Validation of transcatheter aortic valve implantation risk scores in relation to early and mid-term survival: a single-centre study

Valérie M. Collasa,b,*, Caroline M. Van De Heyningb, Bernard P. Paelinckc, Inez E. Rodrigusa, Christiaan J. Vrintsa,b and Johan M. Bosmansa,b

a Faculty of Medicine and Health Sciences, Department of Translational Pathophysiological Research, Cardiovascular Diseases, University of Antwerp, Antwerp, Belgium
b Department of Cardiology, Antwerp University Hospital, Edegem, Belgium
c Department of Cardiac Surgery, Antwerp University Hospital, Edegem, Belgium

* Corresponding author. Department of Cardiology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium. Tel: +32-3-8214582; fax: +32-3-8214909; e-mail: valerie.collas@uantwerpen.be, valerie.collas@uza.be (V.M. Collas).

Received 13 August 2015; received in revised form 22 October 2015; accepted 6 November 2015

Abstract

OBJECTIVES: The aim of this study was to validate recently proposed risk scores for the prediction of mortality up to 1 year after transcatheter aortic valve implantation (TAVI), using a self-expandable valve (CoreValve).

METHODS: In this single-centre study, 225 consecutive patients with severe symptomatic aortic valve stenosis, who underwent TAVI between December 2007 and January 2015, were included. Conventional surgical risk scores (logistic EuroSCORE, EuroSCORE II and STS score) were calculated as well as newly proposed TAVI risk scores (TAVI2-SCORE, STT Score and OBSERV ANT score). Medium-term survival of the patients was assessed up to 1 year after TAVI.

RESULTS: The median age was 82 (77–86) years and 45.3% were male. Patients were categorized into ‘non-high risk’ or ‘high risk’ according to logistic EuroSCORE >20%, EuroSCORE II >8%, STS score >10%, TAVI2-SCORE >2, STT score >12% and OBSERV ANT score >6. Thirty-day and 1-year survival rates were significantly different between ‘non-high-risk’ and ‘high-risk’ patients according to the STS score (1-year: low: 84.4% vs high: 67.0%, \(P = 0.010 \)) and according to OBSERV ANT score (1 year: low: 85.2% vs high: 68.4%, \(P = 0.005 \)). In contrast, TAVI2-SCORE and STT score did not discriminate ‘non-high-risk’ and ‘high-risk’ patients. This was confirmed by Cox regression analysis [STS score >10%: hazard ratio: 2.484 (1.206–5.115), \(P = 0.014 \); OBSERV ANT score >6: hazard ratio: 2.532 (1.295–4.952), \(P = 0.007 \)].

CONCLUSIONS: In this single-centre study, OBSERV ANT and STS score most accurately predicted early and mid-term survival in patients undergoing TAVI, using a self-expandable valve (CoreValve).

Keywords: Aortic valve stenosis • Transcatheter aortic valve implantation • Risk scores

INTRODUCTION

Recently, transcatheter aortic valve implantation (TAVI) has been proved to be a reasonable alternative for the treatment of severe, symptomatic aortic stenosis in ‘high-risk’ patients, not considered for surgical valve replacement [1–3]. According to the guidelines, patient selection for TAVI relies on the multidisciplinary heart team, evaluating technical aspects of the procedure, as well as the procedural risk of the patient. As already reported before, surgical risk scores [logistic European System for Cardiac Operative Risk Evaluation (EuroSCORE), EuroSCORE II and Society of Thoracic Surgeons (STS) score] could be helpful, but are limited for these purposes [4–9]. Recently, new risk scores have been developed, specifically for patients suffering from severe, symptomatic aortic valve stenosis undergoing TAVI. The TAVI2-SCORE [10], the Survival post-TAVI (STT) score [11] and the Observational Study of Appropriateness, Efficacy And Effectiveness of AVR-TAVR Procedures For the Treatment Of Severe Symptomatic Aortic Stenosis (OBSERV ANT) score [12] have all been derived from baseline parameters (see Supplementary Table 1) and have all been outperforming conventional surgical risk scores for prediction of mortality after TAVI. The aim of this study was to validate these recently proposed risk scores for the prediction of mortality up to 1 year after TAVI.

METHODS

In this single-centre study, we included consecutive patients with severe symptomatic aortic valve stenosis, refused for surgical aortic valve replacement as decided by the local heart team, who underwent TAVI using the Medtronic CoreValve prosthesis between December 2007 and January 2015.
Baseline patient demographic data, cardiovascular risk factors, symptoms, quantification of aortic valve severity, medication and laboratory variables were collected.

Variables included in the conventional risk scores were previously described [13]. They were calculated using web-based systems [14–16]. Newly proposed TAVI risk scores (TAVI2-SCORE, STT score and the OBSERVANT score) were calculated for each patient. The STT score was calculated using the online application [17]. Patients were categorized ‘high risk’ or ‘non-high risk’ according to a logistic EuroSCORE of >20%, a EuroSCORE II of >8%, an STS score of >10%, a TAVI2-SCORE of >2, an STT score of >12% and an OBSERVANT score of >6 [10–12, 18].

Major adverse cardiac and cerebrovascular events (MACCEs) that occurred within 30 days after the procedure were reported according to the standardized endpoints of the Valve Academic Research Consortium 2 [19]. Medium-term survival of the patients was assessed up to 1 year after TAVI.

Statistical analysis

According to the distribution of the data (evaluated by histograms, QQ-plots and Kolmogorov–Smirnov test), continuous variables are presented as mean ± standard deviation (SD) or as median (Q1–Q3) and tested with Student’s t-test or the Mann–Whitney U-test. Categorical variables are presented as n (%) and were tested with the Pearson χ² or Fisher’s exact test (when at least one cell of the cross tabs had an expected count of less than 5). A contingency analysis by kappa values was performed to assess the agreement of ‘non-high-risk’ and ‘high-risk’ classification between different risk scores. Kaplan–Meier curves were constructed to evaluate survival, and differences between the groups of risk scores were tested based on the log-rank test. Cox regression analysis determined predictors of mortality. Statistical analyses were conducted with SPSS version 20.0 (IBM Corporation, New York, USA).

RESULTS

Two hundred and twenty-five consecutive patients were included in this study. The median age was 82 (77–86) years old, 45.3% (n = 102) were male and the mean body mass index was 26.9 ± 4.8 kg/m². They were all suffering from severe, symptomatic aortic valve stenosis, based on significantly reduced aortic valve area (0.64 ± 0.18 cm²), with a mean and peak gradient of 44 ± 15 and 69 ± 25 mmHg, respectively. The median left ventricular ejection fraction was 60 (50–62)%. Different comorbidities were present: 21.3% of the patients had diabetes (n = 48), 17.8% chronic obstructive pulmonary disease (n = 40) and 63.1% hypertension (n = 142). Previous procedures, such as percutaneous coronary intervention, coronary artery bypass grafting and valve surgery, were done in, respectively, 62 (27.6%), 68 (30.2%) and 10 (4.4%) patients. Of the total, 15.6% of the patients (n = 35) had a previous myocardial infarction and 7.1% (n = 16) had a permanent pacemaker at baseline. Median logistic EuroSCORE, EuroSCORE II and STS score were 15.3 (10.1–23.5), 5.1 (2.9–8.8) and 6.3 (5.6–8.2), respectively. The different parameters composing the new risk scores are described in Table 1, together with their prevalence.

Figure 1A describes the categorization of the TAVI patients as ‘non-high risk’ or ‘high risk’ according to the different risk scores. Agreement between these risk scores to categorize patients as ‘non-high-risk’ and ‘high-risk’ is visualized in Fig. 1B. The agreement between logistic EuroSCORE and EuroSCORE II was the strongest (kappa = 0.642, P = 0.001). The OBSERVANT score agreed with EuroSCORE II (kappa = 0.143, P = 0.027) and STS score (kappa = 0.245, P = 0.001). The number of similarly classified patients was the lowest in logistic EuroSCORE and the STT score (n = 140; kappa = −0.074, P = 0.155).

The incidence of procedure-related MACCEs according to the risk scores is summarized in Tables 2 and 3. Procedural mortality occurred in 6 patients, 30-day mortality in 17 patients and 1-year mortality in 38 patients. Logistic EuroSCORE and EuroSCORE II categorized most patients who died during the procedure as high risk. Most patients who died during 30 days and 1 year after TAVI were categorized as high risk according to the logistic EuroSCORE and the OBSERVANT score (Fig. 2). In Fig. 3, Kaplan–Meier curves represent mortality during 1 year after TAVI, according to the different risk scores. Survival between the ‘non-high risk’ and the ‘high-risk’ group of the STS score and the OBSERVANT score was significantly different, based on the log-rank test. Furthermore, Cox regression analysis confirmed these results (Table 4). Using three risk groups (low—moderate—high) according to the STS and the OBSERVANT score, a stepwise increase in mortality was seen according to the OBSERVANT score (Fig. 4).

DISCUSSION

This study is, to the best of our knowledge, the first to compare the six available risk scores in patients with severe, symptomatic aortic valve stenosis. The three conventional surgical risk scores (logistic EuroSCORE, EuroSCORE II and STS score) correlated the most to each other. The OBSERVANT score agreed with EuroSCORE II and
A higher TAVI2-Score was related to higher incidence of significant aortic regurgitation post-TAVI and a higher OBSERV ANT score was related to more minor bleeding events post-TAVI. A higher logistic EuroSCORE and EuroSCORE II were related to higher procedural mortality, whereas a higher STS score and OBSERV ANT score were related to 30-day and 1-year mortality.

As mentioned by Debonnaire et al. [10], TAVI risk scores should predict 30-day, as well as 1-year mortality post-TAVI in order to...
allow proper risk assessment and optimal patient selection, to-
gether with evaluation of cost–benefits for a given treatment.
Due to the unavailability of TAVI-specific risk scores, conven-
tional surgical risk scores were used for this purpose. Of the three con-
ventional risk scores, only the STS score could significantly dis-
criminate patients with good and limited mid-term prognosis in
this patient cohort. Nevertheless, the STS score was not developed
for TAVI and calculation of the STS score is time-consuming,
involving more than 40 parameters that need to be available.
Therefore, the development of specific TAVI risk scores remains of
valuable importance.

Recently, three risk tools were proposed as specific TAVI risk
scores. The TAVI2-SCORe was developed in patients who underwent
TAVI with the Edwards SAPIEN system at the Leiden University
Medical Center (Leiden, Netherlands; \(n = 207 \)) and Centro
Cardiologico Monzino IRCCS (Milan, Italy; \(n = 304 \)) between
November 2007 and November 2012 (\(n = 511 \)) [10]. Mortality
within 30 days occurred in 29 patients (29 of 511, 5.7%), and
within 1 year in 80 patients (80 of 471, 17.0%). In contrast to our
data, 1-year survival was not significantly different between low-
and high-risk patients according to the STS score. We assume that
this might be partly explained by a remarkably high percentage of
high-risk patients according to the STS score of >10% (90% of their
cohort) in comparison with our data (14% in the present study).

Porcelain aorta and anaemia are two parameters representing
more TAVI-specific risk factors, not included in the conven-
tional risk scores. In their study cohort, 12% of patients had an elevated
risk (TAVI2-SCORe >2), and 1-year survival was significantly differ-
ent between the two groups of patients (TAVI2-SCORe ≤2: 88% vs
TAVI2-SCORe >2: 54%; \(P < 0.001 \)). In comparison with our study,
less patients (8%) were at high risk and the TAVI2-SCORe could not
differentiate patients with good and bad prognosis at 30 days, nor
at 1 year post-TAVI. The TAVI2-SCORe was developed in patients
undergoing TAVI with the Edwards SAPIEN system. In our patient
cohort, the Medtronic CoreValve system was used. Therefore, the

| Table 3: Major adverse cardiovascular and cerebral events (MACCEs) within 30 days after the procedure, according to TAVI2-SCORe, survival post-TAVI score and OBSERVANT score |

<table>
<thead>
<tr>
<th>MACCEs</th>
<th>TAVI2-SCORe ≤2</th>
<th>TAVI2-SCORe >2</th>
<th>Survival post-TAVI ≤12%</th>
<th>Survival post-TAVI >12%</th>
<th>OBSERVANT score ≤6</th>
<th>OBSERVANT score >6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroke or transient ischemic attack</td>
<td>9 (4.3)</td>
<td>0 (0.0)</td>
<td>1.000(^{d})</td>
<td>8 (3.9)</td>
<td>1 (4.5)</td>
<td>1.000(^{d})</td>
</tr>
<tr>
<td>Life-threatening bleeding</td>
<td>8 (3.9)</td>
<td>0 (0.0)</td>
<td>1.000(^{d})</td>
<td>8 (3.9)</td>
<td>0 (0.0)</td>
<td>1.000(^{d})</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>14 (6.8)</td>
<td>1 (0.0)</td>
<td>1.000(^{d})</td>
<td>15 (7.4)</td>
<td>0 (0.0)</td>
<td>0.372(^{d})</td>
</tr>
<tr>
<td>Minor bleeding</td>
<td>35 (16.9)</td>
<td>4 (22.2)</td>
<td>0.525(^{d})</td>
<td>33 (16.3)</td>
<td>6 (27.3)</td>
<td>0.232(^{d})</td>
</tr>
<tr>
<td>Major vascular complications</td>
<td>6 (2.9)</td>
<td>1 (5.6)</td>
<td>0.447(^{d})</td>
<td>6 (3.0)</td>
<td>1 (4.5)</td>
<td>0.518(^{d})</td>
</tr>
<tr>
<td>Minor vascular complications</td>
<td>62 (30.0)</td>
<td>2 (11.1)</td>
<td>0.089(^{d})</td>
<td>57 (28.1)</td>
<td>7 (31.8)</td>
<td>0.712(^{d})</td>
</tr>
<tr>
<td>Aortic regurgitation grade II–IV</td>
<td>36 (21.1)</td>
<td>7 (43.8)</td>
<td>0.058(^{d})</td>
<td>39 (23.4)</td>
<td>4 (20.0)</td>
<td>1.000(^{d})</td>
</tr>
<tr>
<td>New pacemaker(^{b})</td>
<td>60 (31.3)</td>
<td>8 (47.1)</td>
<td>0.182(^{d})</td>
<td>60 (31.4)</td>
<td>8 (44.4)</td>
<td>0.259(^{d})</td>
</tr>
<tr>
<td>Survival</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procedural success</td>
<td>202 (97.6)</td>
<td>17 (94.4)</td>
<td>0.397(^{d})</td>
<td>198 (97.5)</td>
<td>21 (95.5)</td>
<td>0.465(^{d})</td>
</tr>
<tr>
<td>Alive 30 days post-TAVI</td>
<td>192 (92.8)</td>
<td>16 (88.9)</td>
<td>0.633(^{d})</td>
<td>187 (92.1)</td>
<td>21 (95.5)</td>
<td>1.000(^{d})</td>
</tr>
<tr>
<td>Alive 1 year post-TAVI(^{b})</td>
<td>142 (80.7)</td>
<td>12 (75.0)</td>
<td>0.527(^{d})</td>
<td>141 (80.6)</td>
<td>13 (76.5)</td>
<td>0.750(^{d})</td>
</tr>
</tbody>
</table>

\(^{a}\)n = 187, \(^{b}\)n = 209, \(^{c}\)n = 192, \(^{d}\)Fisher’s Exact Test.

Figure 2: Categorization of the patients deceased during the procedure (left panel), during 30 days after TAVI (middle panel) and during the 1-year follow-up (right panel) in the ‘non-high-risk’ or ‘high-risk’ group. Numbers represent the patients in that group. STS: Society of Thoracic Surgeons; TAVI: transcatheter aortic valve implantation; EuroSCORE: European System for Cardiac Operative Risk Evaluation; OBSERVANT: Observational Study of Appropriateness, Efficacy And Effectiveness of AVR-TAVR Procedures For the Treatment Of Severe Symptomatic Aortic Stenosis.
predictive value of the TAVI2-SCORe might not be extrapolated to our patient population.

The STT score was derived from baseline characteristics of patients who underwent TAVI with the Edwards SAPIEN system or the Medtronic CoreValve system at six institutions (Turin, Catania, Padova, two centres in Milan and Utrecht) [11]. The STT score was externally validated in an independent cohort of Bologna. All patients were treated between January 2007 and December 2012.
Mortality within 30 days occurred in, respectively, 60 patients (60 of 1067, 5.6%) and 13 patients (13 of 177, 7.3%), and within 1 year in, respectively, 165 patients (165 of 1067, 15.4%) and in 63 patients (63 of 177, 35.6%). No differences were found in the logistic EuroSCORE and the STS score between patients who survived and patients who died within 1 year post-TAVI. No Kaplan–Meier curves were included in the manuscript to compare survival between low- and high-risk patients. In our study, the STT score could neither differentiate patients with good and bad prognosis at 30 days, nor at 1 year post-TAVI.

The OBSERVANT score was derived from baseline characteristics of patients who underwent TAVI with the Edwards SAPIEN system or the Medtronic CoreValve system at 95 Italian institutions \((n = 1256) \) \[12\]. The OBSERVANT score was externally validated on an independent cohort \((n = 622) \). All patients were treated between December 2010 and June 2012. Mortality within 30 days occurred in, respectively, 77 patients (77 of 1256, 6.1%) and 37 patients (37 of 177, 5.9%). In their study cohort, 41.9% had an elevated risk. In comparison with our study, less patients (23.6%) were at high risk. The 30-day mortality was significantly different between the two groups of patients (OBSERVANT score \(\leq 6 \): 2.4% vs OBSERVANT score \(>6 \): 11.4%; \(P < 0.001 \)). This observation was confirmed in our study: OBSERVANT score \(\leq 6 \): 5.0% vs OBSERVANT score \(>6 \): 17.8%; \(P = 0.008 \). Moreover, this risk estimation could be extrapolated to 1-year mortality (at least in our study cohort) and in contrast to the STS score, the OBSERVANT score showed a good stepwise increase in 30-day as well as in 1-year mortality, based on three risk groups. The fact that the OBSERVANT score, containing only seven parameters, was more significantly predictive than the time-consuming STS score favours its clinical applicability.

An important parameter, not included in any of these risk scores, but suggested in the literature to estimate the risk specifically in TAVI patients, is frailty \[20, 21\]. However, since there is no general definition of frailty available, further research is necessary in order to compose optimal criteria to evaluate frailty in aortic valve stenosis. Also, red cell distribution width gained interest in the risk estimation of TAVI patients \[9, 22–23\].

The discordances between survival of ‘high’-risk patients in various TAVI cohorts underline the need of validation in external large real-world populations before a new risk score should be used in everyday clinical practice. Ideally, this risk score is a simple and accurate tool that can be used both in patients treated with a balloon-expandable TAVI prosthesis as well as in patients treated with a self-expandable system.

Limitations of the study

This study was based on a single-centre population, including a limited number of patients and only one type of transcatheter aortic valve implanted (Medtronic CoreValve). Results can therefore not be extrapolated to other types of valves. Use of the CoreValve frame is indeed associated with typical problems, potentially influencing the final results of our study. Based on the results of the Belgian TAVI Registry \[24\] and the randomized CHOICE trial \[25\], comparing transfemoral TAVI with balloon-expandable vs self-expandable transcatheter valve, more patients develop significant aortic regurgitation and new conduction disturbances within 30 days after CoreValve implantation. Because aortic regurgitation post-TAVI is a predictor of mortality, this could potentially bias the results. Nevertheless, according to the survival curves reported in both studies, no differences in mortality between patients implanted with balloon-expandable and self-expandable valve were found.

Finally, grouping of the patients within the evaluated score systems is somewhat ‘author-dependent’. However, for our analysis, we respected the risk cohorts as published by the different authors, taking into account that the number in some of the patient subgroups were too limited for meaningful statistical analysis. Keeping this in mind, according to the actually available guidelines, TAVI has been proven to be a reasonable alternative for the
treatment of severe, symptomatic aortic stenosis in ‘high-risk’ patients, we decided to focus primarily on ‘high-risk’ compared with ‘non-high-risk’ patients.

CONCLUSION

In this single-centre study, the OBSERVANT and STS score most accurately predicted early and mid-term survival in patients undergoing TAVI, using a self-expandable valve (CoreValve). However, further validation in large external patient cohorts using different valve frames is needed.

SUPPLEMENTARY MATERIAL

Supplementary material is available at ICVTS online.

Conflict of interest: Johan M. Bosmans is a part-time clinical proctor for Medtronic CoreValve.

REFERENCES