Stratified Flows over and around Long Dynamically Tall Mountain Ridges

ARJUN JAGANNATHAN, KRAIG WINTERS, AND LAURENCE ARMI
Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

(Manuscript received 21 May 2018, in final form 12 February 2019)

ABSTRACT

Uniformly stratified flows approaching long and dynamically tall ridges develop two distinct flow components over disparate time scales. The fluid upstream and below a “blocking level” is stagnant in the limit of an infinite ridge and flows around the sides when the ridge extent is finite. The streamwise half-width of the obstacle at the blocking level arises as a natural inner length scale for the flow, while the excursion time over this half-width is an associated short time scale for the streamwise flow evolution. Over a longer time scale, low-level horizontal flow splitting leads to the establishment of an upstream layerwise potential flow beneath the blocking level. We demonstrate through numerical experiments that for sufficiently long ridges, crest control and streamwise asymmetry are seen on both the short and long time scales. On the short time scale, upstream blocking is established quickly and the flow is well described as a purely infinite-ridge overflow. Over the long time scale associated with flow splitting, low-level flow escapes around the sides, but the overflow continues to be hydraulically controlled and streamwise asymmetric in the neighborhood of the crest. We quantify this late-time overflow by estimating its volumetric transport and then briefly demonstrate how this approach can be extended to predict the overflow across nonuniform ridge shapes.

1. Introduction and background

The study of stratified flow past topography is of practical interest in atmospheric science and oceanography. Applications include parameterizing surface drag and turbulence in the lee of ridges, forecasting orographic precipitation, and predicting the occurrence of downslope windstorm events. For a recent review of atmospheric applications, see Chow et al. (2012). While flow over dynamically short obstacles is fairly well described in terms of linear theory (e.g., Queney 1948; Smith 1980; Durran 1990), flow over dynamically tall obstacles is fundamentally nonlinear in character. Here dynamically tall implies a mountain height larger than the intrinsic height scale obtained from the upstream flow speed and stratification.

Further, when the cross-stream length of the ridge is large compared to its along-stream width, flows “over” the crest and “around” the sides develop over disparate time scales. Here, we consider long and dynamically tall mountain ridges and quantify the evolution of the overflow as the low-level fluid upstream splits and flows laterally around the sides of the obstacle.

Energetics arguments (Sheppard 1956) show that, for a sufficiently slow flow or strong stratification, much of the air upstream and below the ridge crest remains blocked. Upstream blocking has been observed both in 2D laboratory towing experiments (Baines 1977; Baines and Hoinka 1985) as well as in atmospheric flow over mountains, for example, in flow over the Alps by Armi and Mayr (2007). The dynamical aspects of these flows are reviewed by Jackson et al. (2013).

When the flow is strictly two-dimensional, blocking is accompanied by the formation of an overlying flowing layer that plunges down the obstacle as a nonlinear, hydraulically controlled downslope flow. Continuity and mass conservation require that the flow within this layer makes up for the volume transport deficit caused by upstream flow stagnation. Winters and Armi (2014) show using nonlinear stratified hydraulic theory that, for an infinite obstacle with upstream blocking, the steady-state optimally controlled flow has an upstream velocity profile that is parabolic in shape and this flowing layer thins and accelerates as it plunges down the lee slope. A schematic of this flow is shown in Fig. 1.

One might ask whether hydraulic dynamics persist when the cross-stream ridge length is finite but large. In this case, the upstream fluid that is blocked when the
ridge is infinite has energetically free horizontal pathways to pass around the obstacle. The validity of a two-dimensional treatment of flow past finite obstacles was first raised by Brighton (1978) in the context of laboratory towing experiments. To illustrate the underlying dynamics, we perform numerical experiments in which a uniform upstream flow with speed V' and stability N approaches a mountain ridge of height h_m. We focus on dynamically tall and long ridges, characterized by low topographic Froude number, $\text{Fr} = \frac{V'}{N h_m}$; and large cross-stream to along-stream aspect ratio, $b = \frac{s_x}{s_y}$.

β may also be regarded as a scaled ridge length. Figure 2 shows a schematic of the flow configuration.

Fundamental inner flow scales emerge naturally from this configuration. Energetics considerations (e.g., Sheppard 1956) suggest that the upstream flow remains blocked below a depth $\delta = h_m / N$ from the crest. We refer to δ as the blocking scale. When $\text{Fr} \ll 1$, $\delta \ll h_m$ constitutes an inner vertical length scale for the overflow. The flow below the blocking level $z = h_m - \delta$ is either blocked or splits around the obstacle laterally, suggesting a second inner length scale $\sigma_y = C(\text{Fr}\sigma_x)$, the half-width of the
obstacle at the blocking level. The fluid above the blocking level has sufficient kinetic energy to flow over the ridge. Thus $\beta_0 = \sigma_x/\alpha_y$ is an effective scaled ridge length for the flow component that crests the obstacle. The excursion time,

$$t_0 = \frac{\sigma_y}{N_{hm}} V_u,$$

then follows as a natural inner time scale. Note that the inner time scale can also be rewritten as $t_0 = \mathcal{O}(V_u/V_s) = \mathcal{O}(pr/N_{hm})$. This suggests another interpretation of t_0 as the time taken by columnar internal wave modes (cf. Baines 1987) of vertical scale h_m and speed $\mathcal{O}(N_{hm}/\pi)$ to propagate an upstream distance σ_y. These columnar modes promote flow blocking below $z = h_m - \delta$ and an accelerated overflow across the crest.

Beneath the blocking level, the upstream flow eventually evolves to a layerwise horizontal potential flow (e.g., Drazin 1961). Thus the half-length σ_x of the ridge is the appropriate outer length scale. Assuming that flow splitting is also accomplished by columnar internal wave modes of vertical scale h_m that communicate the finite extent of the ridge to a distance of about σ_x upstream,

$$t_0 = \frac{\sigma_y}{N_{hm}/\pi}$$

is an outer time scale for the low-level splitting flow. A summary of these key dimensional scales and nondimensional parameters is provided in Table 1.

A factor that influences the fate of plunging downslope flows is the presence or absence of a dense, cold pool downstream of the crest. In low Fr flow past finite ridges, the low-level dense fluid in the lee is retained and recirculates slowly. This manifests as a pair of vertically oriented lee vortices that have been observed in numerical simulations (e.g., Smolarkiewicz and Rotunno 1989) and laboratory experiments (Hunt and Snyder 1980). As we will see, the retention of a cold pool inhibits plunging in the lee.

Drazin (1961) developed asymptotic solutions for flows with $Fr < 1$ in which, to leading order in small Fr, the steady state is a layerwise potential flow at all depths below the blocking level. However, this steady asymptotic solution does not give insight into the mechanisms or time scales involved in its establishment, nor does it contain a vortical wake structure. Epifanio and Durran (2001) considered long ridges with β up to 12 focusing their attention on the unblocked flow regime, $Fr \approx 1$ for which $\beta_0 = \beta$. Flows with $Fr < 1$ over obstacles with $\mathcal{O}(1)$ horizontal aspect ratios have been studied by a number of authors (e.g., Smolarkiewicz and Rotunno 1989; Hunt and Snyder 1980; Hanazaki 1988). In this regime, splitting flows are established quickly; consequently 2D solutions are not very useful in characterizing them. Previous investigations of low Fr flow past elongated ridges have been confined to moderate values of $\beta \lesssim 5$ (Bauer et al. 2000; Ólafsson and Bougeault 1996). The linear regime diagram of Smith (1989) provides some guidance as to the Fr and β ranges over which one might expect “wave breaking” and “flow splitting” but as pointed out by Smith (1989) and others (Bauer et al. 2000; Ólafsson and Bougeault 1996) there are uncertainties associated with the regime boundaries for low Fr and large β.

To investigate the extent to which flow features characteristic of the infinite-ridge solution such as crest control and streamwise asymmetry are seen in low Fr flows past long but finite ridges, we performed a suite of numerical experiments. We first consider a Fr = 0.16 flow over an infinite ridge and demonstrate that, by prescribing a uniform outflow with a radiation condition upstream, the flow rapidly evolves toward the optimally controlled downslope flow of Winters and Armi (2014). We then consider the same flow over a finite ridge with steep ends for which $\beta = 30$. We show that the streamwise flow near the ridge center is well described as an infinite-ridge overflow for a finite time after which it starts to diverge owing to splitting effects. We quantify

Table 1. Summary of important dimensional inner and outer variables and dimensionless flow parameters.

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensional outer parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_u</td>
<td>Basic flow speed</td>
<td>m s$^{-1}$</td>
</tr>
<tr>
<td>N</td>
<td>Background stratification</td>
<td>s$^{-1}$</td>
</tr>
<tr>
<td>h_m</td>
<td>Ridge height</td>
<td>m</td>
</tr>
<tr>
<td>σ_y</td>
<td>Streamwise ridge half-width</td>
<td>m</td>
</tr>
<tr>
<td>$T = \sigma_y/V_u$</td>
<td>Outer excursion time scale</td>
<td>s</td>
</tr>
<tr>
<td>σ_s</td>
<td>Cross-stream ridge half-length</td>
<td>m</td>
</tr>
<tr>
<td>σ^s</td>
<td>Length of lateral end/connecting sections</td>
<td>m</td>
</tr>
<tr>
<td>$t_0 = \sigma_y/(N_{hm}/\pi)$</td>
<td>Outer flow-splitting time scale</td>
<td>s</td>
</tr>
<tr>
<td>Dimensional inner parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\delta \approx V_u/N$</td>
<td>Blocking scale</td>
<td>m</td>
</tr>
<tr>
<td>$h_m - \delta$</td>
<td>Blocking level</td>
<td>m</td>
</tr>
<tr>
<td>σ_{ss}</td>
<td>Streamwise ridge half-width at blocking level</td>
<td>m</td>
</tr>
<tr>
<td>$t_0 = \sigma_y/V_u$</td>
<td>Inner excursion time scale</td>
<td>s</td>
</tr>
<tr>
<td>Dimensionless outer quantities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Fr = V_u/N_{hm} \ll 1$</td>
<td>Topographic Froude number</td>
<td>—</td>
</tr>
<tr>
<td>$\beta = \sigma_y/\alpha_y$</td>
<td>Scaled ridge length</td>
<td>—</td>
</tr>
<tr>
<td>$t' = t/T$</td>
<td>Scaled outer excursion time</td>
<td>—</td>
</tr>
<tr>
<td>$t_0 = \nu t_0$</td>
<td>Scaled outer splitting time</td>
<td>—</td>
</tr>
<tr>
<td>Dimensionless inner quantities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Fr_p = V_s/N \delta \approx 1$</td>
<td>Overflow Froude number</td>
<td>—</td>
</tr>
<tr>
<td>$\beta_p = \sigma_y/\alpha_y$</td>
<td>Scaled dynamic ridge length for the overflow</td>
<td>—</td>
</tr>
<tr>
<td>$t_0 = \nu t_0$</td>
<td>Scaled inner time</td>
<td>—</td>
</tr>
</tbody>
</table>
the evolution by measuring the volume transport in the overflow as a function of time. Over longer \(\mathcal{O}(t_b) \) time scales, we show that, by reformulating the overflow transport to account for lateral flow splitting, the late-time flow over the ridge can still be described by stratified hydraulic theory. Finally, considering an example of a ridge with an abrupt change in height, we demonstrate how these general principles can be extended to predict the overflow across nonuniform ridges.

2. Modeling approach

We consider three-dimensional, nonrotating, incompressible flow, with free-slip boundary conditions on the ridge surface. The numerical experiments are performed using the spectral large-eddy solver described in Winters and de la Fuente (2012), with the bottom topography incorporated as a smooth immersed boundary. The goal is to capture the essentially inviscid dynamics at the large scales of the flow. To this end, we employ a sixth-order hyperdiffusion operator to explicitly diffuse only the motions near the smallest grid scale. At rest, the fluid is in hydrostatic balance everywhere, with

\[
\frac{\partial \bar{p}_0(z)}{\partial z} = -\bar{p}_0(z)g, \tag{3}
\]

where \(\bar{p}_0(z) \) is the static pressure, \(\bar{p}_0(z) \) is the initial density profile, and \(g \) is the acceleration due to gravity. The fluid is stably stratified with uniform buoyancy frequency \(N \) and a density difference \(\Delta \rho \) across the total fluid depth. Perturbing about this rest state, for the flow in the domain of interest, the nonlinear equations of motion in the Boussinesq limit are

\[
\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} + \frac{\rho'}{\bar{p}_0} \mathbf{k} = -\nabla p' + \nu^* \nabla^2 \mathbf{u}, \tag{4a}
\]

\[
\frac{\partial \rho}{\partial t} + \mathbf{u} \cdot \nabla \rho = \kappa^* \nabla^2 \rho, \tag{4b}
\]

\[
\nabla \cdot \mathbf{u} = 0. \tag{4c}
\]

Here, \(\mathbf{u} \) is the three-dimensional velocity vector and \(\mathbf{k} \) is the unit vector in the \(z \) direction; \(\rho_0 \) is a constant reference density; \(\rho' \) and \(p' \) are the perturbation density and pressure, respectively; and \(\rho \) is the total density:

\[
\rho = \rho' + \bar{p}_0(z). \tag{5}
\]

The topography slopes gently in the streamwise direction with \(h_m/\sigma_x = 1/6 \), rendering the upstream pressure approximately hydrostatic. Note however that we do not invoke the hydrostatic approximation and are thus able to capture \(\mathcal{O}(1) \) aspect-ratio shear-induced overturning motions downstream.

In (4b) \(\nabla^2 \) is a sixth-order hyperdiffusion operator,

\[
\nabla^2 = \left(\frac{\partial^6}{\partial x^6} + \frac{\partial^6}{\partial y^6} + \frac{\partial^6}{\partial z^6} \right), \tag{6}
\]

and \(\nu^* \) and \(\kappa^* \) are hyperviscosity and hyperdiffusivity, respectively, which are chosen such that gridscale motions decay to \(\exp(-1) \) their value within a dissipation time scale \(T_{\text{diss}} = 5\Delta t \), where \(\Delta t \) is the model time step.

a. Experimental setup

In all our experiments, the vertical height \(L_z \) of the domain is taken to be 6 times the maximum obstacle height. The flow is rapidly accelerated from rest, with the inflow conditions being ramped up to their desired values over \(10\Delta t \).

1) INFINITE-RIDGE EXPERIMENT

We consider a flow with topographic Froude number \(Fr = 0.16 \) incident on an infinite Gaussian ridge \((\beta = \infty) \) centered at \(y = 0 \),

\[
h = h_m \exp \left(\frac{-y^2}{\sigma^2} \right). \tag{7}
\]

Given \(Fr \), the half-width at blocking depth, \(\sigma_y \) is found by substituting \(h = h_m - \delta = h_m - V_s/N = h_m(1 - Fr) \) in the LHS of (7), giving for \(Fr = 0.16 \),

\[
\sigma_y \approx \sigma^2/2.5. \tag{8}
\]

We set \(\sigma_y = 6h_m \) and the domain width \(L_x = 16.7\sigma_y \), with grid spacing \(\Delta y = 0.038\sigma_y \) and \(\Delta z = 0.15 \). With respect to the inner time scale \(t_b \), we declare that the flow has reached quasi-steady state when its bulk properties, namely overflow transport, thickness, and peak speed at the blocking location deviate by less than 1% over \(5t_b \). The flow reached quasi-steady state by \(t = 31.3t_b \), and the run was terminated at \(t = 47.6t_b \).

2) FINITE-RIDGE EXPERIMENT

For the finite-ridge configuration (see Fig. 2), \(Fr \) is again set to 0.16 and the ridge height is specified as

\[
h = \left\{ h_1 + 0.5\Delta h \left[1 + \tanh \left(\frac{\sigma_y - |x|}{\sigma_y} \right) \right] \right\} \exp \left(-\frac{y^2}{\sigma^2} \right), \tag{9}
\]

where \(h_1 = 0, \Delta h = h_m, \) and \(\beta = \sigma_y/\sigma_x = 30 \). The ends are steep, with \(\sigma_x^2 = \sigma_y/120 \). We exploit the symmetry of
the flow configuration to compute the flow on the half domain \(x \geq 0 \) only, with \(x = 0 \) treated as a symmetry boundary. To capture lateral flow splitting, we perform and density. zero normal gradients on streamwise velocity, pressure, b. Near-boundary forcing

A sponge layer of thickness \(L_z/3 \) is imposed at the upper boundary through a Rayleigh damping term that absorbs upward radiating waves. Inflow and outflow boundary conditions are implemented as sponging terms that relax to the specified target values over \(C(10 - 100)\Delta y \). The outflow boundary condition is uniform withdrawal at speed \(V_\infty \).

Low Fr flows over topography excite columnar internal waves that propagate upstream and alter the oncoming flow. So specifying a uniform inflow condition at the upstream boundary will cause wave reflections that may contaminate the solution in the domain interior, particularly if the inflow channel is not very long. For this reason we apply a radiation condition upstream that maintains the depth integrated transport while allowing the vertical profile of the inflow to evolve in time as upstream propagating waves escape the domain. This is implemented through an iterative scheme that measures the upstream influence at an intermediate location between the ridge center \(y = 0 \) and inflow boundary \(y = -L_y/2 \). This information is then utilized in a dynamically evolving boundary condition that is imposed via relaxation,

\[
\psi_{i+1}^{j-1} (x, z) = \alpha \psi_{i-1}^{j-1} (x, z) + (1 - \alpha) \psi_i^* (x, z),
\]

and similarly for \(u \) and \(\rho \). Here, \(i \) is the time step, \(y^* \) is the intermediate position \(-L_y/2 < y^* < 0 \) where the flow is measured, and \(\alpha \) is a weighting parameter.

In the finite-ridge case, flow-splitting effects extend a distance of \(C(\sigma_y) \) upstream from the obstacle; accordingly \(y^* \) is conservatively placed further upstream of the crest at \(x = -2.5\sigma_y (75\sigma_y) \). For low Fr flow over an infinite ridge, upstream influence carried by columnar modes propagates arbitrarily far upstream without any change in amplitude (e.g., Pierrehumbert and Wyman 1985). The measurement location in this case is kept a distance of about \(10\sigma_y \) upstream of the crest. In general, the measurement location must be placed appropriately far from the topography to ensure that spurious information from nonpropagating, horizontally decaying wave modes is not relayed to the upstream boundary.

The physical basis for the iterative boundary scheme is that, in these subcritical flows, the energy of the upstream propagating signals is primarily contained in columnar internal wave modes (cf. Baines 1987) excited at the crest, having vertical scale \(h_m \) and group velocity \(C(Nh_m/\pi) \). The parameter \(\alpha \) is therefore chosen as follows. We determine the number of time steps \(n^* \) it takes
for a columnar mode with group velocity $4N\alpha_{in}/\pi$ wave to travel from $y = y^*$ to the upstream boundary. We then specify that, with respect to any reference time step i, the imposed boundary value $v^{i+n^*}_{L_i/2}(x, z)$ at step $i + n^*$ derive 90% of its information from the measured profile at the previous steps. That is, we set

$$1 - \alpha^{i+n^*} = 0.9. \quad (11)$$

By design, this scheme converges to a steady, streamwise-uniform inflow profile that is dynamically consistent with the upstream influence of the topographically excited columnar modes. We found this scheme to be robust for different choices of α. For example, changing the RHS of (11) from 0.9 to 0.8 produced a negligible change in the bulk properties of the flow. The advantage of this scheme is that it allows for a much shorter inflow channel than would be possible with a more traditional approach of imposing a uniform inflow along with a wave-damping layer to absorb upstream disturbances. We have performed a test run for the infinite-ridge case using a uniform inflow, a very long inflow channel and wave damping near the boundary and verified that the results in the vicinity of the ridge match the ones obtained using the iterative scheme.

3. A brief overview of the Winters and Armi (2014) analysis

Winters and Armi (2014) developed semianalytical solutions for hydraulically controlled flow over an infinite ridge. The solution begins by considering a uniform stratification N and jetlike upstream flow profiles of specified thickness H overlying a stagnant blocked layer, as shown in Fig. 1. Note that this approach is different from the hydraulic treatment of Smith (1985) in that it includes the effect of upstream blocking. Asymmetry is triggered by imposing a streamline bifurcation upstream at the top of the jetlike flow. The downslope flow below the lower branch of the bifurcating streamline is then calculated through integrals of Bernoulli’s equation. For a chosen upstream wind profile, the bottommost streamline, which represents the terrain surface, is thus determined by the dynamics rather than being imposed a priori.

Among different jetlike upstream flow configurations considered, it was found that a parabolically sheared velocity profile with a velocity maximum $(3/2)NH/\pi$ and associated volume transport NH^2/π was optimal in the sense that it maximized the blocking scale δ while minimizing the kinetic energy of the flow.

Note that, although the overflow thickness H is assumed a priori in constructing the optimal solution, H and the transport Q of the overflow are in fact coupled through the control relationship,

$$Q = NH^2/\pi. \quad (12)$$

As we will see below, predicting H from (12) requires an estimation of the overflow transport Q. Winters and Armi (2014) also found that the blocking scale is dynamically related to the overflow thickness as $\delta = H/8$.

An important property of the solution is that, on either side of the crest, it generates a unique one-to-one mapping between the height by which the bifurcating streamline has dropped and the terrain height relative to the blocking level. It is thus a valid solution for arbitrary terrain shapes (appendix A). As in all hydraulic models, the solution of Bernoulli’s equation relies on the hydrostatic approximation and thus the precise shape of the bifurcating streamline is unimportant as long as its slope is small. Upstream of the blocking location, the terrain shape is arbitrary and is not part of the solution.

Finally, internal hydraulic jumps are not included in this model and so the bifurcating streamline is perpetually plunging over an apparently “bottomless” terrain. However for real ridges, the downslope flow must return to a subcritical state at some location downstream of the crest. The Winters and Armi (2014) solutions are formally valid until this location.

4. Diagnostics of the overflow

Volume transport conservation (see also Fig. 1) requires that, at the blocking location, the transport within the overflow between $z = h_m - \delta$ and $z = h_m - \delta + H$ match the far-upstream transport below the bifurcating streamline. That is,

$$NH^2/\pi = V_\infty(h_m - \delta + H). \quad (13)$$

Substituting $\delta = H/8$ in (13) yields a quadratic for H, with coefficients given in terms of the outer dimensional parameters h_m, N, and V_∞.

$$NH^2/\pi = V_\infty(h_m + 7H/8). \quad (14)$$

Note that H obtained by solving the quadratic equation, (14), is the analytical prediction of the overflow thickness in the infinite-ridge limit. When the ridge is finite, the fluid below $z = h_m - \delta$ can escape around the sides and the overflow transport and thickness shrink accordingly. To quantitatively compare this overflow with the infinite-ridge prediction, we define the volume transport per unit length in a layer of height H starting at the blocking level $z = h_m - \delta$ and measured at the upstream blocking location $y = -y_b$ (indicated in Fig. 1),
For an infinite ridge, the overflow transport is independent of x and $Q'(x, t)$ reduces to $Q'(t)$. In this case we expect upstream blocking to cause an early surge in the overflow transport, with $Q'(t)$ quickly approaching Q. For a long but finite ridge, we anticipate that $Q(x, t)$ will approach Q at early times before it starts decreasing as transport is lost to the low-level lateral splitting flow.

As a quantitative measure of asymmetry, we compare the maximum speed at the downstream location $y = y_b$ (indicated in Fig. 1) to the reference speed V_∞. An additional measure of asymmetry is the plunging depth $p_d(x, t)$, defined as the depth from the ridge crest to which the streamline originating at the upstream blocking level $z = h_m - \delta$, plunges down the lee slope before it separates.

5. Results

We will evaluate the temporal evolution of the diagnostics developed in section 4. For a long ridge ($\beta \gg 1$), the inner excursion time scale t_b is much shorter than the outer flow-splitting time scale t_β. Accordingly, we define a scaled inner time

$$t'_b = \frac{t_b}{t_b}$$

(16)

and a scaled outer time scale

$$t'_\beta = \frac{t_\beta}{t_\beta}$$

(17)

to quantify the near-crest evolution of the overflow and a scaled outer splitting time.

Upstream blocking, streamwise across-crest asymmetry, overturned isopycnals, and downslope flow acceleration will be visible in planar vertical sections. We will also show images of horizontal sections, which will reveal the establishment of low-level flow splitting.

a. Infinite ridge ($\beta = \infty$)

We first present results for flow over an infinite ridge with $\beta = \infty$ and $Fr = 0.16$. The blocking scale for this flow is $\delta \approx V_\infty/N = 0.16 h_m$. Thus most of the air upstream and below the ridge crest is blocked.

Figures 3a and 3b show that with respect to the inner time scale, the upstream flow rapidly evolves to that predicted by 2D theory. By $t'_b = 2$, the velocity profile at the blocking location already begins to approach the analytically predicted parabolic profile of Winters and Armi (2014). By $t'_b = 11.7$, the overflow has evolved further toward a parabolic shape and both its peak speed and volume transport are within 10% of the analytically predicted values. Later, at $t'_b = 31.1$, the peak speed matches the prediction exactly. We remark that the dynamical prediction for the blocking scale δ obtained from solving for H in (12) yielded a value that is about 25% smaller than the initial scaling estimate V_∞/N.

The time history of $v_{\text{max}}(y_b)/V_\infty$ is also shown in Fig. 3b (in red) along with the Winters and Armi (2014) prediction. These infinite ridge solutions are highly asymmetric as indicated by sustained downslope flow speeds of about $5V_\infty$ with gusts approaching $6V_\infty$. These gusts are quasi periodic with a period of about t_b, which for this specific ridge configuration and Fr is roughly two
buoyancy periods. They are reminiscent of the quasi-periodic gusts observed in the Bora by Belusić et al. (2004) and arise due to Kelvin–Helmholtz (K-H) instability, caused by increasing shear downstream at the top of the overflowing layer (Peltier and Scinocca 1990; Jagannathan et al. 2017).

Figures 4a–c show the flow evolution as it approaches a quasi-steady state. Blocking is already visible by \(t'_b = 2 \) and the upstream extent of the blocked flow increases with time. By \(t'_b = 11.7 \), upstream influence in the form of long internal gravity waves has permanently modified the incoming flow, shaping the flow above the blocking level into a parabolic jet. Overturining isopycnals are seen above the crest and further downstream, a plunging downslope flow develops. Both the maximum downslope flow speed and its penetration depth increase with time. The instantaneous snapshot in Fig. 4b reveals turbulent overturns, both aloft and due to K-H instability at the top of the unstable overflowing layer (Peltier and Scinocca 1990; Jagannathan et al. 2017). The numerical model, which removes gridscale variability via the hyperdiffusion operator \(\mathcal{D} \) does not completely resolve the details of the turbulent mixing due to these processes. Nevertheless, as shown in Fig. 4c, a statistical time average of the quasi-steady flow reveals the essential downstream flow features, which are an accelerating downslope flow and a nearly stagnant, nearly homogeneous isolating layer that separates the downslope flow from the flow aloft. Comparison with Fig. 4b shows that the statistical averaging has no discernible effect on the stable upstream flow.

In their theory, Winters and Armi (2014) do not prescribe a structure for the flow above the overflowing layer, which they assume to be dynamically uncoupled with a mean speed \(V_\infty \). We note that the computed solutions in Fig. 4 as well as the vertical profiles of \(v(−y_b, z, t'_b) \) in Fig. 3a show weak spatial oscillations about this mean which merge smoothly with the jetlike overflow. We have checked that the quantitative features of the controlled overflowing layer as well as the characteristic wavelength \((≈2πV_\infty/N)\) of the oscillations aloft are insensitive to the height of the model domain and the thickness of the sponge layer (appendix B).
Across-crest asymmetry sets in early (Fig. 4a) and the stratification becomes increasingly asymmetric across the crest as the flow evolves. By $t'_\delta = 11.7$ (Fig. 4b), the dense air downstream and below the blocking level $z = (h_m - \delta)$ has been almost completely swept away and is replaced by lighter air that has overflowed the crest. This asymmetry in the density field is a consequence of upstream flow blocking and is directly related to the establishment of hydraulic control at the crest. The supercritical flow downstream manifests as an intensifying downslope windstorm.

Depth profiles of the streamwise velocity at and downstream of the crest elucidate the characteristics of the downslope flow. These are displayed at an early and late inner time in Fig. 5. The maximum speed $u_{\text{max}}(y)$ increases downstream and with time at each location as the flow evolves toward a quasi-steady state. At later times, for example, $t'_\delta = 31.9$, the overflow thins and accelerates downstream of the crest. It also progressively plunges deeper in the lee. For example, $u_{\text{max}}(2y_b) = 6.3V_\infty$ and the vertical location of the maximum is at $z \approx 0.6h_m$, which is a depth of about 2.5δ below crest level. This shows that the flow is highly asymmetric across the crest.

The evolution of the plunging depth $p_d(t'_\delta)$ of the lowest streamline cresting the obstacle is traced in Fig. 6.

The plunging depth reaches sustained values of about 3δ by $t'_\delta \approx 4$ and subsequently fluctuates between 2.5δ and 3.9δ. The fluctuations are associated with the internal hydraulic jump downstream of the separation location.

In summary, low Fr flow over infinite ridges is highly asymmetric across the crest, with respect to both streamwise velocity and stratification. It is characterized by upstream flow blocking and the development of a thinning accelerating downslope flow that plunges down the lee slope to a significant fraction of the ridge height. Within the overflowing layer, the properties of the quasi-steady flow are well described by the stratified hydraulic theory of Winters and Armi (2014).
b. Finite ridge ($\beta = 30$)

We now consider a flow with identical forcing and Froude number incident on a long, but finite ridge with $\beta = 30$. The finite extent allows for both flow over and around the ridge and we proceed to quantify how the flow characteristics differ from the infinite ridge case for which a purely 2D controlled overflow develops. The shape of the ridge is described by (9) with $h_1 = 0$, $D = h_m$, and $s = 4y$. (see also Fig. 2). We examine the evolution of the overflow in the center plane and at a plane closer to the lateral ends (shown in Fig. 2).

The upstream flow, which crests the obstacle, originates at or above the blocking level $h_m - \delta$. Hence the appropriate streamwise length scale for flow over the crest is σ_y, the ridge half-width at blocking level. The scaled dynamic ridge length for the overflow $b_\delta = \sigma_y/s$ is 75, which is larger than the geometric-scaled length $b = 30$ for flow around the sides.

Further, while the topographic Froude number $Fr = 0.16$, the appropriate Froude number for the overflow is $Fr_\delta = V_\infty/N\delta = 1$. Our case is dynamically distinct from $Fr \approx 1$ flows for which $b_\delta = \beta$ and $Fr_\delta = Fr$ (e.g., Epifanio and Durran 2001).

Figure 7 traces the evolution of the streamwise velocity at the upstream blocking location, $v(y_b, z, t'_{\delta})$ in the symmetric center plane $x = 0$. At early times (e.g., $t'_{\delta} = 2$), the flow profile is nearly identical to that in the infinite-ridge case (Fig. 3a). By $t'_{\delta} = 11.7$, the profile is similar in structure to the infinite-ridge overflow, but with a lower peak speed. Much later (e.g., $t'_{\delta} = 48.9$), the overflow is considerably thinner and slower than that in the infinite-ridge case. This is because much of the transport associated with the early-time overflow is lost to the low-level horizontal splitting flow. We will show that by a simple reduction of the upstream volume transport in (13), the long-time flow over the ridge can be qualitatively and quantitatively described as an asymmetric crest-controlled overflow.

Figures 8 and 9 show the evolution of the flow field at and away from the ridge center plane, respectively. The stratification and streamwise velocity exhibit asymmetry across the crest in the form of an intensifying downslope flow. Isopycnals overturn above the crest and the flow accelerates as it plunges down the lee slope. At early ($t'_{\delta} = 2$) and intermediate ($t'_{\delta} = 11.7$) times the flow field in the center plane is strongly reminiscent of the infinite-ridge solution.

At later times, for example, $t'_{\delta} = 48.9$ ($t'_{gh} = 1.3$), the fluid in the lee beneath the blocking level is nearly motionless, both at and away from the center plane (Figs. 8c and 9c). Downslope plunging is strongly inhibited and the stratification below the overflow is nearly symmetric across
the crest. The initial dense “cold pool” in the lee is retained on the long flow-splitting time scale. This contrasts strikingly with the infinite-ridge solution (Fig. 4) where the density field becomes highly asymmetric across the crest as the downslope flow evolves. Above the blocking level, the flow is streamwise asymmetric, both at and away from the center plane. This is a clear signature of hydraulic control at the crest. Recall, in addition, that the overflow Froude number Fr

The evolution of horizontal streamlines at \(z = 0.1h_m \) (i.e., well below the blocking level) is depicted in Figs. 10a–c. At early outer times (e.g., \(t'_{\delta} = 0.05 \)), the low-level flow is blocked immediately upstream of the ridge. Subsequently, the upstream flow splits laterally around the sides, with speeds of about \(2V_\infty \) at the obstacle ends and approaching \(3V_\infty \) farther downstream. In the lee, a vortex pair develops and the vortex centers move downstream with time, forming a slowly recirculating flow within the cold pool.

At low levels upstream, the late-time horizontal splitting flow is a layerwise potential flow, as proposed by Drazin (1961). For example, at \(z = 0.1h_m \), where the ridge half-width is \(1.5\sigma_s \), Fig. 11 shows that \(\nu(x) \) at \(y = -1.5\sigma_s \) is well approximated by the expression

\[
\nu(x, y = -1.5\sigma_s) = V_\infty \left(A + B \frac{\sigma_s^2}{x^2} \right), \quad |x| \geq \sigma_s. \tag{18}
\]

This is simply the scaling law for potential flow around convex, symmetric 2D obstacles. The constant \(A \) is unity for an infinite domain but is slightly larger here due to the presence of sidewalls, and \(B \) is a factor that depends on the details of the obstacle shape. For this case, the best fit was obtained with \(A = 1.1 \) and \(B = 1.0 \).

As a consequence of low-level flow splitting, the transport in the overflow is less than the infinite-ridge prediction. In Fig. 12, we track the upstream transport, \(Q'(x = 0, t'_{\delta}) \) in a layer of thickness \(H \) above the blocking level \(h_m - \delta \) and compare peak flow speeds at \(y_b \) with those for the 2D infinite-ridge case. The value of \(Q' \) deviates from the infinite-ridge curve at \(t'_{\delta} \approx 1 \) by which time it is 85% of \(Q \). From around \(t'_{\delta} = 5 \), \(Q' \) starts decreasing steadily as more and more transport is lost to the low-level splitting flow. Significantly, at \(t'_{\delta} = 12 \), \(Q' \) and \(u_{\text{max}}(y_b) \) are close to 75% and 80% of the predicted
infinite-ridge values. Therefore for $0 < t'_{\delta} \ll \infty (10)$, the flow in the center plane is well described as a controlled infinite-ridge overflow.

One distinctive feature of low Fr flows in a purely 2D setting is gustiness of the downslope flow, associated with loss of stability downstream (Jagannathan et al. 2017). This manifests itself as high-frequency oscillations in the measured peak downstream speed $v_{\text{max}}(y_b)$ (Fig. 3b). By contrast, such gustiness is absent in the finite-ridge case. Thus the combination of diminished downslope plunging (Fig. 8) and loss of overflow transport weakens the downstream shear, thereby stabilizing the flow.

At $t'_{\delta} = 1.3 \,(t'_{\delta} = 48.9)$, the flow over the crest is still asymmetric both at and away from the center plane (Figs. 8c and 9c). By this time, the low-level flow upstream of the ridge has almost entirely split horizontally around the sides of the obstacle (Fig. 10c). Thus at each cross-stream section along the ridge, a portion $V_{\omega}(h_m - \delta)$ of the upstream transport which was absorbed into the overflow at early times is lost to the lateral splitting flow. This motivates the reformulation of the late-time overflow (Fig. 7) with a reduced transport. From its observed across-crest asymmetry, we infer hydraulic control at the crest. Assuming a modified and as yet unknown thickness H_f for this overflow, for optimal control (Winters and Armi 2014), it must be parabolic in shape, with average speed NH_f/π and transport

$$Q_{H_f} = NH_f^2/\pi. \tag{19}$$

This yields a new blocking scale, $\delta_f = H_f/8$. Below $z = h_m - \delta$, the upstream flow is predominantly around the ridge. Recall that the length of the end sections $\sigma_x^\omega \ll \sigma_x$. Therefore from (18), on either side of the center plane, the excess transport per unit length of the obstacle that escapes around the sides can be written as

$$Q^* \approx \frac{1}{\sigma_x} \int_{\sigma_x}^{\infty} B V_{\omega} \sigma_x^2 (h_m - \delta_f) \, dx = V_{\omega} (h_m - \delta_f), \tag{20}$$

for the best-fit value $B = 1$. This is exactly the amount of transport that is blocked ahead of the ridge at early times. For $\beta_{\delta} \gg 1$, this allows us to estimate the transport lost along each streamwise plane in the ridge interior as $V_{\omega}(h_m - \delta_f)$. Therefore the late-time transport for the overflow in the ridge interior is simply $V_{\omega}H_f$.
The volume conservation equation, (13), then reduces to

$$NH_f^3/\pi = V_\infty H_f,$$ \hspace{1cm} \text{(21)}

giving

$$H_f = \pi V_\infty / N$$ \hspace{1cm} \text{(22)}

and

$$\delta_f = H_f/8 = \pi V_\infty / 8N.$$ \hspace{1cm} \text{(23)}

which is more than 2.5 times smaller than the scaling estimate V_∞ / N, suggesting that the blocking location moves closer to the crest. These predictions for the quantities H_f and δ_f match the observed late-time overflow reasonably well, as indicated in Fig. 8c. We denote the new upstream blocking location as $y = -y_{bc}$.

When Fr is small as is the case here, most of the upstream fluid below crest level eventually splits around the ridge. This occurs on the slow time scale t_β (Fig. 10). Thus, H_f is considerably smaller than H, which in turn

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig9c}
\caption{As in Fig. 8c, but at the cross-stream location, $x = 0.93\sigma_c$.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig10}
\caption{Time evolution of streamlines in the horizontal plane at $z = 0.1h_m$, that is, just above the ground level, for the finite ridge with $\beta = 30$ at Fr = 0.16 for (a) $t_\delta = 0.05$, (b) $t_\delta = 0.31$, and (c) $t_\delta = 1.3$. Thick red lines indicate fast positive flow, and dark blue lines indicate reversed flow.}
\end{figure}
implies that the late-time overflow has a reduced peak speed and correspondingly reduced kinetic energy relative to that at early times. The predicted velocity profile at the new upstream blocking location \(y = -y_{bf} \) is shown in Fig. 13 along with the computed profile in the center plane \(x = 0 \) at \(t' = 48.9 \left(t'_b = 1.3 \right) \). The agreement in the peak speed is within 10% of the newly predicted value. Figure 14 shows the evolution of the transport equation:

\[
Q_{H_f}(t'_b) = \int_{h_m - \delta_f}^{h_m - \delta_f + H_f} u(-y_h, z, t'_b) \, dz, \tag{24}
\]

in a layer of thickness \(H_f \) above the blocking level \(h_m - \delta_f \) on the center plane, along with the maximum downslope flow speed \(v_{\text{max}}(y_h) \). At later times \(Q_{H_f}' \) is within 20% of \(Q_{H_f} \), while \(v_{\text{max}}(y_h) \) is within 8% of the Winters and Armi (2014) prediction for \(H_f \). Thus even at later times, the stratified hydraulic framework describes the properties of the overflow well. We note that the integral in (24) slightly overestimates \(Q_{H_f}' \). This is because in the computed solution (Fig. 13), the overflow merges smoothly with the flow aloft whereas in the theory, there is a discontinuity between these flow components (shown in gray). The essential features of the late-time overflow along the center plane are labeled in Fig. 8c.

Vertical downstream profiles of the streamwise velocity (Fig. 15) offer another view of the evolving downstream flow in the center plane \(x = 0 \) and at \(x = 0.93 \sigma_s \). The flow characteristics are remarkably similar both at and away from the center plane. While the early-time downslope flow closely resembles that observed in the infinite-ridge case (Fig. 5), at later times, the overflow is qualitatively similar, but has reduced transport and kinetic energy. Peak downstream speeds are lower and the locations of the maxima have moved upward to near the crest level \(z = h_m \).

The combination of a slower overflow and the retention of a cold pool downstream lead to diminished plunging in the lee at \(t'_b = O(1) \) (or equivalently, late inner times \(t'_b \ll 1 \)). This is seen in Fig. 16, which shows the time history of the plunging depth, \(p_d(x, t'_b) \), in each plane, alongside \(p_d(t'_b) \) for the infinite-ridge case. With respect to the inner time scale, the plunging depth overshoots quickly, for example, reaching 2.2\(\delta \) in the center plane at \(t'_b \approx 2 \). However, on the slower splitting
time scale t_B, as the kinetic energy of the overflow decreases (Fig. 15), p_d correspondingly levels off to values smaller than d, both at and away from the center plane.

We now summarize the results of this section as follows: For $0 < t'_B \ll \mathcal{O}(1)$, the development of the flow near the ridge center mimics the 2D infinite-ridge overflow, both qualitatively and in terms of the quantitative measures of asymmetry $v_{\text{max}}(y_B)$ and p_d. At intermediate times $\mathcal{O}(1) < t'_B < \mathcal{O}(10)$, the qualitative features of the infinite-ridge solution persist both at and away from the ridge center plane, but the quantitative measures begin to deviate from the infinite-ridge values. In the center plane, Q' and $v_{\text{max}}(y_B)$ are still 75% of the infinite-ridge values for t'_B as high as 12. On the longer flow-splitting time scale, the energetically weaker overflow is unable to penetrate the cold pool downstream, leading to substantially reduced plunging depths. Nevertheless, across-crest asymmetry and downslope flow acceleration persist above the blocking level. The late-time flow is well described as an asymmetric crest-controlled overflow lying above a horizontal splitting flow whose upstream properties follow from potential flow theory.

6. Discussion

a. Applicability of the stratified hydraulic framework

Asymmetry and hydraulic control form the dynamical basis of the infinite-ridge theory of Winters and Armi (2014). In particular, it is a hydrostatic approach that is valid up to arbitrary stretching in the horizontal direction and is applicable for any terrain shape provided the ratio h_m/σ_y is small, as is the case here. A practical question is, How useful is this hydraulic framework in understanding low Fr flows over long but finite ridges? In this setting, flow over the crest establishes itself on a fast, inner time scale t_B while flow around the sides develops over a relatively longer time scale t'_B.

When the ridge is infinite ($\beta = \infty$), an asymmetric crest-controlled flow state is attained quickly, by $t_B' = \mathcal{O}(1)$ (Fig. 3). For a long but finite ridge ($\beta \gg 1$), the splitting time scale $t'_B \gg t_B$ and so the development of flow over and around the ridge occur on disparate time scales. As a result, until intermediate times $\mathcal{O}(1) < t'_B < \mathcal{O}(10)$, the flow away from the edges is well approximated as a purely 2D infinite-ridge overflow (Figs. 7 and 12).

By the time $|t'_B = \mathcal{O}(1)|$ horizontal splitting effects begin significant, the overflow in the ridge interior is already asymmetric and has a parabolic velocity profile upstream of the crest. While its peak speed and thickness begin to decrease with the onset of flow splitting, across-crest asymmetry persists. On the slow splitting time scale $t_B' \gg t_B$, the overflow retains the essential dynamical features of the infinite-ridge overflow. This flow continues to be optimally controlled and the hydraulic view of the
problem remains valid in the neighborhood of the crest. Our findings therefore demonstrate that across-crest asymmetry and hydraulic control, once established, persist even after the low-level flow has split around the sides of the ridge.

The isolating layers in Figs. 4 and 8 form as a result of mixing due to isopycnal overturning aloft, and in the infinite-ridge case, also partly from repeated Kelvin–Helmholtz overturns at the top of the unstable downslope flow (Jagannathan et al. 2017). However, the hydraulic theory of Winters and Armi (2014) does not provide any insight about the formation of this homogenized isolating layer. Hydraulics also does not explicitly rely on internal mountain wave scales. Rather, the vertical scales of importance, \(h_m \) and \(\delta \), appear only indirectly through the transport equations [e.g., (13)]. While limiting in some ways, the power of this approach is that it fully accounts for nonlinearity, which is not possible in a wave treatment. Further, it produces quantitative predictions for the thickness and peak speed of the overflow, which can be checked against the numerical solutions.

In our experiments, the far-upstream flow speed \(V_o \) and stratification \(N \) are constant; that is, these are like impulsively started laboratory towing experiments. This allows for a ready estimate of the modified late-time transport \(V_o H_f \) within the overflow of thickness \(H_f \). However, in a geophysical context, these quantities are not usually known a priori and the exact, time-varying upstream flow conditions must be determined using atmospheric soundings. As a more realistic example, one might consider flows with a spinup time \(T_{sp} \gg t_b \). The Froude number \(Fr \) and the inner length scales \(\delta \) and \(\sigma_{y*} = \mathcal{O}(Fr \sigma) \) will then be slowly evolving functions of time. However note that the inner time scale \(t_b \) built from the instantaneous values of \(V_o \) and \(\sigma_{y*} \) will remain constant over the spinup period as it is \(\mathcal{O}(\sigma_{y*}/Nh_m) \) and thus independent of \(V_o \) provided \(Fr \ll 1 \). This suggests that when \(T_{sp} \gg t_b \), the streamwise flow at any time \(t < T_{sp} \) will be hydraulically controlled at the instantaneous \(Fr \), which implies an overflowing layer of slowly expanding thickness and increasing peak speed. Thus while the quantitative details will differ, the essential dynamical character of the flow in the neighborhood of the crest will not change even when the background flow is slowly evolving.

A natural question then, is whether realistic low \(Fr \) flows across mountain ridges are characterized by the optimally controlled, parabolically sheared flow profiles predicted by Winters and Armi (2014) and seen in idealized towing experiments. Indeed, such flow features were noted by Armi and Mayr (2007) in their study of continuously stratified flow over the Alps. For example, the sounding at Sterzing (Fig. 16 of Armi and Mayr 2007), taken well after the establishment of deep foehn conditions, reveals a parabolic velocity profile with peak speed of \(20 \text{m s}^{-1} \) and thickness of about 3800 m. From the same figure, the blocking depth is seen to be about 500 m and the mean stratification \(N \approx 10^{-2} \text{s}^{-1} \). Based on the infinite-ridge theory of Winters and Armi (2014), the prediction for the upstream overflow is \(H = 88 \approx 4000 \text{m} \) and \(v_{max} = (3/2)NH/\pi \approx 19 \text{m s}^{-1} \), which agree well with the observed values.

The stratified hydraulic theory of Winters and Armi (2014), assuming optimal hydraulic control and across-crest asymmetry, predicts that the overflow at the blocking location is parabolic in shape. It further relates the thickness of the overflow to the blocking scale, \(H = 88 \) and predicts its peak speed \(v_{max} = (3/2)NH/\pi \) and transport \(Q = NH^2/\pi \). In simple towing experiments, \(H \) is obtained by estimating the overflow transport and equating it to the optimal value \(NH^2/\pi \). This is trivial for an infinite ridge (see Fig. 1). For long but finite ridges, a straightforward kinematic adjustment to the overflow transport after accounting for flow splitting, yields quantitative predictions for \(H \) and \(v_{max} \). We will show in section 6c that by a similar, but algebraically more involved kinematic accounting for the overflow transport, the flow characteristics can be accurately predicted for low \(Fr \) flows across composite ridge configurations.

b. Downstream conditions and the cold pool

A significant point of difference between the finite and infinite-ridge flow solutions is that, in the latter, the flow plunges much deeper into the lee before rebounding back to subcriticality via an internal hydraulic jump (Fig. 4c). Consequently the downslope flow is able to
accelerate to peak speeds that are more than 5 times the far-upstream flow speed (Fig. 5).

Comparing the isopycnals in Figs. 4 and 8, it is clear that the reason for this difference is the retention, in the case of the finite ridge, of the dense cold pool downstream. This acts as a strong stratification barrier to the plunging overflow, limiting both its speed and penetration depth. By contrast, in the infinite-ridge case, the dense stratified fluid in the lee is swept away after a finite time, and replaced by lighter fluid that overflows the crest. Consequently, the descent of the downslope flow is unimpeded, and it is able to plunge deep in the lee.

This phenomenon is qualitatively similar to the observations of Mayr and Armi (2010) of a foehn event in Owens valley located east of the Sierra Nevada. There they found that diurnal heating, which has the effect of raising the potential temperature of the valley atmosphere, leads to progressively deeper descent of the flow over the course of the day.

In our experiments, the properties of the cold pool are set by the prescribed downstream condition of uniform flow and stratification, and include low-level lee vortices (Fig. 10). While Drizin’s (1961) solution fails to predict these lee vortices, Fig. 11 shows that his prediction of layerwise potential flow is nonetheless valid upstream. As in the studies of Smolarkiewicz and Rotunno (1989), Schar and Durran (1997), and Ólafsson and Bougeault (1996), the present simulations were also carried out by imposing free-slip boundary conditions. This suggests that vertical vorticity is produced by a purely inviscid baroclinic mechanism (Smolarkiewicz and Rotunno 1989) at early times. The lee vortices intensify at later times perhaps because of potential vorticity anomalies that develop due to internal dissipation caused by upstream stagnation and flow splitting (Schar and Durran 1997). The role of upstream blocking and flow splitting on orographic wake formation is further discussed by Epifanio and Rotunno (2005). In realistic atmospheric flows, the lee conditions may be affected by other factors such as surface heating or cooling and the presence or absence of secondary topographical features downstream (e.g., Winters 2016).

c. The effect of an abrupt change in ridge elevation

We now seek to test the applicability of the stratified hydraulic approach in describing the overflow across a composite two-level ridge configuration shown in Fig. 17. This is an infinite ridge with a taller central section for which \(\beta = 30 \) and relative height difference, \(\Delta h/h_1 = 1 \). Mathematically, the ridge surface is given by (9), where \(\sigma_x^* \) is now the length of the narrow sloping section connecting the two ridge levels and is set to \(\sigma_x/120 \ll \sigma_x \). The center of the taller section is treated as a symmetry boundary and the numerical model configuration and boundary conditions are identical to those in the finite-ridge experiment; \(Fr = V_s/Nh_1 \) is set to 0.16, which implies \(Fr = 0.08 \) for flow approaching the taller section. The details of the numerical experiment are given in Table 2.

1) FAR AWAY FROM THE TALLER SECTION

The flow well away from the taller section is unaffected by its presence and must hence be identical to that in the infinite-ridge case of section 5a. The fluid beneath the blocking level cannot escape laterally and the low-level transport \(V_s(h_1 - \delta) \) augments the overflow transport to match that of a parabolic, optimally controlled flow, as shown in the schematic Fig. 1.

2) ADJACENT TO THE TALLER SECTION

At cross-stream distances comparable to \(\sigma_x \) from the edge of the taller section, the overflow across the shorter section is additionally augmented by the splitting flow around the taller central section. Based on potential flow scaling, (18), for flow around the finite ridge, we hypothesize that, at a vertical level \(h_1 < z^* < h_1 + \Delta h - \delta \), where the ridge half-width is \(\sigma_x^* \) this splitting flow scales with cross-stream distance as

\[
V(x, y = -\sigma_x, z^*) \approx V_s \left(A + \frac{B \sigma_x^2}{x^2} \right), \quad |x| > \sigma_x. \tag{25}
\]

The experimental domain is the same as in the finite-ridge case of section 5b; therefore \(A = 1.1 \) remains
unchanged. However, due to the composite shape of the ridge, we anticipate that the shape factor B will, in general, be different from unity. The splitting flow speed and thickness of the overflow by close to 30%, while the naive prediction underestimates the peak ridge geometry and lateral flow splitting, while the modified predictions (red), obtained by solving (26) and (28), which correctly account for flow splitting.

3) OVER THE TALLER SECTION

Since the length of the connecting section is much shorter than the ridge length ($\sigma_s^x \ll \sigma_x$), we can, as in section 5a, estimate the excess transport per unit length which is eventually absorbed into the splitting flow. This precisely equals the transport that is lost ahead of the taller section at late times. From (25), on either side of the center plane, this is given by

$$Q^* = \frac{1}{\alpha_x} \int_{-\alpha_x}^{\alpha_x} BV \frac{\sigma_x^2}{x^2} (\Delta h - \delta) \, dx = BV (\Delta h - \delta). \quad (27)$$

At early times, the blocked transport ahead of the taller section is $V_* (h_1 + \Delta h - \delta)$. Therefore, at later times, the portion of the blocked transport that is accounted for in the overflow aloft is given by $V_* (h_1 + \Delta h - \delta) - BV_* (\Delta h - \delta) = V_* [h_1 + \Delta h (1 - B) + \delta (B - 1)]$.

Assuming that this late-time overflow is optimally controlled with upstream thickness H, the volume conservation equation for flow over the taller central portion of the ridge is therefore

$$NH^2/\pi = V_* H + V_* [h_1 + \Delta h (1 - B) + \delta (B - 1)]. \quad (28)$$

with $\delta = H/8$ as before. Note that in the limit $\Delta h \to 0$, there is no splitting flow; the shape factor $B = 0$ and we recover the transport equation, (13), for the infinite ridge.

In solving (28), we again use $B = 1.7$, the shape factor that produced the best fit for the overflow across the shorter section. Figure 18b shows that, consistent with the Winters and Armi (2014) prediction, the computed
upstream overflow in the center plane, $x = 0$, of the taller section has a parabolic profile starting at its blocking level. But whereas the naive prediction substantially overestimates its peak speed and thickness, the modified prediction that accounts for transport lost to the enhanced splitting flow agrees well with the computed flow profile.

4) THE TRANSITION REGION $\sigma_s < x \leq 1.1 \sigma_s$

Across the lower portion of the ridge (Fig. 18a), the bottom of the overflow is located at an elevation $z = h_1 - \delta$ while over the taller section $|x| < \sigma_s$, it is at $z = h_1 + \Delta h - \delta$ (Fig. 18b). The flow near the abrupt change in ridge height must therefore bridge these two distinct overflows. The upstream velocity profile at the cross-stream location, $x = 1.1 \sigma_s$, is shown in Fig. 19a. The overflow exhibits two velocity peaks but these are only slightly separated and (26) predicts the bulk properties of the overflow well. Moving closer to the taller section, $x = 1.03 \sigma_s$, Fig. 19b shows that although the total thickness of the overflow is predicted reasonably, its vertical structure is that of two jets with distinct peaks. Thus near the abrupt change in ridge elevation, the overflow is a composite of the short- and tall-section overflows. As a result, even after a kinematic adjustment to the overflow transport, the near-crest profile cannot be described in terms of a single parabolic overflow as in the infinite-ridge theory of Winters and Armi (2014).

In summary, this two-level ridge example demonstrates that, in the flow regime where upstream influence and blocking are important, the steady overflow upstream of a dynamically tall, long ridge can be obtained by assuming optimal hydraulic control at the crest and coupling it to appropriate kinematic equations for the overflow transport. The details of the ridge geometry matter only to the extent that they modify the transport calculations. While the plunging depth of the overflow and its eventual separation in the lee are influenced by downstream conditions, a layerwise solution of Bernoulli’s equation, as in Winters and Armi (2014) furnishes a complete description of the asymmetric overflow in the neighborhood of the crest.

7. Limitations and extensions

a. Coriolis effects

As shown in the simulations, the hydraulic flow component develops on the short time scale t_b while the low-level splitting dynamics is established over a longer time scale t_d. Thus rotational effects play no role provided that $t_b \ll \epsilon (1/f)$, where f is the Coriolis frequency. In many midlatitude atmospheric flows characterized by low Fr and large β, for example, with $N = 10^{-2}$ s$^{-1}$ and $V_\infty = 10$ m s$^{-1}$ and mountain dimensions $h_m = 4$ km, $\sigma_y = 20$ km, and $\sigma_s = 200$ km (yielding Fr = 0.25 and $\beta = 10$), the corresponding t_b can be shown to be well under an hour while t_d is about a quarter of an inertial period. Thus both the crest-controlled overflow and lateral splitting flow are established before Coriolis effects become significant.

The layerwise upstream potential flow solution has also been realized in laboratory towing experiments (e.g., Brighton 1978; Hunt and Snyder 1980). Yet there are other geophysical situations where the flow-splitting time scale may be comparable to or larger than an inertial period. When the evolution of the low-level splitting flow is constrained by rotation, its horizontal scale is no longer set by the mountain half-length σ_s. Rather, as hypothesized by Pierrehumbert and Wyman (1985) and confirmed by Wells et al. (2005), geostrophic imbalance leads.
to the development of a mountain-parallel barrier jet trapped within a deformation radius \(Nh_m/f \) of the mountain. This disrupts the symmetry of the upstream splitting flow as well as the lee vortices, as can also be seen in the simulations of Wells et al. (2005). Moreover, Ölafsson and Bougeault (1997) note that rotational asymmetry can affect the overall mountain drag relative to nonrotating flows. Nevertheless, while the direct applicability of our framework to rotationally constrained atmospheric flows may be limited, our results show that hydraulically controlled overflows are established over relatively short time scales and that the splitting effect for finite ridges manifests itself as a reduction in the transport of the overflowing layer.

b. Simple turbulence model

The focus of this study is on the dynamics of upstream blocking, hydraulic crest control, and low-level flow splitting. These processes are laminar and therefore insensitive to the presence or absence of any turbulence closure model. Downstream of the crest, the supercritical flow is unstable to overturning shear instabilities. We resolve the formation of these instabilities but model the subsequent turbulence using a simple closure scheme that removes gridscale variability. The geometrical details of the overturns and the isolating layer possibly depend on the choice of turbulent parameterization. Nevertheless the good quantitative agreement with the predictions of stratified hydraulic theory shows that, regardless of the turbulence model, it is a robust dynamical framework for analyzing and interpreting the flow solutions. Winters (2016) employed a closure scheme similar to the one used here in a higher-resolution LES treatment of these processes in topographically controlled flows over an infinite ridge. A comparable treatment for the finite-ridge case in which a hydraulically controlled overflow occurs in conjunction with lateral flow splitting is beyond our current computing capability.

c. The nature of the flow aloft

In both the infinite and finite-ridge cases, we noted that the flow above the controlled overflowing layer is characterized by spatial oscillations with vertical wavelength approximately \(2\pi V_o/N \) (appendix B). While the hydraulic theory of Winters and Armi (2014) assumes that the controlled overflowing layer is decoupled from the overlying flow, it does not say anything about the possibility of wave excitation aloft as a response to the plunging overflow. Therefore the present analysis does not yield any insight about the amplitude of this wave-like flow nor its dynamical connection to the controlled overflow beneath.

One interpretation of the layered structure aloft (e.g., Fig. 4c) is as follows. The flow in the layer immediately above the controlled overflow layer responds to the “virtual topography” formed by the plunging overflow and is also asymmetric across the crest. The layers further aloft respond in a similar fashion. A similar response to virtual topography was noted by Armi and Mayr (2015) in their observations in the Sierras of hydraulically controlled flows with a descending temperature inversion at the top of the overflowing layer.
d. Extensions to other small Fr and large β flows

In the infinite-ridge case, lowering Fr further while keeping h_m fixed shrinks the blocking scale d and hence, also $σ_{y_b}$ and t_b. This leads to quicker establishment of hydraulic control with a correspondingly thinner overflow. Increasing Fr has the exact opposite effect.

For a finite ridge, the (Fr, β)-regime diagram (e.g., Smith 1989; Lin 2007) indicates that the flow behavior at low Fr and large β is uncertain. That is, the precise parameter space over which both flow splitting and “wave breaking” occur is unknown. The present study suggests another interpretation of this regime diagram. For a finite ridge, changing Fr and β essentially has the effect of making t_d and t_b more or less disparate relative to one another. We have seen that blocking and hydraulic control are established on the short time scale t_d. Assuming that wave breaking triggers a transition to the controlled state (e.g., Baines 1998), we may conjecture that flow splitting and lee vortices are accompanied by a crest-controlled overflow when t_d is about an order of magnitude larger than t_b. When these two time scales become comparable, the overflow will be subcritical and the flow then falls in the flow-splitting-only regime.

8. Concluding remarks

Across-crest asymmetry and hydraulic control are persistent features of low Fr flows past long ridges. On a short time scale, upstream blocking imparts a fundamentally nonlinear and asymmetric character to the flow over the crest. This asymmetry persists even on the longer time scale over which the low-level splitting flow is established. The flow is therefore composed of two distinct dynamical components as depicted in Fig. 20. The assumption of optimal crest control along with the recognition that the upstream splitting flow is potential-like further allows for an accurate reformulation of the near-crest overflow.

Acknowledgments. This work was supported by the National Science Foundation through Grant AGS-1540585. We would like to acknowledge high-performance computing support from Yellowstone (ark:/85065/d7wd3xhc) provided by NCAR’s Computational and Information Systems Laboratory, sponsored by the National Science Foundation. XSEDE computing resources were made available under Grant TG-OCE120004. We thank Dr. Richard Rotunno for his insightful feedback on an early version of the manuscript. The comments of an
The anonymous referee motivated the addition of section 3 and appendix A.

APPENDIX A

Mapping the Winters and Armi (2014) Solution to Arbitrary Terrain Shapes

In the numerical flow solutions we present, the specified pieces of information are the topography \(h(y) \) and upstream flow conditions \(V_\infty \) and \(N \). From these, we estimate the overflow transport \(Q \) and set up a quadratic equation for the upstream overflow thickness \(H \) as in (13). After determining \(H \), it is specified as an input to the Winters and Armi (2014) model along with \(N \) and some small, constant slope for the bifurcating streamline. The model then produces flow solutions downstream of the blocking point, including an implied terrain shape \(h^*(y) \) with peak height \(h_m^* \). On either side of the crest, the solution additionally generates a unique one-to-one map between the drop of the bifurcating streamline \(\eta^*(y) \) and the height of any point along the terrain surface relative to the blocking level \(h^*(y) - (h_m^* - H/8) \). This is depicted schematically in Fig. A1. The flow solutions at arbitrary downstream locations, for example, \(y = y_1 \) and \(y_2 \) along the given topography \(h(y) \) in Fig. A1a, can be mapped to \(y = y_1^* \) and \(y_2^* \), respectively, along the implied terrain shape produced by the Winters and Armi (2014) model, shown in Fig. A1b. Thus the analytical flow solutions of Winters and Armi (2014) are valid for any arbitrary hydrostatic topography.

APPENDIX B

Sensitivity of the Flow Structure Aloft to Domain Height and Sponge-Layer Thickness

The question of whether the wavelike flow above the controlled overflow is caused by wave trapping as a result of imperfect radiation at the upper boundary and its possible effects on the overflow were investigated further. If the upper boundary in effect behaves as a rigid lid, then only certain quantized modes can exist and the quantization will depend on the height of the domain.

To test whether the quantitative properties of the controlled overflowing layer and the oscillatory flow aloft (e.g., in Fig. 3a) depend sensitively on the choice of the domain height and sponge-layer thickness, we repeated the Fr = 0.16 infinite-ridge simulation for three different configurations of domain and sponge-layer depths. The sponge layer is designed to absorb the most energetic upward-propagating waves of vertical scale about \(h_m^* \). In the original case, the vertical height of the domain \(L_z = 6h_m \) and the sponge layer has a thickness \(1.8h_m \). In the other two cases, we set \(L_z = 12h_m \) and \(18h_m \), with much deeper damping layers, of thickness \(4.5h_m \) and \(6.7h_m \), respectively. The vertical profile of the streamwise velocity at the blocking point (Fig. B1) shows that the quantitative properties of the

1 Motivated by Dr. Richard Rotunno’s insightful comment on an early version of the manuscript.
controlled overflow are unchanged and the oscillatory flow structure aloft also persists in all cases. Further, Fig. B1 shows that the vertical wavelength of this wavelike flow is independent of domain height and is around $\lambda = 2\pi V_{\infty}/N$ in all cases.

REFERENCES

