after surgery. Infection is otherwise a well-known trigger of delirium [22]. In contrast to our finding, a low intraoperative body temperature has also been found relevant [16, 19]. Intraoperative temperatures were not recorded in our study. However, the cooling during CPB interferes with this issue with a low CPB temperature reflecting a complex and long-duration procedure probably being more important than the temperature as such. An unexpected finding in our study was that patients reporting gastritis and/or peptic ulcer problems had an increased risk of delirium. This observation showed a borderline significance and must be considered with caution. The multivariable model was also tested without this variable included without affecting the results notably.

This study reports the results from consecutive older patients undergoing cardiac surgery. The study was based on comprehensive assessments including cognitive testing both before and repeatedly after surgery. All assessments were performed by two trained research nurses. Similarly, a large number of variables were systematically extracted for analysis, pre-, intra- and early postoperatively. Unfortunately, pharmacological interactions were not explored. Our study is also limited from its relatively small sample size in relation to the surplus of variables analysed. Therefore, our findings should be validated in future studies. Certainly, contributing factors behind delirium are to be sought among a variety of factors beyond those tested in our study, for example, inflammatory and embolic mechanisms. Also, our results are valid only for the cohort studied of older patients during their period of hospitalization.

In conclusion, delirium was common among older patients undergoing cardiac surgery. Both predisposing and precipitating factors contributed to delirium and it is potentially possible to modify several of these factors in daily clinical practice. The strongest precipitating factor for delirium was an increased volume load during operation. An association between delirium and volume load has not been previously identified, a detail that it may be possible to investigate in a randomized study.

ACKNOWLEDGEMENTS

The authors acknowledge the participants and the staff at the Cardiothoracic Surgery Department Heart Center University Hospital of Umeå, Sweden, for their cooperation in this study. The authors also appreciate Fredrik Jonsson for statistical review of our study.

FUNDING

This work was supported by grants from the Heart Foundation of Northern Sweden; the Erik and Anne-Marie Detlof’s Foundation; the Dementia foundation, the Borgerskapet in Umeå Research Foundation; the Medical Faculty at Umeå University Sweden; the University of Umeå; the County Council of Västerbotten, Sweden; and the Strategic Research Programme in Care Sciences, Sweden.

Conflict of interest: none declared.

REFERENCES


eComment. Genetics and delirium after heart surgery

Authors: Petros Bougioukakis and Martin Mandewirth

Department of Cardiovascular Surgery, Heart Center, 79616 Bad Neustadt, Germany

© The Author 2013. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

Besides the widely known predisposing factors of age and diabetes mellitus, the authors of this interesting article present intraoperative volume overload and sodium
concentration as factors leading to the development of postoperative delirium [1]. What we would like to add is that delirium is a neurocognitive and neuropsychiatric disorder, the role of genetic contributors, eg. in the form of genetic polymorphisms related to the genesis of dementia/neurocognitive malfunction in its various forms, should also be taken into account for a more thorough investigation of the subject. Older studies [2-4] have not confirmed the putative relationship between genetics and delirium after heart surgery. However, as new knowledge emerges, novel research items, such as the variants of gene TREM2 [5] should also get under the scope of investigation, as they might elucidate the pathogenesis of postoperative delirium.

Conflict of interest: none declared

REFERENCES


eComment. Postoperative delirium in elderly cardiac surgery patients

Author: Senol Yavuz
Cardiovascular Surgery, Bursa Yuksek Ihtisas Education and Research Hospital, Bursa, Turkey
doi: 10.1093/icvts/ivt414 © The Author 2013. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

I read with great interest the paper by Smulter et al. [1]. The authors aimed at determining the incidence of and risk factors for postoperative delirium (POD), in older patients undergoing cardiac surgery. They reported an incidence of POD of 54.9% and confirmed many of the previously suggested risk factors. In their study, POD was strongly associated with an increased volume load during surgery. I would like to add some comment on this important topic.

POD is a common and serious complication in elderly cardiac surgery patients. It is defined as an acute and fluctuating disturbance in consciousness, characterized by disorientation, a disturbed sleep-wake cycle, memory impairment, perceptual disturbances, and altered psychomotor activity [2,3]. POD is an important cause of prolonged hospital stay (economic burden), nursing home placement, and increased morbidity and mortality by aftercardiac surgery. In addition, it is associated with late death, hospital readmission, and reduced cognitive and functional recovery. The reported incidence of POD ranges from 30 to 73% depending on the diagnostic method used to define POD, study design, and type of cardiovascular procedure [2-5].

The exact pathophysiology of POD is unknown. There are several potential mechanisms including perioperative cerebral hypoperfusion, alterations in the levels of neurotransmitters, systemic inflammation and physiologic stresses. This pathophysologic complexity contributes to high incidence of POD [3,4]. Elderly cardiac surgery patients are at a particularly high risk for POD owing to the use of cardiopulmonary bypass, the presence of macro- or microemboli resulting from aortic and cardiac manipulation, the complexity and duration of surgical procedure, cerebral reperfusion injury, and large volume and pressure shifts [3].

The likelihood of developing POD increases proportionally with the number of existing risk factors [4]. Identification of risk factors for developing POD allows surgeons to implement interventions aimed at reducing the incidence of POD in these high risk patients. There are many patient (predisposing) and surgery (precipitating) risk factors related to POD. These risk factors include advanced age, pre-existing dementia, depression, functional impairment, cognitive impairment, hearing and visual impairment, alcohol abuse, smoking, decreased left ventricular ejection fraction, pre-existing pulmonary disease, hypertension, atrial fibrillation, laboratory abnormalities, cerebrovascular disease, decreased albumin level, lower hematocrit, postoperative hypotension and increased blood transfusion [2-5].

The most critical steps in management of POD are prevention and early recognition. Both prevention and treatment should focus on the minimization and/or...