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Introduction 

Lenia (Chan, 2019) is an extension of Game of Life (GoL) with 
continuous space/time/state and generalized local rules. It can 
generate various fascinating “lifeforms” which bear a 
resemblance to real-world microscopic organisms. Chan 
identified more than 400 “species” and discussed the evolved 
ecosystem in terms of taxonomy, ecology, morphology, 
behavior, and physiology (Chan, 2020). He also successfully 
showed the emergence of essential biological phenomena, 
including individuality, growth, and self-replication in Lenia 
and its extended models. We propose a variant of Lenia, in 
which asymptotic updating by a target function is used in place 
of the growth mapping function (Kawaguchi et al., 2021). After 
presenting the new model, we search for organisms and clarify 
the effects of the introduction of asymptotics by observing the 
differences between the organisms we found and those in the 
original Lenia. We also investigate the increase in the viability 
of organisms by exploring the parameter regions where they 
exist in the parameter space. 

Model 

Lenia generalizes GoL to continuous space implemented by 
using long-distance neighborhoods for high resolution, 
continuous time implemented with small incremental updates, 
and continuous state expressed as a continuous value in the unit 
range. The significant difference with other successor models 
of GoL, e.g. Larger-than-Life (Evans, 2001), RealLife (Pivato, 
2007), and SmoothLife (Rafler, 2011), is that we can arbitrarily 
change the weight of the neighborhood. The update flow of the 
original Lenia (Lenia-0) is as follows (Fig. 1). Each cell state 
is updated by repeating 2)-5) in every transition step. 

1) Initialize the value of each cell in the 2-dimensional cell 

set 𝐀 with a continuous value from 0 to 1, which is 𝐀0.  

2) Calculate convolution with A using kernel K, which is a 

predefined weight array. 

3) Apply a growth mapping function  𝐺 [0, 1] → [−1, 1] , 
which is unimodal, to 𝐊 ∗  𝐀. 

4) Add a small fraction dt of the growth to the array 𝐀. 

5) Clip the states of 𝐀 to the unit range [0, 1]. 
 This updating is summarized as the equation Eq. 1. 

𝐀𝑡+𝑑𝑡 = [ 𝐀𝑡  +  𝑑𝑡 𝐺(𝐊 ∗ 𝐀𝑡) ]0
1  (1) 

 We then explain the proposed asymptotic model (Lenia-1) 

by considering how GoL was extended in the above 2) - 5). Step 

2 is a generalization of the totalistic sum in GoL. Step 3 is also 

a generalization of the survival/birth intervals in GoL, where 

the values of G: positive, near zeros, and negative values 

correspond to the birth, survival, and death intervals, 

respectively. In Step 4, the small fraction of the value calculated 

in Step 3 is added to the current state value of each cell. The 

proposed model uses a target function T in place of the growth 

function G, in which T is defined as (G + 1) / 2 so that the states 

stay within the unit range [0, 1]. Each state value is increased 

or decreased to reduce the distance from the target value in the 

next step. If we take the totalistic sum in GoL as not growth 

ability but survivability of the cell, we can consider this 

replacement more closely follows the idea of GoL as this model 

interprets the calculated convolution value as not an increase in 

the current state value but a target value. Our modification can 

be summarized as follows (Step 5 is no longer necessary as the 

values stay within [0, 1]): 

3’) Apply a target unimodal function T: [0, 1]→[0, 1] to K * A. 

Here, T can be defined as T = (G + 1) / 2. 

4’) Add a small fraction of the difference between the target and 

A to A. 

The new model is expressed as Eq. 2 or differential Eq. 3. 

𝐀𝑡+𝑑𝑡 =  𝐀𝑡  +  𝑑𝑡 (  𝑇( 𝐊 ∗ 𝐀𝑡 )  −  𝐀𝑡 ) (2) 

𝜕𝑡𝐀 =  𝑇( 𝐊 ∗ 𝐀 )  −  𝐀  (3) 

Search for Organisms 

We adopted all of the parameter sets (i.e., kernel and growth 

mapping settings) that were reported to generate organisms in 

Lenia-0 (about 500 species) (Chan, 2019) in order to search 

for organisms in Lenia-1. We performed 50 trials for each 

Figure 1: Overview of Lenia. 
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parameter set with a random initial configuration A0. We found 

just three organisms, each of which belongs to a new species in 

the sense that they have not been reported as species in Lenia-

0. Fig. 2 shows these organisms (L1-1, 2, 3) with existing 

organisms already discovered with the same parameter sets in 

Lenia-0 (L0-1, 2, 3), respectively. They tend to move more 

smoothly than the organisms in Lenia-0. Also, the new 

organisms L1-1&2 have more complex internal structures 

than L0-1&2, respectively.  
 We then turned our attention to the parameter regions in 

which the organisms exist. Lenia-0 organisms are known to 

exist in a limited region of μ-σ parameter space. Parameters μ 

and σ are the position of the peak of the target (growth) function 

and the width of the peak, respectively. We explored the μ-σ 

space using all the parameter sets reported to generate 

organisms in Lenia-0. It turned out that of the 155 parameter 

sets (keeping μ and σ unchanged) organisms were also found 

in Lenia-1 when using 154 sets. Fig. 3 shows μ-σ maps of L1-

1, L0-1, and L0-4. L0-4 is the organism in Lenia-0, which is 

similar to L1-1 both in structure and behavior. Comparing L1-

1 and L0-4, correspondingly, we see a clear difference in their 

distributions when compared to the distributions between L0-1 

and L1-1. These might imply that the distributions of organisms 

in the μ-σ space are highly dependent on the parameter sets 

beyond the model difference. Furthermore, we found, as a 

general tendency with the cases having reduced existence areas 

(which happened in 143 parameter sets out of 155), that new 

organisms tend to shake their bodies in non-monotonous 

rhythms. By contrast, the organisms tend to have monotonous 

or no rhythms in the cases having enlarged existence areas. It 

suggests that organisms with simpler behaviors and forms may 

be more likely to survive in an environment where the 

boundary between chaos (blue) and sky (red) is ambiguous. 
 During the search, we found many notable organisms with 

asymmetric body structure or behavior (Fig. 4). The organism 

on the left has a round shape, but it shows irregular movements 

with irregular changes in its internal structure. The middle 

organism pulsates as a whole, changing its shape and 

asymmetrical internal structure moment by moment. The right 

organism has two states, pulsating in place and moving, but in 

both states the structure and movement continue to change 

irregularly (Fig. 5). We believe that asymptotics in the state-

updating rule increases the effects of continuous 

space/time/state in the GoL and thus creating smoother 

lifeforms. 

Conclusion 

We proposed a model that introduces asymptotics to the state-

updating rule in Lenia. We found three organisms with the same 

parameter sets as those in Lenia. We then focused on the 

regions for the existence of organisms and explored them in the 

parameter space. We found that the new organisms tend to 

move more smoothly than the organisms in Lenia and typically 

have either more complex internal structures or simpler 

behaviors. We observed a similarity in the distributions of 

organisms sharing parameters in the parameter space beyond 

the model difference. We believe that the proposed model can 

be another target of ALife research in the sense that not only 

new species can be found, but also it can create opportunities 

for investigating biological phenomena using hybrid models. 
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Figure 3: The μ-σ maps of L1-1, L0-1, and L0-4. Blue produces 

no global or local pattern at all. Red produces a chaotic, 

aperiodic global filament pattern. White generates organisms. 

1.            2.             3.   
 
 
 
 
 
 
Lenia-1. L1-1: moving in meandering trajectories; L1-
2: moving the body in waves like a jellyfish; and L1-3: 

moving forward without changing the body shape. 
1.            2.              3.   
 

 

  

  

 

  
Lenia-0. L0-1: Hexastrium; and L0-2: Kronium 

solidus; L0-3. Trigeminium arcus natans. 
 Figure 2: Organisms found in the proposed model (L1) 

and the original Lenia (L0). Organisms with the same 

number in their IDs have the same parameter values. 

Figure 4: Examples of asymmetrical organisms. 

Figure 5: Trajectory of the third organism in Fig. 4.  
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