Session I: Brompton
MONDAY, 27 MAY 2013
08:30 – 10:30

B-001
PROPSITY SCORE-MATCHED ANALYSIS OF STAGE I-II NON-SMALL CELL LUNG CANCER TREATED BY VIDEO-ASSISTED THORACOSCOPIC LOBECTOMY OR STEREOTACTIC ABLATIVE RADIOTHERAPY
Jan Wolter Oosterhuis1, N. Verstegen2, A. Van Der Elst1, R. Mollema4, W. Van Tets1, J. Joosten6, A. Amir7, S. Senan2
1Surgery, VU University Medical Centre, Amsterdam, Netherlands; 2Radiation Oncology, VU University Medical Centre, Amsterdam, Netherlands; 3Surgery, Spaarne Ziekenhuis, Hoofddorp, Netherlands; 4Surgery, Medical Centre Alkmaar, Alkmaar, Netherlands; 5Surgery, St Lucas Andreas Ziekenhuis, Amsterdam, Netherlands; 6Surgery, Westfries Gasthuis, Hoorn, Netherlands; 7Surgery, Waterlandziekenhuis, Purmerend, Netherlands

Objectives: Video-assisted thoracoscopic surgery (VATS) lobectomy is often used to treat operable patients with stage 1-2 non-small cell lung cancer (NSCLC), but stereotactic ablative radiotherapy is not infrequently employed. We performed a propensity score-matched analysis to compare treatment-related complications VATS lobectomy data from 6 hospitals was retrospectively accessed; stereotactic ablative radiotherapy data was obtained from a single institution database. Patients were matched using propensity scores based on cTOM-stage, age, gender, Charlson comorbidity score, pulmonary function tests and performance score. Clinical staging was done according to national guidelines and included 18FDG-PET and surgical and/or endoscopic mediastinal staging. Eighty-six VATS and 527 stereotactic ablative radiotherapy patients were matched blinded to outcome (1:1 ratio, caliper distance 0.025). Treatment-related complications were scored according to Common Terminology Criteria for Adverse Events. Locoregional failure was defined as recurrence in/adjacent to the planning target volume/surgical margins, ipsilateral hilum or mediastinum. Recurrences were either biopsy-confirmed or had to be PET-positive and reviewed by a tumour board.

Results: The matched cohort consisted of 64 patients treated by stereotactic ablative radiotherapy and 64 patients treated by VATS lobectomy, with median follow-up of 30 and 16 months, respectively. Unforeseen N1 and/or N2 disease was detected in 12 operated patients (19%), 8 of these received adjuvant treatment. Treatment-related complications ≥ grade 3 developed in 23% of VATS patients and 6% of stereotactic ablative radiotherapy patients. Locoregional control rates with stereotactic ablative radiotherapy were superior compared to VATS lobectomy at 1 and 3 years (96.8% and 93.3% vs 86.9% and 82.6%, respectively, P = 0.04). Distant recurrences and overall survival were not significantly different.

Conclusions: This retrospective analysis found a superior locoregional control after stereotactic ablative radiotherapy compared to VATS lobectomy, but overall survival did not differ. Our findings support the need to compare both treatments in a randomized controlled trial.

Disclosure: All authors have declared no conflicts of interest.