Toward Understanding the Dynamics of Spinup in Emanuel’s Tropical Cyclone Model

MICHAEL T. MONTGOMERY
Department of Meteorology, Naval Postgraduate School, Monterey, California

ROGER K. SMITH
Meteorological Institute, Ludwig-Maximilians University of Munich, Munich, Germany

(Manuscript received 12 March 2019, in final form 28 June 2019)

ABSTRACT

We seek to understand the mechanism of vortex spinup in Emanuel’s 2012 axisymmetric theory for tropical cyclone intensification in physical coordinates, starting from first principles. It is noted that, while spinup of the maximum tangential wind must occur at low levels, within or at the top of the friction layer, this spinup is unconstrained by a radial momentum equation in this layer. Instead, the spinup is controlled by a parameterization of turbulent mixing in the upper-tropospheric outflow layer, which, as is shown, determines indirectly the rate of inward movement of the absolute angular momentum surfaces. Nevertheless, the physics of how upper-tropospheric mixing leads to spinup in or at the top of the friction layer are unclear and, as discussed, may be irrelevant to spinup in the model.

1. Introduction

In a highly influential paper, Emanuel (1986) presented a closed analytical theory for the structure and intensity of an axisymmetric, steady-state tropical cyclone. A key feature of the theory is the assumption that surfaces of saturation moist entropy s^* and absolute angular momentum M are congruent. Both of these surfaces emanate from the boundary layer and flare outwards with height, becoming nearly horizontal in the upper troposphere (his Fig. 1). Inspired by the pioneering tropical cyclone model of Ooyama (1969), the theory incorporates a simple slab-like boundary layer in which the entropy and M surfaces are assumed to be effectively well mixed in the vertical at leading order.1 Emanuel showed that the maintenance of a tropical cyclone depends exclusively on self-induced latent and sensible heat transfer from the ocean in the form of moist enthalpy fluxes in contrast to ambient conditional instability. An appraisal of the theory was presented by Montgomery and Smith (2013). Limitations relating to unbalanced aspects of the theory were discussed by Smith et al. (2008) and Bryan and Rotunno (2009). Over the years, the theory has been developed further2 and extended to account for the outer wind profile (Emanuel 2004) and storm intensification (Emanuel 1997, henceforth E97; Emanuel 2012, henceforth E12). These time-dependent theories incorporate the same basic geometry as the steady-state theory including, in particular, the effective slab boundary layer. Deficiencies of the E97 formulation were noted by E12 and Montgomery and Smith (2014).

The most recent time-dependent theory presented in E12 takes a fundamentally different approach to that of E97. In E12 it is postulated that small-scale turbulent mixing in the upper troposphere plays a crucial role in determining the spatial distribution of outflow temperature and, in particular, the vertical stratification. This new theory has been invoked to suggest that tropical cyclones may be more prone to rapid intensification in a warmer climate, with the rate of storm intensification scaling as the square of the potential intensity (Emanuel 2017).

1 See Emanuel (1986, p. 593) and Emanuel and Rotunno (2011, top line, left column on p. 2240).

2 For a brief review, see Montgomery and Smith (2017, section 5).

DOI: 10.1175/JAS-D-19-0051.1
© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).
The basic idea is that since the square of the potential intensity is a more sensitive metric than the potential intensity itself, the increase in rapid intensification rate would be a more detectable signal of global warming than the potential intensity used previously in climate change assessments.

Despite the inclusion of time dependence in E12, questions remain concerning the unbalanced dynamics as well as the key physical mechanism of vortex spinup, even in the limiting case of strictly axisymmetric balance dynamics. In particular, the precise role of small-scale turbulent mixing in the upper troposphere begs a physical interpretation and a recent study by Montgomery et al. (2019) presented evidence supporting the view that this turbulent mixing is inconsequential to the spinup process in three dimensions.

Another recent paper, by Peng et al. (2018), has appraised the validity of some key assumptions of the E12 theory, based mainly on simulations using an axisymmetric nonhydrostatic numerical model designed to mimic as close as possible the E12 model. Starting from a relatively strong initial vortex (maximum tangential wind = 20 m s\(^{-1}\)) with no secondary circulation and a saturated initial sounding, they identified two phases of evolution. In phase I, the \(M\) and \(s^*\) surfaces evolve from nearly orthogonal to almost congruent, while in phase II, these surfaces remain approximately congruent, supporting a key assumption of the E12 model. Here, \(s^*\) refers to the saturation specific entropy and \(M\) to the absolute angular momentum. These quantities are defined in the usual way with \(s^* = c_p \ln \theta^*\) and \(M = r v + (1/2) f r^2\), where \(c_p\) is the specific heat of dry air, \(\theta^*\) is the saturation equivalent potential temperature (assuming pseudoadiabatic ascent in which all condensed water instantly precipitates), \(v\) is the tangential velocity component, and \(f\) is the Coriolis parameter, assumed constant.

Peng et al. (2018) argue that, compared with their nonhydrostatic cloud model, the theoretical E12 model “possesses the chief virtue of transparency.” However, neither E12 nor Peng et al. (2018) explained physically how small-scale turbulent mixing in the upper troposphere “drives” an amplification of the system-scale maximum tangential velocity at the top of the friction layer as encapsulated in Eq. (16) of E12. In the latter equation, the effects of upper-level mixing can be interpreted as a force per unit mass acting on the gradient wind at the top of the friction layer [see Eq. (A17) in the appendix of Montgomery et al. (2019) and related discussion]. It is further unclear how the spinup process relates to the classical intensification paradigm of Ooyama (1969) and the rotating convection paradigm reviewed by Montgomery and Smith (2014, 2017) and Smith and Montgomery (2016).

2. Summary and critique of the E12 model

As a preamble, we present here our understanding of the mathematical formulation of the E12 model and the physical constraints embodied in it. In particular, we seek to articulate our understanding of how spinup in the model comes about.

The assumed flow configuration in radius–height coordinates \((r, z)\) is sketched in Fig. 1. Air is assumed to converge in a shallow frictional boundary layer of constant depth \(h\), acquiring moisture from the surface as it does so. As air parcels ascend out of this layer at inner radii, they are assumed to flow upward and...
radially outwards into the upper troposphere, conserving their values of s^* and M. By construction, the model assumes a sufficiently well-developed vortex that is saturated in its core, with an accompanying anticyclone near the tropopause (not depicted in the schematic). The M and s^* surfaces are assumed to flare outwards with height and not fold over,\footnote{It may be significant that, in axisymmetric balance calculations in which the heating rate is specified along M surfaces centered around the radius of maximum tangential wind, which is qualitatively equivalent to assuming that s^* is constant along M surfaces, the M surfaces are found to turn over (e.g., Fig. 8 of Smith et al. 2018). Some hours after this overturning occurs, the balance calculations break down.} whereupon the flow remains everywhere centrifugally (or inertially) stable.

The master prognostic equation is one for the moist entropy s_b in the thermodynamic boundary layer, which is assumed to have depth h also. It is assumed further that $s^* = s_b$ at $z = h$. In turn, M and its time derivative are constrained by the following assumptions above the boundary layer:

1) the flow is in hydrostatic and gradient wind balance and therefore thermal wind balance,

2) the M and s^* surfaces are congruent, and

3) a closure assumption in the upper-tropospheric outflow relating the partial derivative of outflow temperature T_o with respect to M (i.e., $\partial T_o/\partial M$) to the derivative of s^* with respect to M (i.e., $\partial s^*/\partial M$).

The closure assumption, in essence a parameterization for $\partial T_o/\partial M$, is based on the premise that “the thermal stratification of the outflow ($\partial T_o/\partial M$, our insertion)” is set by small-scale turbulence that limits the Richardson number” to a critical value (E12, p. 988).

Significantly, the E12 model does not include a classical boundary layer in which both the tangential and radial components of flow satisfy Newton’s equations of motion. Rather, the mean radial inflow in the layer influenced by friction, which in physical coordinates would be required to predict the time evolution of s_b, is determined by integrating vertically the tendency equation for M, across the layer. It is assumed that both horizontal velocity components, and therefore M, are essentially uniform through the depth of the layer. This formulation is represented by Eq. (A13) in Peng et al. (2018), which gives the inflow as a function of the temporal and radial derivatives of M together with the surface torque.

Because the equation for M is used to determine the radial flow, it is no longer available to determine the tendency of M in the layer of friction. Rather, the tendency of M is determined by the tendency of s_b in conjunction with the assumed constraint that the M and s^* surfaces are congruent. In essence, the M surfaces are dragged in with the s_b surfaces on account of this assumed congruence. In this sense, the dynamics are slaved to the thermodynamics in the inner-core region where there is ascent out of the friction layer. It is unclear what is assumed at larger radii where there is subsidence into the friction layer.

The main outcomes of the theory are an equation for the intensification rate $\partial V_m/\partial \tau$ of the maximum tangential wind V_m given by

$$\frac{\partial V_m}{\partial \tau} = \frac{C_D Ri_c}{2h r_i^2} M^2 - \frac{C_k}{2h} V_m^2,$$

[see Eq. (A17) of Montgomery et al. 2019] and, with some further approximations, including the assumption that $V_m = 0$ at $\tau = 0$, an analytical solution for V_m of the form

$$V_m(\tau) = V_{\text{max}} \tan \left(\frac{C_k V_{\text{max}}}{2h \tau} \right).$$

In these equations, τ is the time, C_D and C_k are the surface drag and enthalpy coefficients, both assumed constant, Ri_c is the critical Richardson number that determines the onset of turbulent mixing in the upper-tropospheric outflow, r_i is the radius at which the upper-tropospheric mixing begins, and V_{max} is determined by Eq. (18)\footnote{This equation is a formula for V_{max} in terms of C_D, C_k, T_b, T_i, s_b, s^*_0, s^*_m, where T_b is the absolute temperature evaluated at the top of the inflow layer, T_i is equal to the outflow temperature T_o corresponding to the M surface passing through the radius of maximum winds and is assumed equal to the initial tropopause temperature, s_b “is the environmental (constant) saturation entropy of air at sea surface temperature and ambient surface pressure,” and s^*_m “is the value of s^* in the undisturbed environment” (E12, 991–992).} in E12.

It follows from Eq. (1) that spinup occurs only if the first term on the right-hand side, which contains the effect of the parameterized turbulent mixing, is sufficiently large. This is because the second term on the right is negative definite. Invoking the classical paradigm for spinup, which refers to physical coordinates, spinup in the model can occur in the layer of friction only if the M surfaces therein move inwards at a sufficient rate that the radial advection of M exceeds the azimuthal torque per unit depth. Since the radial flow above the friction layer is radially outwards, spinup of the flow above the friction layer has to occur by the vertical advection of M from the friction layer. It follows that, in physical coordinates, spinup of the maximum...
tangential wind in the E12 model must occur within or at the top of the friction layer. While the mathematical constraints leading to vortex spinup in the E12 model as outlined above are reasonably clear, the physical processes are not. Despite the fact that the mixing parameterization relating $\partial s^*/\partial M$ to $\partial T_a/\partial M$ in the upper-tropospheric outflow layer is a crucial element of the theory, without which the vortex will not spin up (see Montgomery et al. 2019, appendix), the physics of spinup brought about by this mixing are mysterious, at least to us.

As pointed out by a reviewer of our manuscript (D. Raymond 2019, personal communication), the parameterization of turbulent mixing in the E12 model introduces the parameter r_t, in the tendency equation for the maximum gradient wind, the radius at which the upper-tropospheric mixing begins. This radius is unknown a priori. From Eq. (1) above, the positive term in this tendency equation predicted by the theory is inversely proportional to r_t^2, but r_t is not determined by the theory: it must be prescribed. In this sense alone, the theory is not a closed theory for intensification.

Based on the foregoing analysis, the premise that spinup in the E12 model is controlled by mixing in the upper-tropospheric outflow layer may be a red herring. As shown by Montgomery et al. [2019, see their Eq. (A18)], if one stops short of applying the mixing parameterization in the E12 theory, Eq. (1) would take the form

$$\frac{\partial V_m}{\partial \tau} = \frac{C_p V_m^2 M}{2h(T_h - T_i)} \frac{\partial T_a}{\partial M} - \frac{C_k V_m^2}{2h}.$$ \hspace{1cm} (3)

The symbols T_h and T_i are defined in footnote 4. Comparing this equation with Eq. (1), it would seem that *any* functional form for $\partial T_a/\partial M$ that leads to the M surfaces being dragged inwards in the friction layer at a sufficient rate that the radial advection of M exceeds the azimuthal torque per unit depth would yield a model for vortex spinup! This is true whether or not the functional form has any physical meaning.

The above considerations would explain why attempts by Montgomery et al. (2019) to test the E12 theory on the basis of idealized, three-dimensional numerical model experiments showed that vertical mixing in the upper-tropospheric outflow layer have no appreciable effect on vortex intensification. These considerations suggest further that any attempt to find a physical interpretation of spinup in or at the top of the friction layer brought about by vertical mixing in the upper troposphere may be a fruitless exercise.

Where then does the main limitation of the E12 theory arise? In our view, the most serious issue is the assumption that the M and s^* surfaces are everywhere congruent, even during the intensification stage. This assumption forces the upper-level mixing to determine the relationship between the values of M and s^*, where the flow ascends out of the inflow layer. As a minimum to remove this constraint, one would require the value of M to be determined by a tendency equation for M_p, which, in turn, according to Newton’s second law, would require also a tendency equation for the radial velocity in the layer of friction.

There appears to be a prevailing view among some of our previous reviewers that since the E12 theory makes predictions for vortex spinup and mature intensity, it is unnecessary to enquire into the basic mechanisms underlying the theory. This viewpoint would seem to be problematic since predictions must be always tested against observations to ascertain the veracity of the theory. As an example, the analytical solution derived by E12 [Eq. (2) above and Eq. (19) of E12] predicts an intensifying vortex starting from zero initial tangential velocity. Although, as noted above, the theory is only strictly valid when the vortex has attained some degree of maturity, it is unclear how the vortex can intensify from a quiescent state. This is because there would be no surface enthalpy flux at zero time and no turbulent mixing to “initiate” intensification at this time [the first term in Eq. (1)]. Indeed, with this initial condition, both terms on the right-hand side of Eq. (1) would be zero implying that there would be no intensification at zero time, in contradiction to the analytical solution [Eq. (2)].

Another aspect of the analytical solution [Eq. (2)] is that the intensification rate of the vortex is independent of the initial inner-core size of the vortex. In other words, small-scale vortices would spin up at the same rate as large-scale vortices. Surely, this prediction is inconsistent with forecaster experience and on this ground alone it should raise serious concerns. Further, the prediction is not consistent with three-dimensional model predictions (e.g., Kilroy and Smith 2017; see their Fig. 2 and the physical interpretations of the behavior shown).

Yet another curious feature of the analytical solution [Eq. (2)] is that the crucial effects of turbulent mixing represented by the first term on the right-hand side of Eq. (1), without which intensification cannot occur, have totally disappeared as a result of the further approximations deriving Eq. (2) from Eq. (1).

The foregoing issues, together with the recent tests of the premise of the E12 theory by Montgomery et al. (2019) would seem to be sufficient motivation to examine...
the theory more deeply. This has been the primary aim of this paper.

3. Conclusions

We have presented here our understanding of the mathematical formulation of E_{12}^*’s axisymmetric theory for tropical cyclone intensification and the constraints it incorporates. We have shown that, when viewed in physical coordinates, spinup in the model must originate within or at the top of the layer of friction. This spinup occurs when the M surfaces in this layer move inwards at a sufficient rate that the radial advection of M exceeds the azimuthal frictional torque per unit depth.

Because the tendency equation for M is used to determine the radial flow in the layer of friction, it is no longer available to determine the tendency of M there. Rather, this tendency is determined by the tendency of s_p in conjunction with the assumption that the M and s^* surfaces are congruent. It is the latter constraint that drags the M surfaces inwards in the layer of friction. The tendency of s^* (or s_p) is controlled, in part, by the assumed parameterization of turbulent mixing in the upper troposphere. The dynamics is unconstrained by a radial momentum equation in the friction layer.

Despite the foregoing mathematical formulation, the physics of spinup in or at the top of the friction layer brought about by the mixing in the upper troposphere remain to be explained, although as we have argued, this may be a fruitless exercise.

Acknowledgments. This paper arose out of stimulating discussions we had with Rich Rotunno of the National Center for Atmospheric Research during our participation in the 33rd American Meteorological Society Conference on Hurricanes and Tropical Meteorology in Ponte Vedra, Florida, in 2018. We are grateful also to Jerry Emanuel, Dave Raymond, and two anonymous reviewers for their thoughtful comments on earlier versions of the paper. MTM acknowledge the support of NSF Grants AGS-1313948, IAA-1656075, ONR Grant N0001417WX00336, and the U.S. Naval Postgraduate School. The views expressed herein are those of the authors and do not represent sponsoring agencies or institutions.

REFERENCES

