an enzymatic chem-
istry (Lakin et al., 2014), as well as buffered DNA strand
displacement circuits (Lakin and Stefanovic, 2015, 2016).
We argue that a bottom-up approach, where the species and
reactions of chemical systems are selected at random, could
explore the functional landscape, its phase transitions, and
dynamical regimes beyond intuition by embracing the afore-
mentioned properties.

A DNA strand displacement circuit (Soloveichik et al.,
2010; Qian and Winfree, 2011) is a plausible choice for a
bottom-up constructed CRN. This is due to Soloveichik’s
proof (Soloveichik et al., 2010) of a universal approximation
of mass-action driven CRNs, which showed that complex
CRNs can be obtained using DNA-based chemistry. Ran-
dom chemical networks have been investigated primarily in
the origins of life literature (Szathmáry, 2006; Hordijk and
Steel, 2018), where several kinds of mostly (auto)catalytic
reactions occurring in primordial soup throughout evolu-
tion provided the basis for closure and homeostasis. Ex-
perimentally, a network of peptides assembled randomly ex-
hibited self-organization for predicted network connectiv-
ity (Ashkenasy et al., 2004). Furthermore, random catalytic
networks produced self-replication (Segre et al., 1998) and
oscillation (Stadler et al., 1993). Nevertheless, compared
with non-chemical circuits, such as neural and Boolean net-
works, randomness in chemistry remains relatively unex-
plored.

In this paper, we propose that the dynamics of a random
chemical system inspired by DNA strand displacement cir-
cuits is an ideal candidate for reservoir computing, a recent
machine learning approach. A Reservoir Computer (RC)
(Schrauwen et al., 2007; Lukoševičius and Jaeger, 2009)
consists of a fixed, randomly connected recurrent neural net-
work, the reservoir, which acts as a set of high-dimensional
filters with fading memory, and a memoryless readout layer,
which is trained by supervised learning. RC has a fairly
simple mathematical model and can outperform standard
machine learning algorithms, especially for temporal tasks
(e.g., time series prediction). Without relying on specific
species/reaction design or initial concentration, we find that
a random chemical circuit can achieve complex dynamics
that translate to superior learning performance. The com-
plex dynamics of chemicals are inherently non-linear and
several types of dynamical regimes are useful for design-
ing and building an RC. As we will demonstrate, that makes
such a chemical circuit an ideal candidate for RC.

In previous work on DNA reservoir computing, Goudarzi
et al. (Goudarzi et al., 2013) and Yahiro et al. (Yahiro
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et al., 2018) have successfully used deoxyribozyme oscil-
lators (Farfel and Stefanovic, 2006; Morgan et al., 2005)
to solve temporal problems. Here we show that a DNA-
inspired random chemical system, an alternative chemical
building block for RC, can achieve better performance in
solving time-series tasks than the deoxyribozyme oscilla-
tor RC. In particular, the random chemical RC achieves a
75.5% and 67.2% improvement in performance (NRMSE)
compared with the deoxyribozyme oscillator RC in Yahiro et
al. This RC also successfully learns the Hamming distance
between two input bitstreams, with the NRMSE of 0.0246
± 0.0063. These results demonstrate the performance and
feasibility of the random chemical RC and pave the way for
potential wet applications, such as detecting pathogens or
gene mutations.

Model and Approach
In this section, we discuss the set of species and reactions, as
well as how to generate a random chemical circuit using its
network parameters. We then show how to optimize the ran-
dom chemical network parameters using a standard genetic
algorithm. Lastly, we describe how we use the Gillespie al-
gorithm (Gillespie, 1977) to simulate our system.

In this DNA-inspired random chemical system, we aim to
model DNA strands at a functional level; we omit specifica-
tion of domains or base pairs, and instead we impose gen-
eral constraints on possible reactions, which in turn should
allow transformation to real DNA circuits if needed. In
other words, we propose mass-action driven chemical sys-
tems (Espenson, 1995; Arnaut et al., 2006) that match real
DNA strand displacement systems reasonably well, but the
specific sequence design is beyond the scope of this work.

This abstraction enables us to ask questions about the
overall capabilities of the DNA strand circuits as a fam-
ily of chemical systems and draw interesting conclusions
about their dynamics. Since each mass-action chemistry is
writable as a DNA strand model, we could say that there
is no need to limit ourselves to DNA strands only. DNA
strand chemistry is universal, just as mass-action chemistry,
so everything computable could be expressed in both. How-
ever, circuits that are already in DNA strand format could be
implemented directly without the intermediate transforma-
tion (Soloveichik et al., 2010). Second, we want to discover
what mix of random DNA strands produces dynamics pro-
moting information processing and computing.

Random Chemical Circuit Species and Reactions

Our proposed DNA-inspired random chemical circuit is a
Chemical Reaction Network (CRN) (Arceo et al., 2015),
which consists of a set of species and reactions (Dittrich
et al., 2001). The model for our random chemical species
and reactions inherits those in the DNA strand displacement
circuit (Soloveichik et al., 2010; Qian and Winfree, 2011).

Here, we postulate four abstract types of species in the net-
work: upper strand, lower strand, partial double strand, and
full double strand. Upper and lower strands are similar to
the single-stranded DNA molecules such that only opposite
strand types can bind. We assume this property is guaran-
teed by sequence design (Zadeh et al., 2011). What we refer
to as full double strand is a species that is inspired by a per-
fect Watson-Crick DNA double strand, where all base pairs
of corresponding upper and lower strands are complemen-
tary. Partial double strand is similar to full double strand,
but instead of all pairs, only substrings of upper and lower
strands match.

These molecules are involved in four types of reactions:
binding, displacement, influx, and efflux. Fig. 1 illustrates
different variations of strand binding and displacement re-
actions. In binding reactions, an upper strand binds to its
complementary lower strand and forms a full double strand
(Fig. 1a), or an upper strand and a lower strand overlap at
certain substring and produce partial double strand (Fig. 1b).

A displacement reaction happens between a single strand
and a partial double strand. In this type of reaction, there are
four scenarios: upper strand displaced by full complement
(Fig. 1c), upper strand displaced by another hierarchically
stronger (longer) strand (Fig. 1d), lower strand displaced by
full complement (Fig. 1e), lower strand displaced by another
hierarchically stronger (longer) strand (Fig. 1f).

Overall, the two binding and four displacement reactions
in our random chemical system are similar to those binding
and displacement reactions that are commonly used in DNA
strand circuits. Note that the maximum number of strands
that bind together is two, and we forbid formation of triple
or higher strands by assuming that a single strand does not
bind to a partial double strand, but always displaces its upper
or lower part. Again, we assume this can be guaranteed by
DNA sequence design. The rationale for doing this is the
absence of molecular structure in our model.

Using the above-described model, we can set up and test
our random chemical circuit. We assume the system is a
microscale continuous stirred-tank reactor (µCSTR) (Farfel
and Stefanovic, 2006; Morgan et al., 2005).

Random Chemical Circuit Generation
At this point, we start treating a system of the aforemen-
tioned strand species as a network. More specifically, we
draw upper and lower single strands as nodes, and connect
two nodes wherever full double (solid line) or partial dou-
ble (dashed line) strand consisting of single strands exists.
Note that because each upper single strand has a maximum
of one complementary lower strand, there is a maximum of
one solid line coming out of each node. We generate random
networks using nine parameters. There are five general pa-
rameters: the number of single strands n, the ratio of upper
to lower strands ρ , the ratio of upper strands with comple-
ments γ , the ratio of influx to the overall number of strands
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 1: Assumed binding and displacement reactions: a)
full double strand creation, b) partial double strand creation,
c) upper strand displaced by full complement, and d) upper
strand displaced by another hierarchically stronger strand,
e) f) lower strand versions of full and partial strand displace-
ments. Upper strands are labeled as U, lower as L. The star
(∗) notation indicates complementarity.

αin, and the ratio of efflux to the overall number of strands
αout . There are four random distribution parameters: the
normal distribution of rate constant θ , the normal distribu-
tion of influx rate θin, the normal distribution of efflux rate
θout , and the normal distribution of partial double strands per
upper strand φ .

We then apply the network generation process to generate
a random chemical network. Specifically, these steps deter-
mine the types and the names of the species in the network,
the order of strands for strand displacement reactions, and
the influx/efflux of the chemistry, with respect to the net-
work parameters described above.

The ordering corresponds to the length of the overlap-
ping sub-sequences for a given upper or lower strand so only
the strands with longer overlap kick out those with shorter
overlap from the complex. Note that fully complementary
Watson-Crick strands always have the highest order over all
competing strands. Now, we impose the ordering of partial
double strands globally, where the partial double strands are
ordered from the perspective of the entire system. This pre-
vents cyclic displacement.

Input: Parameters n, ρ , γ , φ , θ , αin, αout , θin, θin
Output: Random Chemical Network
Determine nL = n÷ (1+ρ), and nU = n−nL.
Create upper and lower strands as nodes of the
network.

Determine nF = γ×min(nL,nU ).
Choose nF complementary upper and lower strands
randomly. Connect them with solid lines.

for each upper strand do
Draw nP partial double strands from distribution
φ .

Choose randomly given nL counterparts without
repetitions.

Omit lower strand from selection if already
selected as complementary.

end
Impose ordering of partial double strands for strand
displacement reactions so only strands with higher
order displace strands from the complex.

Choose random influx and efflux strands from
parameters αin and αout .

Generate random rate constants from distribution θ .
Generate random rate constants for influxes and
effluxes from distributions θin and θout .

Algorithm 1: Random chemical circuit network genera-
tion process. nL, nU , nF , nP refer to the number of lower
strands, the number of upper strands, the number of full
double strands, and the number of partial double strands.

Chemistry Parameter Optimization

Since the space of possible random chemical networks for
our parameter space is large, it would be difficult and time-
consuming to sample it blindly in a trial-and-error fashion
or by exhaustive search. We therefore employ a standard
Genetic Algorithm (GA) to optimize the parameters.

Possible values of the network parameters are encoded in
a chromosome. The genetic search looks for the classes of
the random chemical circuit that have the lowest Normalized
Root-Mean-Square Error (NRMSE) from the Hamming dis-
tance learning task that will be discussed. The fitness is de-
fined as the average NRMSE over 10 experiments and 10
learning epochs of the Hamming distance task. The circuits
are randomly generated chemical circuits using parameter
values from the chromosome and random initial concentra-
tions drawn from the uniform (0,1) interval. The NRMSE is
normalized over all species.

The GA combines elite selection with one point cross-
over and per-element mutation. Since only certain values of
parameters are plausible, we restrict their value range for the
mutation and the generation of initial population as shown in
Table 1. The setting and constants for the GA are: popula-
tion size M = 32, elite size E = 16, cross-over probability pc
= 1.0, per-element mutation probability pm = 0.5, and gen-
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Table 1: The bounds of random chemical network param-
eters used during mutation and the generation of the initial
population in the GA.

General Parameter Bound
n [5,10)
ρ [0.5,1)
γ [0,1)
αin [0,1)
αout [0,1)
Normal Distribution Parameter Bound
θ [0.05,0.2) ± [0,0.02)
θin [0,0.0006)
θout [0,0.0006)
φ [0,4) ± [0,0.5)

eration limit G = 32.
We then draw classes of random chemical circuits from

the parameter bounds as specified in Table 1 during the ge-
netic search. Table 2 gives the optimized parameters and
their values that we used to characterize our CRN.

Table 2: Values of network parameters that provide the best
performance (lowest NRMSE) in the Hamming distance
task.

General Parameter Value
n 9
ρ 0.846
γ 0.214
αin 0.222
αout 0.0193
Normal Distribution Parameter Value
θ 0.148 ± 0.00530
θin 0.000344
θout 0.000152
φ 2.48 ± 0.136

It is worth noting that a class of random chemical cir-
cuit can be generated using any parameter values within the
bounds in Table 1. However, in the experiments that follow,
we picked the parameter values from the genetic search to
generate the network.

Stochastic Simulation and Perturbation
We use the Gillespie algorithm (Gillespie, 1977) for a
stochastic simulation of our random chemical circuits. We
chose a stochastic approach because we are working with a
small volume and we wanted to capture the random behav-
iors of the chemistry.

Fig. 2 shows the setup of the random chemical circuit
class that has the best learning performance on the Ham-
ming distance task. Since the number of single strands n
is 9, and the ratio of upper to lower strands ρ is 0.846, we

know that the number of upper and lower strands is 4 and
5, respectively. Also, from the ratio of upper strands with
complements γ = 0.214, and the (positive) normal distribu-
tion of partial double strands per upper strand φ = 2.48 ±
0.136, we can draw the full double (solid line) and partial
double strands (dashed line) as shown in Fig. 2. Lastly, the
ratio of influx to the overall number of strands αin is 0.222
and the ratio of efflux to the overall number of strands αout
is 0.0193, so there are 6 influx species and 1 efflux species
in the network.

U0

U1

U2 L2

L0

L1

L3U3

L4

Figure 2: Network representation of the optimized random
chemical circuit class. Nodes are single strands, which
divide the network into upper strands U (left), and lower
strands L (right). Solid lines represent full double strands,
dashed lines represent partial strands. For this setup, the
species are: Single (U0, U1, U2, U3, L0, L1, L2, L3, L4);
Full double (U0L0); Partial double (U0L1, U0L2, U0L3,
U0L4, U1L0, U1L1, U1L3, U1L4, U2L1, U2L2, U2L3,
U2L4, U3L0, U3L1, U3L2, U3L3).

We can then apply stochastic simulation to this random
chemical circuit class. The initial number of species in the
chemistry is set at random for all strands. During the simula-
tion, we introduce perturbations to the chemistry by adjust-
ing the base influx rate parameter θin. This is done by mul-
tiplying the base influx rate θin with a uniformly distributed
random number R to create a new influx rate θ ′in = θinR.

Perturbation starts at time tp and ends with the stochastic
simulation, denoted tend. The amount of time between two
consecutive perturbations is the hold time τ . The number of

perturbations N then is: N =

⌈
tend−tp

τ

⌉

In our experiments, perturbation happens from tp = 0.01
seconds to tend = 1 second. If the hold time τ is 0.1 seconds,
there are N = 10 perturbations happening from time t = 0.01
seconds to t = 0.91 seconds.

Applying RC to Random Chemical Circuit
Reservoir Computing Overview
Reservoir Computing (RC) is a relatively recent machine
learning technique that provides real-time computing on
reservoir transitions without the need of stable states. RCs
outperform the classic recurrent neural networks on time se-
ries processing and prediction. A simple RC consists of
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three components: the inputs of the reservoir, the main reser-
voir, and the readout layer giving the outputs of the reservoir.
Sketches of RCs are shown in Fig. 3 and Fig. 4.

The best known instances of RC are Echo State Networks
(ESN) (Schrauwen et al., 2008; Büsing et al., 2010) and
Liquid State Machines (LSM) (Maass et al., 2002). We ar-
gue that the basic idea of RC in its most general form—
process inputs through a randomly generated component
with rich dynamics and then map its states to the output
layer by means of simple linear integration—also applies
to domains beyond the neural-network or logic circuit for-
malisms. Models of liquid state machines, for example,
were implemented in a bucket of water (Fernando and So-
jakka, 2003) and in E. coli (Jones et al., 2007) demonstrated
that this approach could extend to spatial or network-based
systems.

0 1 1 10

0 0 0 11

0 0 0 11

H m i g

 D s a ce

Readout

  Layer

 I f u Ra e

P r u b t o

 Output 

Weights

  Wout 

  Input 

Weights

   W
in

Reservoir State

         X(t)Input Bitstreams 

         Un(t)

Output Y(t)

0 0 0 11

Target Y(t)
^

Figure 3: Abstract RC for learning the Hamming distance
between two input bitstreams.
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Figure 4: Abstract RC for learning the short- and long-term
memory task.

Let I be the number of reservoir inputs, N the number of
nodes inside the reservoir, and O the number of reservoir
outputs. Let i the input node index, j and k the reservoir
node indexes, and l the output node index. For the input
side, we introduce U(t) = [ui(t)] as the I-dimensional input
vector, and W in = [win

i j ] as the N × I input weights matrix.
For the main reservoir, we introduce X(t) = [x j(t)] as the N-
dimensional vector of the reservoir state, and W res = [wres

jk ]
as the N×N reservoir weights matrix. Lastly, on the read-
out side, we introduce Y (t) = [yk(t)] as the O-dimensional
output vector, and W out = [wout

kl ] as the O×N output weight

matrix.

The reservoir state vector X(t) can be determined as X(t+
1) = f (W res ·X(t)+W in ·U(t)).

Here f is the non-linear transfer function of the reservoir
nodes. The output vector Y (t) can also be determined using
linear combination of the X(t) vector, Y (t) = W out ·X(t)+
wb, where wb is an inductive bias. Since the purpose of reser-
voir computing is only training the output weights, the in-
put weights matrix Win and reservoir weights matrix Wres are
kept fixed. The output weights matrix Wout can be trained
using any linear regression method. Similar to (Goudarzi
et al., 2013) and (Yahiro et al., 2018), we employed the sim-
ple Moore-Penrose pseudo-inverse method (Penrose, 1955):
W out′ = (X

′T ·X ′)−1 ·X ′T · Ŷ ′.
In this equation, W out′ is the matrix W out with the bias wb

added. X ′ is the observation matrix of the reservoir, where
each row represents the reservoir state in time and each col-
umn represents the state at different nodes such that the last
column is a constant 1. Lastly, Ŷ ′ is the target vector.

Random Chemical Circuit RC

Fig. 5 shows an abstract reservoir computer made of ran-
dom chemical species that form the reservoir. The time-
varying inputs of the reservoir are the time-varying influx
rate changes caused by our perturbations. Starting at time
tp, we inject a number of these species into the system. The
perturbation is held for an amount τ until we inject the next
batch of species into the reservoir. The number of reservoir
inputs depends on the number of species being perturbed
in the random chemical circuit. For instance, if we design
a two-input reservoir, then we need to perturb two species
during our stochastic simulation.

The reservoir state consists of the time-varying species
count of all the strands present in the chemistry during the
stochastic simulation. The species count is then weighted
with a uniformly-distributed random number, and is pro-
jected into a readout layer.

The readout layer of the RC is a single perceptron that
uses a feedforward and backpropagation step to map the ac-
tual output to a desired target by adjusting the weights. Note
that in our setup, the readout layer and its training happen
outside of the random chemical systems. Training in chem-
istry can be done down the road (see e.g., (Blount et al.,
2017)) and analogous designs could be integrated, but it is
beyond the scope of this work. Here, we instead aim to fo-
cus on the computational capacity of a reservoir made of a
certain restricted class of chemical reactions.

In our experiments, we set the learning rate to be 0.001
and train the readout layer for 10 epochs. We then use the
NRMSE to evaluate the performance of our RC model and
compare with other DNA RC models.
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Figure 5: RC model using a random chemical circuit.

Hamming Distance Task
The Hamming distance task consists in learning the Ham-
ming distance between two input bitstreams. We use a two-
input reservoir, where we chose two species to be the influx
species. The two time-series vectors of influx rates were
then converted into two bitstreams that are fed into the reser-
voir. The number of bits of an input is defined as the number
of perturbation N. The target vector contains information
whether a bit is flipped between the two inputs, and the sum
of all flipped bits is the expected Hamming distance.

Results Fig. 6 shows the NRMSE of the RC for the
Hamming distance task. The base influx rate θin is
changed from 0.0001 to 0.0006 species/second with a
0.0001 species/second increment, while the input hold time
τ is changed from 0.1 to 0.6 seconds with a 0.1 seconds in-
crement. Each setup is averaged over 20 runs. The random
chemical circuit with the best performance has an NRMSE
of 0.0246 ± 0.0063.

Time-Series Tasks
We also test the random chemical RC with two time-series
learning problems: the short-term memory task and the
long-term memory task. These tasks are the simplified ver-
sion of the popular RC benchmark NARMA and require the
reservoir to remember past inputs (Goudarzi et al., 2013).
The NRMSE introduced above is used as a means to mea-
sure the performance of the RC.

Short-term memory task The target of the short-term
memory task is defined as: Ŷ (t) = θ k

in(t−1)+2θ k
in(t−2)

Ŷ (t) is the target vector as a function of time t. θ k
in(t) is the

influx rate θin(t) of the kth species, as a function of time.

Long-term memory task The target of the long-term
memory task is defined as: Ŷ (t) = θ k

in(t− τ)+ 1
2 θ k

in(t− 3
2 τ)

Ŷ (t) is the target vector as a function of time t. θ k
in(t) is the

influx rate θin(t) of the kth species, as a function of time. τ
is the time between each perturbation (the input hold time).

0.0001 0.0002 0.0003 0.0004 0.0005 0.0006
Base Influx Rate θin (species/sec)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

N
R
M
SE

τ (s)
0.1
0.2
0.3
0.4
0.5
0.6

Figure 6: NRMSE of the Hamming distance between two
input bitstreams with various lengths, determining by the in-
put hold time τ , learned by the random chemical RC. In gen-
eral, as the input hold time increases, the error gets higher.
The whiskers represent the standard deviation over 20 sim-
ulations. This can be reduced by averaging over a larger
number of simulations.

Results The results of both the short-term and long-term
memory task are shown in Fig. 7 and Fig. 8, respectively.
We ran 20 simulations for each setting with different input
hold times τ and base influx rates θin. The input hold time τ
(seconds) was changed from 0.1 to 0.6 with a 0.1 increment.
This allows us to look at the system with different number of
perturbations, specifically from 2 perturbations to 10 pertur-
bations. The base influx rate θin (species/sec) was changed
from 0.0001 to 0.0006 with a 0.0001 increment. The range
of the base influx rate sweeping was chosen based on the
bounds in Table 1.

Model Comparison Fig. 9 shows that our random chem-
ical circuit RC achieves 81.9% and 61.2% better perfor-
mance than the deoxyribozyme oscillator RC in Goudarzi
et al. (Goudarzi et al., 2013) for both the short-term and
long-term memory task, respectively. Furthermore, our RC
model achieves 75.5% and 67.2% better performance than
the deoxyribozyme oscillator RC in Yahiro et al. (Yahiro
et al., 2018). In particular, the deoxyribozyme oscillator RC
in Goudarzi et al. achieves 0.23± 0.05 and 0.11± 0.02, the
deoxyribozyme oscillator RC in Yahiro et al. achieves 0.17
± 0.034 and 0.13 ± 0.036, and the random chemical RC
achieves 0.0416± 0.0072 and 0.0427± 0.0085, in NRMSE
for short-term and long-term memory task, respectively.

However, the most important trade-off of using the ran-
dom chemical RC is the “cost” of implementation, measured
in the number of species. Our model requires 26 species,
while the deoxyribozyme oscillator RC models only require
3 species. Hence, our system is 88.5% larger in size. For fu-
ture improvements, we can filter out the species correspond-
ing to the nodes with negligible weights after training. This
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Figure 7: Short-term memory task NRMSE for the random
chemical circuit RC. The reservoir achieves the best perfor-
mance (lowest NRMSE = 0.0416 ± 0.0072) when the base
influx rate θin = 0.004 species/second and input hold time τ
= 0.1 seconds. The whiskers represent the standard devia-
tion over 20 runs. This can be reduced by averaging over a
larger number of experiments.
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Figure 8: Long-term memory task NRMSE for the random
chemical circuit RC. The reservoir achieve the best perfor-
mance (NRMSE = 0.0427 ± 0.0085) when the base influx
rate θin = 0.001 species/second and input hold time τ = 0.1
seconds. The whiskers represent the standard deviation over
20 runs. This can be reduced by averaging over a larger
number of experiments.

would reduce the size with a small compromise on perfor-
mance.

It is worth noting that Yahiro et al. performed additional
experiments beyond their aforementioned results, where
they investigated the reservoirs using non-negative linear re-
gression, explored the effects of the reservoir size on its per-
formance, and concluded the trade-off between size and per-
formance. Using evolutionary optimization, they found the
best performances with a NRMSE of 0.06 for a 15-species
reservoir under the normal condition, and a NRMSE of

Goudarzi, 2013 Our model Yahiro, 2018
CRN Model

0.00
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0.20

0.25
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M

SE

Long-term Memory Task
Short-term Memory Task

Figure 9: Performance comparison between the deoxyri-
bozyme oscillator RCs and our random chemical RC. The
random chemical circuit RC has its performance improved
81.9% and 61.2% compared to the deoxyribozyme oscilla-
tor RC in Goudarzi et al. for the short-term and long-term
memory task, respectively. Also, the performance of our RC
model improves by 75.5% and 67.2% in NRMSE compared
to the deoxyribozyme oscillator RC in Yahiro et al.

0.14 for a 10-species reservoir under the non-negative con-
dition. However, the authors claimed that these performance
were not maintained and might be an artifact of over-fitting
(Yahiro et al., 2018).

Conclusion
In this paper, we have introduced and simulated a stochas-
tic model of a random chemical circuit that was inspired
by DNA strand displacement reactions. The reaction dy-
namics of the chemical species were used as a reservoir in
an RC to learn the time-series tasks. Compared with the
state of the art (Goudarzi et al., 2013; Yahiro et al., 2018),
our novel approach achieved better performance on both the
short-term (best performance NRMSE = 0.0416 ± 0.0072)
and the long-term memory task (best performance NRMSE
= 0.0427 ± 0.0085). Specifically, the random DNA strand
circuit RC outperforms the deoxyribozyme oscillator RC in
Goudarzi et al. by 81.9% and 61.2%, and in Yahiro et al. by
75.5% and 67.2%, for the short-term and long-term memory
task, respectively.

Our novel random chemical reservoir computing ap-
proach has the potential to simplify the way we build adap-
tive biomolecular circuits. Such circuits could have appli-
cations in the area of biomedical diagnosis, pathogen detec-
tion, and industrial monitoring.

While our CRN model is still abstract and would require
more experiments to construct the actual DNA sequences,
we will reserve to future work the design of more realistic
DNA strand displacement circuits that can emulate the de-
sire behavior in Figure 1.
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