RESEARCH LETTER

Allogeneic CD19/CD22 CAR T-Cell Therapy for B-Cell Acute Lymphoblastic Leukemia

Antibodies, T-cell engagers, immunotoxins, or chimeric antigen receptor (CAR) T cells targeting B-cell antigens have revolutionized the treatment of B-cell acute lymphoblastic leukemia (ALL). CD19-targeting CAR T cells induce remission in approximately 70% of adults with relapsed/refractory B-cell ALL, but approximately 30% to 60% relapse due to loss of CD19 expression on tumor cells and/or limited CAR T-cell persistence.1,2 Bispecific constructs cotargeting CD19 and the alternative B-cell antigen CD223,4 may reduce antigen escape. The use of allogeneic leukocytes may improve CAR T-cell functionality. Herein, we report durable remissions in 2 patients with relapsed/refractory B-cell ALL treated with allogeneic bispecific CD19/CD22-targeting CAR T cells.

Methods | Patients’ characteristics and workup are summarized in the eMethods in Supplement 1. CAR T-cell treatments were discussed in the University Hospital Tübingen Cell Therapy Board and performed with the patients’ written informed consent based on hospital exemption for advanced therapy medicinal product treatment and declaration to the competent authority, Paul-Ehrlich-Institut, according to the section 67 of the German Medicines Act.

Leukocytes from the patient or the hematopoietic cell donor were transduced with a bispecific human anti-CD19/anti-CD22 lentiviral construct (Miltenyi Biotec), expanded in the CliniMACS Prodigy (Miltenyi Biotec) in the Good Manufacturing Practice Laboratory at the University Hospital Tübingen, and infused (day 0) after lymphodepletion with fludarabine, 25 mg/m² (day −5 until day −3), and cyclophosphamide, 1000 mg/m² (day −3).5 CAR detection reagent (Miltenyi Biotec), MACSQuant (Miltenyi Biotec), and FACS-Lyric Flow Cytometer (BD Biosciences) were used for CAR T-cell quantification between January 2020 and September 2023.

Results | A woman in her late 50s with B-cell ALL relapse after receiving chemotherapy, blinatumomab, inotuzumab ozogamicin, and allogeneic hematopoietic cell transplant (alloHCT) was treated with 3 × 10⁶/kg bodyweight patient-derived fresh allogeneic bispecific CD19/CD22-targeting CAR T cells (Figure 1A). CAR T cells expanded, inducing IL-6 and IL-2 receptors (Figure 1B), but then dropped, allowing CD19/CD22 relapse. Reinfused cryopreserved CAR T cells (3 × 10⁶/kg bodyweight) failed to expand and to induce antileukemic effects. Next, fresh allogeneic CD19/CD22-targeting CAR T cells were manufactured from mononuclear cells of the healthy 8/10 HLA-matched unrelated hematopoietic cell donor and applied after bridging with inotuzumab ozogamicin. Maintenance with inotuzumab ozogamicin, 4G7SDIE, and tafasitamab was given for the multiple relapses. Rise in minimal residual disease triggered CAR T-cell expansion, suggesting active CAR T-cell immune surveillance (Figure 1). Sustained remission was documented approximately 3 years after the third CAR T-cell therapy.

A man in his late 50s with hematologic and central nervous system BCR::ABL-positive B-cell ALL relapse after receiving chemotherapy, sibling alloHCT, blinatumomab, haploidentical alloHCT, and multiple tyrosine kinase inhibitors (Figure 2A) received 3 × 10⁶/kg bodyweight patient-derived fresh allogeneic CD19/CD22-targeting CAR T cells, which expanded with cytokine release (Figure 2B) and induced molecular (Figure 2A) and central nervous system remission. Eighteen months later, CD19/CD22 relapse occurred, and the patient was treated with 6 × 10⁶/kg bodyweight cryopreserved CAR T cells, inducing transient neurotoxic effects. Twenty-four months later, the patient showed durable remission and persisting CAR T cells (Figure 2).

Discussion | In this case series, we report that repeated treatments with locally manufactured allogeneic bispecific humanized CD19/CD22-targeting CAR T cells were feasible and associated with durable remission in 2 patients with relapsed/refractory ALL receiving alloHCT and antibody treatments. Antigen loss was not observed as resistance mechanism after treatment with CD19/CD22 CAR T cells. The use of allogeneic (donor derived) healthy cells potentially improved CAR T-cell functionality without adding toxic effects (eg, graft-vs-host disease).

CD19 or CD22 antibodies can reduce minimal residual disease in relapsed/refractory B-cell ALL,6 and autologous CD19/CD22 CAR T cells were previously reported.3,4 Outcomes after repeated use of allogeneic CD19/CD22-targeting CAR T cells combined with sequential antibody therapies are, to our knowledge, yet unreported.

A limitation to this study is that data are only from 2 patients. Allogeneic bispecific humanized CAR T-cells show promising results but require prospective testing. Nonetheless, allogeneic humanized CD19/CD22-targeting CAR T-cells may induce durable remission in patients with relapsed/refractory B-cell ALL.
Figure 1. Treatment Response and Chimeric Antigen Receptor (CAR) T-Cell Quantification in Patient 1

A. Summary of treatments and minimal residual disease (MRD) results in bone marrow (BM) and peripheral blood (PB) (IGHV3-21 and D3-16 J8 along logarithmic scale; MRD negativity defined as <1 \times 10^4, represented by the horizontal dashed line; the open circle marks a rise in MRD). B. Quantification of CD19/CD22-targeting CAR T cells in PB after each CAR T-cell treatment (the open circle marks CAR T-cell expansion at the rise of MRD).

Laurent Phely, MD
Luca Hensen, PhD
Christoph Faul, MD
Christer Alexander Ruff, MD
Dina Schneider, PhD
Wolfgang Andreas Ruff, MD
Claudia Lengerke, MD

Author Affiliations: Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany (Phely, Hensen, Faul, Bethge, Lengerke); Department of Diagnostic and Interventional Neuroradiology, University Hospital Tubingen, Tubingen, Germany (Ruff); Miltenyi Biotec, Gaithersburg, Maryland (Schneider).

Accepted for Publication: January 31, 2024
Published Online: April 18, 2024. doi:10.1001/jamaoncol.2024.0473
Open Access: This is an open access article distributed under the terms of the CC-BY License. © 2024 Phely L et al. JAMA Oncology.

Corresponding Author: Claudia Lengerke, MD, Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Otfrid-Mueller-Str 10, D-72076 Tuebingen, Germany (claudia.lengerke@med.uni-tuebingen.de).
Figure 2. Treatment Response and Chimeric Antigen Receptor (CAR) T-Cell Quantification in Patient 2

A. Summary of treatments and minimal residual disease (MRD) results in bone marrow (BM) and peripheral blood (PB) (molecular \(BCR::ABL1/ABL1 \) ratio along logarithmic scale; MRD values prior to August 2016 are omitted for legibility). AlloHCT indicates allogeneic hematopoietic cell transplant; CNS, central nervous system; GMALL, the German Multicenter Study Group acute lymphoblastic leukemia regimen; R-MTX, rituximab and methotrexate. B. Quantification of CD19/CD22-targeting CAR T cells in PB after each CAR T-cell treatment.

Author Contributions: Prof Lengerke had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Drs Phely and Hensen contributed equally to this work and share first authorship. Profs Bethge and Lengerke contributed equally to this work and share last authorship.

Concept and design: Hensen, Schneider, Bethge, Lengerke.

Acquisition, analysis, or interpretation of data: Phely, Hensen, Faul, Ruff, Bethge, Lengerke.

Drafting of the manuscript: Phely, Schneider, Bethge, Lengerke.

Critical review of the manuscript for important intellectual content: Phely, Hensen, Faul, Ruff, Bethge, Lengerke.

Statistical analysis: Phely.

Obtained funding: Bethge, Lengerke.

Administrative, technical, or material support: Hensen, Ruff, Bethge, Lengerke.

Supervision: Hensen, Faul, Bethge, Lengerke.

Conflict of Interest Disclosures: Dr Schneider reported a patent issued (11242389). Prof Bethge reported grants from Miltenyi Biotech GmbH during the conduct of the study and personal fees from Novartis, BMS, and Gilead outside the submitted work. Prof Lengerke reported institutional fees from Miltenyi Biotec for a clinical perspective lecture outside the submitted work. No other disclosures were reported.
Funding/Support: This work was supported by the Deutsche Forschungsgemeinschaft (grants 467577550 and 467578951), the Baden-Württemberg state Clinical Research Grant to Prof Lengerke, the Medical Faculty of Tuebingen Angewandte Klinische Forschung Grant to Prof Bethge, and the ERC Consolidator Grant HemStem to Prof Lengerke.

Role of the Funder/Sponsor: The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Data Sharing Statement: See Supplement 2.

Additional Contributions: We thank Rupert Handgretinger, MD, for provision of 4G7SDIE. We thank Peter Lang, MD, Christian Seitz, MD, Daniel Atar, MSc, and Christiane Braun, MSc (all from Children’s Hospital, University Hospital Tuebingen), as well as Marina Schmidt, PhD, and Katrin Lutz, BSc (both from the Department of Internal Medicine II, University Hospital Tuebingen), for support with CD19/CD22 CAR-T cell production. We thank Hildegard Keppeler, Anna Stanger, PhD, and Rebekka Schairer, PhD (all from the Department of Internal Medicine II, University Hospital Tuebingen), for support with blood sample collections and flow cytometry assays. They were not compensated outside of their salaries for these contributions.