New modified and extended stability functions for the stable boundary layer based on SHEBA and parametrizations of bulk transfer coefficients for climate models

Vladimir M. Gryanik*

Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany and A. M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow, Russia

Christof Lüpkes

Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, D-27570 Bremerhaven, Germany

Andrey Grachev

NOAA Physical Sciences Laboratory/Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, USA

Dmitry Sidorenko

Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, D-27570 Bremerhaven, Germany

*Corresponding author address: Vladimir M. Gryanik

Early Online Release: This preliminary version has been accepted for publication in Journal of the Atmospheric Sciences, may be fully cited, and has been assigned DOI 10.1175/JAS-D-19-0255.1. The final typeset copyedited article will replace the EOR at the above DOI when it is published.

© 2020 American Meteorological Society
Climate models still have deficits in reproducing the surface energy and momentum budgets in Arctic regions. One of the reasons is that currently used transfer coefficients occurring in parametrizations of the turbulent fluxes are based on stability functions derived from measurements over land and not over sea ice. An improved parametrization is developed using the Monin Obukhov Similarity Theory (MOST) and corresponding stability functions that reproduce measurements over sea ice obtained during the Surface Heat Budget over the Arctic Ocean campaign (SHEBA). The new stability functions for the stable boundary layer represent a modification of earlier ones also based on SHEBA measurements. It is shown that the new functions are superior to the former ones with respect to the representation of the measured relationship between the Obukhov length and the bulk Richardson number. Nevertheless, the functions fulfill the same criteria of applicability as the earlier functions and contain, as an extension, a dependence on the Prandtl number. Applying the new functions we develop an efficient non-iterative parametrization of the near-surface turbulent fluxes of momentum and heat with transfer coefficients as a function of the bulk Richardson number (Ri_b) and roughness parameters. A hierarchy of transfer coefficients is recommended for weather and climate models. They agree better with SHEBA data for strong stability ($Ri_b > 0.1$) than previous parametrizations and they agree well with those based on the Dyer-Businger functions in the range $Ri_b \leq 0.1$.

Accepted for publication in *Journal of the Atmospheric Sciences*. DOI 10.1175/JAS-D-19-0255.1.
1. Introduction

The atmospheric boundary layer is often stably stratified. This holds especially for polar regions but also for other regions on Earth where stable stratification is a very common feature, e.g., during night. However, turbulent processes in the stable boundary layer (SBL) are still poorly represented in climate and weather prediction models. In this work we study such processes with a focus on the parametrization of the turbulent surface layer fluxes in the SBL. One of the key questions is if an improvement of the parametrization of bulk transfer coefficients for momentum, heat and other scalars is possible. Any progress would help to gain a more realistic treatment of the SBL in models.

In the past, large efforts were invested in measurements of the SBL fluxes. For Arctic ocean conditions fluxes became available, e.g., from data of the Surface Heat Budget over the Arctic Ocean campaign (SHEBA) representing measurements over about one year. They were obtained from sonic anemometers installed at a 20 m tower in five levels (Andreas et al. 1999; Uttal et al. 2002; Grachev et al. 2007a). Due to the high quality of the data and since they were collected over polar oceans with frequent stable conditions, they represent an excellent data set for developing stability functions for the SBL in the framework of the Monin Obukhov Similarity Theory (MOST). Such functions were derived by Grachev et al. (2007a) (in the following abbreviated by G2007a).

During the pre-SHEBA epoche Andreas (2002) recommended the stability functions of Holtslag and De Bruin (1988) for use in very stable conditions in polar regions. However, the latter stability functions do not allow persistence of turbulence at a bulk Richardson number $Ri_b \geq 0.43$ (see definition of Ri_b by equation 22). This is in contradiction to results of the more recent field measurements during SHEBA and to many earlier empirical data. Based on the SHEBA data Grachev et al. (2013) showed that turbulent flow can prevail also when the critical Richardson number, de-
fined as a threshold for the change from a Kolmogorov to a non-Kolmogorov regime, is exceeded by far (see also Section 4). They observed turbulence for large values of up to 100 of the stability parameter $\zeta = z/L$ where L is the Obukhov length (see definition by equation (1) in Section 2). This corresponds to a bulk Richardson number Ri_b up to $0.7 - 1.0$.

Each of the available stability functions has its own region of applicability (confidence range, see Section 4). However, the advantage of the G2007a functions is that they are valid for the widest stability range $0 < \zeta < 100$ for which data are nowadays available. It covers the near-neutral limit $0 < \zeta < 0.02$, the weakly stable range $0.02 < \zeta < 0.6$, the very stable range $0.6 < \zeta < 50$ and the extremely stable range $\zeta > 50$ (G2007a), (Sorbjan and Grachev 2010). For the very stable and extremely stable ranges only the functions of G2007a are available. Recently, Srivastava et al. (2020) showed that the functional form of the G2007a approach is well applicable also over land and results agree after adjustment of constants better with observations obtained over an Indian land site than previous functions. Thus the SHEBA results might have a more general meaning than expected.

However, studies applying the above-mentioned SHEBA based field observations and theoretical findings to weather prediction and climate models are still missing. One can ask the question, why haven’t the stability functions of G2007a with their obvious advantages been implemented (with exception of Andreas et al. (2010a) and Andreas et al. (2010b) in such models or in further parametrizations in the decade since their discovery? The answer consists probably in the general recognition that the application of the G2007a functions results in weaker turbulence in the range $0.1 < Ri_b < 0.2$ compared with the application of other functions. Thus, their use in models introduces an undesirable decrease of turbulent mixing, so that it does not help to solve the well known problems of nocturnal boundary layer decoupling over land (Louis 1979) and of a too weak life-cycle of atmospheric cyclones in polar regions (Jung et al. 2016; Vihma et al. 2014).
On the contrary, the use of the G2007a functions would make the solution of these problems even more difficult. Indeed, the functions of G2007a provide almost the lowest surface fluxes in the above mentioned stability range from all currently known empirical non-linear stability functions, including the functions of Holtslag and De Bruin (1988), Beljaars and Holtslag (1991) and of Cheng and Brutsaert (2005). To the best of our knowledge, smaller fluxes are provided only by the empirical functions of Businger-Dyer (Businger et al. 1971; Dyer 1974), and by theoretically derived stability functions of Sukoriansky (2008), which are based on the QNSE theory of stratified turbulence (Sukoriansky (2008) and references therein).

Thus the straightforward implementation of the G2007a functions will definitely cause difficulties since other parameters need to be tuned to compensate for the reduction of surface layer mixing. However, the implementation can be desirable from another point of view. For example, reduced turbulent mixing in the SBL can help to avoid an often occurring overestimation of the boundary layer height. This problem was documented in simulations by Delage (1997) and later by Sandu et al. (2013).

Assuming that the functions of G2007a are universally applicable and that they correctly represent the main physics of turbulent mixing in stably stratified flows, one can use them in models independent on the location for all regions of Earth when the prerequisites of MOST are fulfilled. Consequent model biases in the momentum and heat budgets should be related to other physical mechanisms of ice-atmosphere interaction than the turbulent mixing represented by the stability functions. Such mechanisms are, e.g., form drag, gravity wave generation, radiative cooling generated mixing etc. These factors can have probably large impact on turbulent fluxes, but we do not consider them in this work. One can draw the clear conclusion that the implementation and at least testing of the G2007a stability functions in climate and weather predictions models is very desirable.
There are several strategies for the implementation of new parametrizations. One strategy has been repeatedly announced by several authors, e.g., Jung et al. (2016), Vihma et al. (2014) and Mauritsen (2011). It states that a single representative pair of stability functions is universally applicable for stable stratification ($\zeta > 0$) only dependent on land or ocean but without any other dependence on location. A complementary strategy would be to account additionally for the stability over polar sea ice (Jiménez et al. 2012). However, to the best of our knowledge, even such a compromise version applying the G2007a functions over sea ice has not yet been realised. As a third strategy (see Gryanič and Lüpkes 2018) it is worth testing the stability functions of G2007a everywhere thus also in other regions than over polar sea ice. This strategy is supported by the recent work of Srivastava et al. (2020) (see above) showing the applicability of the G2007a functions also over land.

For the implementation of the stability functions in contemporary weather prediction and climate models the derivation of normalised transfer coefficients f_m and f_h and transfer coefficients C_d and C_h is required because these coefficients are the main ingredients of surface layer schemes in the models. For practical applications non-iterative parametrizations of the transfer coefficients are preferable. Often, the derivation of non-iterative parametrizations of the transfer coefficients is based on MOST. This approach goes back to a method proposed by Deardorff (1968) adjusted later by Paulson (1969) and Louis (1979) for practical use in weather prediction and climate models. Recently, Gryanič and Lüpkes (2018) have further developed this method and applied it to the stability functions of G2007a.

The approach requires solving the governing MOST equation (defined later by equations 21) for the stability parameter ζ in terms of the bulk Richardson number Ri_b and roughness parameter $\varepsilon_m = z/z_0$ for momentum and $\varepsilon_l = z/z_l$ for heat. However, as we will show, the G2007a functions do not approximate the observed stability parameter - bulk Richardson number relationship well.
especially for $Ri_b < 0.1$ and lead to an overestimation of drag coefficients in the range $Ri_b > 0.2$.

This finding motivated us to search for new stability functions, which are able to represent both
the observed flux-nondimensional gradient relationship and the $\zeta - Ri_b$ relationship simultaneously
and additionally allow the approximation of stability dependent transfer coefficients for heat and
momentum with better agreement to measurements.

Moreover, it is difficult to implement the stability functions of G2007a in weather prediction
and climate models due to another, more technical reason. Namely, the functions are rather cum-
bersome. For example, they are inconvenient for numerical iterative algorithms (five iterations are
typically necessary for the algorithm of Andreas et al. (2010b)). And their use is inconvenient
to establish semi-analytical methods for the parametrization of bulk transfer coefficients (Gryanik
and Lüpkes 2018). Also the analytical formulation, e.g., of applicability criteria for the stability
functions, is complicated when these functions are used (Sharan and Kumar 2010). The complex
functional form of the stability functions complicates the qualitative interpretation of results based
on physical characteristics of turbulence, such as mixing lengths, eddy diffusivities etc.

For these reasons a further goal of this study is to suggest new stability functions, which have a
simpler functional form than the G2007a functions. Furthermore, we adjust the method proposed
by Gryanik and Lüpkes (2018) for a non-iterative scheme to these new functions.

To summarize, the main goals of our research are a modification and extension of the stabil-
ity functions of G2007a, and finally the derivation of new non-iterative parametrizations of the
bulk transfer coefficients for momentum and heat on the basis of the new modified and extended
stability functions.

Finally, we stress that the new stability functions that will be proposed are conceptually similar
to G2007a because they are based on the same data (SHEBA). However, they represent a refor-
mulation of findings of G2007a and, furthermore a fit to the SHEBA data of similar quality as
the G2007a functions. For this reason they should be understood as an alternative to the original G2007a functions. They allow also reducing the complexity of flux parametrizations and help thus reducing excessive numerical costs when they are applied to climate models. We also stress that the newly derived non-iterative parametrizations are well suited for practical applications. Their implementation is easier, especially in models already using non-iterative parametrizations, such as the models of the European Center for Medium Range Weather Forecast (ECMWF), the Consortium for Small-Scale Modelling (COSMO, Doms et al. 2011) used by the German Weather Service (DWD) and model ECHAM6 (Giorgetta et al. 2012), the atmosphere component of MPI-ESM (Stevens et al. 2013) and ECHAM6-FESOM (Sidorenko et al. 2015) climate models, just to mention a few.

2. Background of MOST

Currently, the momentum and heat fluxes in the stable surface layer are described by the Monin-Obukhov similarity theory (MOST, Monin and Obukhov 1954; Monin and Yaglom 1971; Foken 2006) or by the specifically generalised MOST for stable conditions (the generalised MOST in the following), see, e.g. the theories of Nieuwstadt (1984), Sorbjan (1987, 2017), Zilitinkevich et al. (2013) and Sukoriansky and Galperin (2013). Our focus is on the classical MOST. Its validity is limited to the turbulent fluxes in the lowest part of the atmospheric boundary layer where they are assumed to be independent on height z above an underlying horizontally homogeneous surface at $z = 0$. A further assumption is that turbulence is statistically stationary. Under these limitations, in the framework of MOST all the statistics of a turbulent flow are universal functions of the single stability parameter $\zeta = z/L$, where L is the Obukhov length scale. It combines the fluxes of
momentum τ and heat H. ζ and L are given as

$$
\zeta = \frac{z}{L}, \quad L = \frac{u_*^2}{\kappa (g/\Theta) \theta_*} = -\frac{(\tau/\rho)^{3/2}}{\kappa (g/\Theta)(H/\rho c_p)}.
$$

(1)

In equations (1) the friction velocity u_* and temperature scale θ_* are related with the absolute value

$$
\tau = |\vec{\tau}| = (\tau_x^2 + \tau_y^2)^{1/2}
$$

of momentum flux $\vec{\tau}$ as

$$
\tau = \rho u_*^2,
$$

(2)

and with heat flux H such that

$$
H = -\rho c_p u_* \theta_*.
$$

(3)

c_p is the specific heat at constant pressure, ρ is air density, κ is the v. Karman constant (set equal to 0.4), g is the acceleration due to gravity and Θ is either the virtual potential temperature at some reference level or the average surface layer temperature.

In general, MOST is formulated for all moments of the flow field (Monin and Yaglom 1971). The first order moments are the mean wind speed $U(z)$ and mean potential temperature $\Theta(z)$. For their gradients MOST states that

$$
\frac{\kappa z}{u_*} \frac{\partial U}{\partial z} = \phi_m(\zeta)
$$

(4)

and

$$
\frac{\kappa z}{\theta_*} \frac{\partial \Theta}{\partial z} = \phi_h(\zeta),
$$

(5)

where $\phi_m(\zeta)$ and $\phi_h(\zeta)$ are the MOST non-dimensional universal stability functions for momentum and heat, respectively. It is assumed that the flux-gradient relationships (4) and (5) (often called flux-profile relationship) represent the data with a reasonably good accuracy for the relevant ranges of the stability parameter ζ. The functions (4) and (5) are the main ingredients of MOST, and are normalised as

$$
\phi_m(0) = 1
$$

(6)
and

\[\phi_h(0) = Pr_0 \] \hspace{1cm} (7)

in our study (please see Appendix B for details). The parameter \(Pr_0 = Pr(0) \) is the neutral limit turbulent Prandtl number \(Pr \), which is defined as

\[Pr = \frac{\bar{w'}u' (\partial \Theta / \partial z)}{\bar{w'}\theta' (\partial U / \partial z)} = \frac{\phi_h(\zeta)}{\phi_m(\zeta)}. \] \hspace{1cm} (8)

This number characterises the ratio of the momentum diffusion coefficient \(K_m = -\bar{w'}u' / (\partial U / \partial z) \) to the scalar diffusion coefficient \(K_h = -\bar{w'}\theta' / (\partial \theta / \partial z) \). If mixing of momentum and scalars have the same efficiency, i.e. \(K_m = K_h \), one has \(Pr = 1 \). It is the case of the Reynolds analogy for turbulent mixing. If \(Pr < 1 \), the turbulent scalar diffusion is more efficient than momentum diffusion and vice versa for \(Pr > 1 \).

Using MOST, the profiles of wind speed \(U(z) \) and potential temperature \(\Theta_v(z) \) can be determined. They are derived by integrating equations (4) and (5). The resulting flux-profile relationships read as

\[U(z) = \frac{u_*}{\kappa} \ln \epsilon_m - \psi_m(\zeta) + \psi_m(\zeta/\epsilon_m), \] \hspace{1cm} (9)

\[\Theta(z) - \Theta_0 = \frac{\theta_*}{\kappa} \left[Pr_0 \ln \epsilon_t - \psi_h(\zeta) + \psi_h(\zeta/\epsilon_t) \right] \] \hspace{1cm} (10)

with separate neutral and non-neutral contributions. The first are represented by logarithmic terms depending on the roughness parameters \(\epsilon_m = z/z_0 \) and \(\epsilon_t = z/z_t \), where \(z_0 \) and \(z_t \) are the aerodynamic roughness lengths for momentum and heat. The non-neutral contributions consist of stability correction functions for momentum \(\psi_m(\zeta) \) and heat \(\psi_m(\zeta) \) (often also called integrated stability functions). They are related to the stability functions by equations (c.f. Paulson 1970)

\[\psi_k(\zeta) = \int_0^\zeta \frac{I_k - \phi_k(\zeta')}{\zeta'} d\zeta', \quad \phi_k(\zeta) = I_k - \zeta d \psi_k / d \zeta, \quad k = [m, h] \] \hspace{1cm} (11)
with \(I_m = 1 \) for momentum and \(I_h = Pr_0 \) for heat. In stable conditions \(\psi_k < 0 \), and vice versa \(\psi_k > 0 \) for unstable conditions. In the neutral case

\[
\psi_k(0) = 0,
\]

(12)

so that no correction exists by definition. The magnitude of the aerodynamic roughness lengths \(z_0 \) and \(z_t \) is related to the height and width of the roughness elements and to hot/cold spots on the underlying surface. There are relationships in the literature for the determination of the \(z_0/z_t \) ratio over sea ice (e.g. Andreas 1987, Andreas et al. 2010a,b). However, there is not yet an overall accepted formulation. If so, very often \(z_0 \) and \(z_t \) are considered in polar research as constant values. We adopt this assumption in our research as well.

MOST becomes a closed theory when the stability functions are given. However, MOST itself does not provide these functions. Universal stability functions must be determined from precise laboratory experiments, accurate field measurements, appropriate numerical simulations and convincing theoretical arguments. In the case of well developed turbulence the well known Businger-Dyer stability functions (Businger et al. 1971; Dyer 1974) approximate the measured data well at near-neutral and weak stability, i.e. for small values of \(\zeta \leq O(1) \). The Businger-Dyer functions depend linearly on \(\zeta \) with

\[
\phi_m(\zeta) = 1 + a_m \zeta, \quad \phi_h(\zeta) = Pr_0 (1 + a_h \zeta),
\]

(13)

where \(a_m \) and \(a_h \) are empirical constants approximating most of the known experimental data, if representative values \(a_m = a_h = 5.0 \) and \(Pr_0 = 1 \) are used. However, in literature the documented range of \(a_m \) and \(a_h \) is from 4 to 8 (Högström 1988, 1996) and \(Pr_0 \) is not always equal to one.

Corresponding to (13) the stability correction functions \(\psi_m(\zeta) \) and \(\psi_h(\zeta) \) are also linear functions of \(\zeta \) with

\[
\psi_m(\zeta) = -a_m \zeta, \quad \psi_h(\zeta) = -Pr_0 a_h \zeta.
\]

(14)
In general, the stability functions $\phi_k(\zeta)$ and stability correction functions $\psi_k(\zeta)$ are, however, nonlinear functions in ζ. But it is important to stress that both functions (13) and (14) describe any given stability function in the limit of small $\zeta \to 0$. Practically, this limit holds for $0 < \zeta < 0.08$ (see, e.g., Grachev et al. 2015).

At present, there is no consensus in literature about the correct functional form of stability functions beyond $\zeta \approx 3 - 5$ ($Ri \approx 0.2 - 0.25$ and $Ri_f \approx 0.2 - 0.25$, see Grachev et al. 2013), i.e. in the region of very strong and extremely strong stability. In this range different researchers suggest nonlinear stability functions, which differ essentially from each other (Holtslag and De Bruin 1988; Beljaars and Holtslag 1991; Cheng and Brutsaert 2005; Grachev et al. 2007a). These functions given in Appendix A as well as all other ones mentioned in this study are shown in Figs. 1 and 2.

The Figures demonstrate moreover that the scatter is large not only between the empirical stability functions, but also the theoretically derived and empirical functions differ strongly from each other. As an example, we show in the same Figs. 1a and 2a the stability functions of Sukoriansky (2008) derived on the basis of spectral Quasi-Normal Scale Elimination (QNSE) theory for stably stratified turbulence (Sukoriansky and Galperin 2013, and references therein).

Finally, it is unclear if it is possible at all to define stability functions for the case of extreme stability (e.g. Grachev et al. 2013) because only very few measurements are available in the range $Ri_b \geq 0.2 - 0.25$. However, some SHEBA data as well the new data of Srivastava et al. (2020) refer also to this extremely stable range and the G2007a functions are at least within the scatter of data (see also Sections 4 and 6).
3. Bulk parametrizations in the framework of MOST

Many atmospheric models use a bulk formulation of the turbulent fluxes based on MOST. Also bulk transfer coefficients can be derived from this theory as follows. One obtains the x (West-East) and y (South-North) components of momentum transport as

$$
\tau_x = -\rho C_d |\vec{U}(z)| U(z), \quad \tau_y = -\rho C_d |\vec{U}(z)| V(z).
$$

(15)

Here, U and V are the x and y components of the wind vector \vec{U}, $|\vec{U}(z)| = (U^2 + V^2)^{1/2}$ as before. C_d is the transfer coefficient for momentum related to the height z of the lowest model grid level.

Similarly, the well known corresponding equation for heat transport H reads

$$
H = -\rho c_p C_h |\vec{U}(z)| \left[\Theta_v(z) - \Theta_0 \right],
$$

(16)

with the transfer coefficient for heat C_h (see also Appendix B). Θ_v is the (virtual) potential temperature. Index 0 refers to the surface value. C_d and C_h can be written as

$$
C_d = C_{dn} f_m; \quad C_h = C_{hn} f_h
$$

(17)

where C_{dn} and C_{hn} are the transfer coefficients for neutral stratification

$$
C_{dn} = \frac{\kappa^2}{\ln^2 \varepsilon_m}, \quad C_{hn} = \frac{\kappa^2}{Pr_0 \ln \varepsilon_m \ln \varepsilon_t}.
$$

(18)

The neutral transfer coefficients depend only on surface properties, and we consider their values as prescribed. f_m and f_h are nondimensional functions depending on both surface properties and stability such that $f_m = f_h = 1$ for neutral conditions. According to Eq. 17 f_m and f_h are considered as drag and heat transfer coefficients normalized by their neutral values. Sometimes, the f_m and f_h functions are also called stability functions, correction functions or mixing functions in the context of numerical modelling (see, e.g., Louis 1979; Louis et al. 1981; Viterbo et al. 1999). We use the term normalized transfer coefficients in the following to avoid confusion with the MOST stability functions ϕ_m and ϕ_h and with the MOST stability correction functions ψ_m and ψ_h.

Accepted for publication in *Journal of the Atmospheric Sciences*. DOI 10.1175/JAS-D-19-0255.1.
The normalised transfer coefficients \(f_m \) and \(f_h \) are formulated in agreement with MOST using \(\psi_m \) and \(\psi_h \) (see definition in textbooks, e.g., equations 3.44 and 3.49 of Garratt 1992) as

\[
f_m = \left[1 - \frac{\psi_m(\zeta) - \psi_m(\zeta/\epsilon_m)}{\ln \epsilon_m} \right]^{-2}
\]

\[
f_h = \left[1 - \frac{\psi_m(\zeta) - \psi_m(\zeta/\epsilon_m)}{\ln \epsilon_m} \right]^{-1} \left[1 - \frac{\psi_h(\zeta) - \psi_h(\zeta/\epsilon_t)}{Pr_0 \ln \epsilon_t} \right]^{-1}
\]

(19) (20)

The set of bulk MOST equations can be combined to a single equation for the Obukhov length given by

\[
\zeta = Ri_b \frac{1 - 1/\epsilon_t}{(1 - 1/\epsilon_m)^2} \frac{[\ln \epsilon_m - \psi_m(\zeta) + \psi_m(\zeta/\epsilon_m)]^2}{Pr_0 \ln \epsilon_t - \psi_h(\zeta) + \psi_h(\zeta/\epsilon_t)}.
\]

(21)

This flux-profile relationship relates the stability correction functions of both momentum and heat to each other, in contrast to the familiar flux-gradient relationships (4), (5) and flux-profile relationships (9), (10). The bulk Richardson number \(Ri_b \) naturally appears in equation (21) as the main nondimensional parameter. It provides an integral measure of stability in the layer \(0 \leq z' \leq z \) and combines the wind speed \(U \) and temperature \(\Theta_v \) at a level \(z \) as

\[
Ri_b = \frac{g (\Theta_v - \Theta_s) / (z - z_i)}{U^2 / (z - z_0)^2}.
\]

(22)

Thus, according to the bulk MOST formulation, the set of MOST equations must be solved for fluxes using wind speed \(U \) and the temperature difference \(\Theta_v - \Theta_s \) as external forcing parameters and considering the roughness length scales for momentum \(z_0 \) and heat \(z_i \) as given.

Solutions of equation (21) express the stability parameter \(\zeta \) as an implicit, multivariate function of \(Ri_b, Pr_0, \epsilon_m, \epsilon_t \). When the solution \(\zeta = \zeta(Ri_b, Pr_0, \epsilon_m, \epsilon_t) \) of equation (21) is known one can substitute it in the equations specifying the \(\psi_m \) and \(\psi_h \) functions. We can use, e.g., equations (34) and (35) (see Section 6) in equations (19) and (20) to find the normalised transfer coefficients, so also the fluxes of momentum (15) and heat (16).
For practical purposes and without loss of generality, it is convenient to rewrite equation (21) in the form

\[
\hat{R}_b = \frac{(1 - 1/\varepsilon_i)^2}{1 - 1/\varepsilon_t} \zeta \ln \varepsilon_i - Pr_0^{-1} \left[\psi_h(\zeta) + \psi_h(\zeta/\varepsilon_t) \right]
\]

\[
\hat{R}_b = \frac{R_b}{Pr_0}
\]

which is often called the governing MOST equation (see, e.g., Gryani and Lüpkes 2018). In (23) \(\hat{R}_b \) is the equivalent bulk Richardson number combining \(R_b \) and \(Pr_0 \). We stress that \(R_b \) and \(Pr_0 \) appear in equation (21) as the ratio \(\hat{R}_b = R_b/Pr_0 \). Although \(Pr_0 \) is occurring on the right-hand side of equation (23), it does not really depend on \(Pr_0^{-1} \) because its cancellation with \(Pr_0 \) occurring in the definition of \(\psi_h \) according to equation (11) with (7). For \(Pr_0 = 1 \) the governing MOST equation (23) coincides with the corresponding equation, e.g., in Gryani and Lüpkes (2018).

In general, the solutions of the governing MOST equation (23) are provided by an iterative numerical method (see e.g. Berkowicz, and Prahm 1982). The description of many different numerical approaches and arising difficulties is given, e.g., by Jiménez et al. (2012). Approximate analytical solutions are also possible in some cases. They are obtained as a rule by semi-analytical methods, see, e.g., Launiainen (1995), discussion of different methods by Van den Hurk and Holtslag (1997) and later works by Pleim (2006), Li et al. (2010, 2014) and Gryani and Lüpkes (2018) to mention a few.

4. Stability functions of G2007a

The main ingredients of MOST are the stability functions \(\phi_m(\zeta) \) and \(\phi_h(\zeta) \) (see equations 4 and 5). For Arctic ocean conditions these functions were derived by G2007a from SHEBA measurements (see Introduction). G2007a obtained the best agreement with these data by using

\[
\phi_m(\zeta) = 1 + a_m \zeta \frac{(1 + \zeta)^{1/3}}{1 + b_m \zeta}, \quad 0 < \zeta \leq 100
\]
\[\phi_h(\zeta) = 1 + \frac{a_h \zeta + b_h \zeta^2}{1 + c_h \zeta + \zeta^2}, \quad 0 < \zeta \leq 100 \]
(25)

with \(a_m = 5 \), \(b_m = a_m/6.5 = 0.77 \), \(a_h = 5 \), \(b_h = 5 \), and \(c_h = 3 \). Using then (24) and (25) in the first of the equations (11) G2007a derived the stability correction functions as

\[\psi_m(\zeta) = - \frac{3a_m}{b_m} \left[(x - 1) - \frac{B_m}{6} \left(2 \ln \frac{x + B_m}{1 + B_m} - \ln \frac{x^2 - xB_m + B_m^2}{1 - B_m + B_m^2} \right) \right. \\
- 2\sqrt{3} \left(\arctan \frac{2x - B_m}{\sqrt{3}B_m} - \arctan \frac{2 - B_m}{\sqrt{3}B_m} \right) \]
(26)

and

\[\psi_h(\zeta) = - \left(\frac{a_h}{B_h} - \frac{b_h c_h}{2B_h} \right) \left(\ln \frac{2 \zeta + c_h - B_h}{2 \zeta + c_h + B_h} - \ln \frac{c_h - B_h}{c_h + B_h} \right) \]
\[- \frac{b_h}{2} \ln \left(1 + c_h \zeta + \zeta^2 \right), \]
(27)

where \(x = (1 + \zeta)^{1/3} \), \(B_m = (1/b_m - 1)^{1/3} > 0 \) and \(B_h = (c_h^2 - 4)^{1/2} \). The region of applicability for \(\psi_m \) and \(\psi_h \) is the same as for \(\phi_m \) and \(\phi_h \).

The stability functions (24) and (25) are shown in Fig. 1a and in Fig. 3a together with the corresponding SHEBA data and with the data of Srivastava et al. (2020), which will be called in the following the Ranchi data. The selection of these data shown here represent the most accurate ones (those filtered with \(Ri_f < 0.25 \), where \(Ri_f \) is the flux Richardson number) (see Srivastava et al. 2020). Ranchi data without this filtering are for \(\zeta > 1.2 \) very close to the data observed during SHEBA at 2.2 m height (red squares) (not shown). As all other MOST stability functions the G2007a functions are affected by self correlation features since they are traditionally defined via variables (e.g., friction velocity or temperature) occurring also in the arguments of these functions due to the Obukhov length. But, as shown by the analysis of Grachev et al. (2013, 2015) of the SHEBA data, self correlation has a reasonably small effect.
The functional forms of ϕ_m and ϕ_h were designed using the following physical and practical constraints:

(i) The functions have the correct linear dependence on ζ at small $\zeta \to 0$ namely $\phi_m \approx 1 + a_m \zeta$ and $\phi_h(\zeta) \approx 1 + a_h \zeta$. For large ζ, the u_\ast-less (frictionless scaling) limit holds (see G2007a for a discussion), i.e. the function ϕ_m is proportional to $(a_m/b_m)\zeta^{1/3}$ for $\zeta \to \infty$. The function ϕ_h approaches a constant value $\phi_h = 1 + b_h$ in the limit $\zeta \to \infty$. This characteristic, which does not follow the z-less scaling approach has been discussed in detail by G2007a. A consequence is that the non-neutral Prandtl number $Pr = \phi_m/\phi_h$ is approaching zero at $\zeta \to \infty$, which is not in line with theories (e.g., Nieuwstadt 1984) but in good agreement with the SHEBA data (see discussion of the Prandtl number in Grachev et al. 2007b, and their Fig. 1c). In such strongly stable conditions, frictional effects become small or even negligible and the surface friction velocity associated with the mean flow may no longer be a dominant governing velocity scale. For example, in this regime, the influence of the Coriolis effect and gravity waves comes into play. In particular, in the limit of very strong stability, decaying stress becomes comparable to the Coriolis force even near the surface leading to significant rotation of the wind vector with height (Ekman spiral) (Grachev et al. 2008). Also, it can be shown that when (32) and (33) are used, u_\ast has still some impact in the practically most relevant stability range ($\zeta < 100$), and that Pr is still far from zero at $\zeta \to 100$.

(ii) Stability functions fit the SHEBA data in the entire range of available ζ reasonably well.

(iii) The functions $\phi_m(\zeta)$ and $\phi_h(\zeta)$ should be analytically integrable functions of ζ, resulting in analytical stability correction functions $\psi_m(\zeta)$ and $\psi_h(\zeta)$.

One should also pay attention to the fact that the $\phi_h(\zeta)$-function of G2007a suggest $Pr_0 = 1$. Actually, it is an additional constraint, which is implicitly imposed by constraint (i).

The functions by G2007a have been shown to be valid in a large range of stabilities (see Section 1). In this connection it is important to mention the discussion presented in Grachev et al. (2013)
showing that the strict applicability of MOST is limited to $Ri < Ri_{cr} \approx 0.2 - 0.25$ where Ri is the gradient Richardson number and index cr refers to the critical value. That is, the applicability limit for ϕ_m and ϕ_h is $Ri < Ri_{cr}$. However, for practical purposes (model parametrizations) we are forced to use ϕ_m and ϕ_h in the supercritical regime (beyond its strict limit of applicability). $Ri \approx Ri_{cr}$ corresponds to $\zeta \approx 1$ but practically we need parametrizations for $\zeta \gg 1$, maybe up to $\zeta \approx 100$ and higher. The application of MOST for $\zeta \gg 1$ is common practice in the modelling community.

Note, that according to Grachev et al. (2013) (Figures 7 and 8), the upper limit of MOST in the SBL coincides with the region, for which the Kolmogorov power law is applicable. In other words, the condition $Ri \approx Ri_{cr}$ also separates Kolmogorov and non-Kolmogorov turbulence in stratified turbulent shear flows.

Nevertheless, the G2007a functions agree well with the SHEBA measurements in the given range up to $\zeta = 100$ and in the range of scatter with functions of other authors mentioned in Section 2 (thus with data obtained over land) for the less stable conditions (see G2007a). Figure 1b visualizes the differences between the functions (24), (25) and other ones relative to the functions of G2007a. The latter agree well with the other functions in the region of near-neutral and weak stability as emphasized more clearly in Fig. 1c, where differences relative to Businger-Dyer functions are shown. On the contrary, in the region of very stable and extremely stable conditions the differences between all stability functions are large.

According to G2007a the stability functions of Businger-Dyer are applicable up to $\zeta \approx 1$, of Cheng and Brutsaert (2005) up to $\zeta \approx 5$ and of Holtslag and De Bruin (1988) and Beljaars and Holtslag (1991) for $\zeta < 10$. The functions of G2007a are, however, well supported by measurements for $1 < \zeta < 100$. As shown in Figs. 1 and 2, the scatter of functions (see equations 4 and 5 for definition) is smaller in their confidence ranges than beyond these ranges.
The differences are also well pronounced in the stability correction functions ψ_m and ψ_h. This can be seen in Fig. 2 showing results for functions of all authors mentioned so far.

5. Stability parameter ζ and transfer coefficients based on stability functions of G2007a

When stability functions are derived the next logical step is to check the performance of the functions for the representation of bulk transfer coefficients since the latter are the main ingredients of surface layer schemes in weather prediction and climate models. This requires (see section 3) the calculation of the stability parameter ζ as a function of R_i, ε, ε_t and Pr_0 following the governing MOST equation (21).

In Fig. 4 (panels a,b) we show ζ obtained from the SHEBA data together with ζ derived by Gryani and Lüpkes (2018) with equation (21) using the stability correction functions (26) and (27). The latter results are included for a wide range of the roughness parameters ε and ε_t.

In agreement with Fairall and Markson (1987), Hartmann et al. (1994), G2007a, Andreas et al. (2010a,b), Lüpkes et al. (2012), Castellani et al. (2014) and with the summary by Gryani and Lüpkes (2018) the most often found range of stability is $0 \leq R_i \leq 0.2$ and the most representative ranges of the surface roughnesses are

$$2 \times 10^2 \leq \varepsilon_m \leq 1.4 \times 10^6, \quad \varepsilon_m \leq \varepsilon_t \leq 10^2 \varepsilon_m,$$

(28)

which corresponds to roughness lengths

$$7.1 \times 10^{-6}m \leq z_0 \leq 5 \times 10^{-2}m, \quad 10^{-2}z_0 \leq z_t \leq z_0$$

(29)

and to neutral drag coefficients at 10 m height

$$0.8 \times 10^{-3} \leq C_{dn} \leq 5.7 \times 10^{-3}.$$

(30)
In rare cases values are outside of this range, e.g., even $\varepsilon > 1 \times 10^{12}$ (or $C_{dn} < 0.2 \times 10^{-3}$) has been reported by Elvidge et al. (2016). However, we consider the values

$$
\varepsilon_m = 3 \times 10^4, \quad \text{and} \quad \varepsilon_t = 1.5 \times 10^5
$$

(31)

$$
C_{dn} = 1.5 \times 10^{-3}, \quad \text{and} \quad C_h = 1.3 \times 10^{-3}
$$

as the most typical ones. They are calculated with $z = 10$ m, $z_0 = 3.3 \times 10^{-4}$ m and $\alpha = z_t/z_0 = 0.2$.

The most unexpected finding from Fig. 4 is that $\zeta(Ri_b)$ obtained from (21) with (26) and (27) overestimates the measured ζ by far (note the logarithmic ζ-axis) in the range of small Ri_b ($Ri_b < 5 \cdot 10^{-2}$) when the most typical roughness conditions over sea ice (31) are prescribed. In the range around $Ri_b = 0.2$ there is an underestimation compared with the measurements.

This finding is crucial since it has a tremendous impact on the parametrization of turbulent fluxes of momentum and heat. Indeed, panels a) and b) of Figs. 5 and 6 show that for the typical roughness regime (equation 31) there are drawbacks with respect to C_d and especially for C_h. Results obtained for C_h with the G2007a stability correction functions tend to underestimate the observations for $Ri_b < 0.02$ and both C_d and C_h overestimate the observations for $Ri_b > 0.05$ (see also Fig. D5). This means that using the G2007a functions would cause also an under/overestimation of the momentum and heat fluxes in the corresponding stability ranges. Choosing a larger surface roughness would improve fluxes for near-neutral conditions but would result in an even stronger overestimation for the very stable and extremely stable ranges.

The results described above motivate us to search for new stability functions, which are suited to find a compromise, i.e. they should represent the local gradients from one side, the $\zeta(Ri_b)$ dependence and the bulk transfer coefficients $C_d(Ri_b)$ and $C_h(Ri_b)$ from the other side, but all with reasonable accuracy.

Accepted for publication in *Journal of the Atmospheric Sciences*. DOI 10.1175/JAS-D-19-0255.1.
6. New modified and extended stability functions

To overcome the drawbacks described in the previous section we suggest here new stability functions for sea ice-covered polar regions. They are - as the G2007a functions - also based on the SHEBA data and on theoretical arguments but - as will be shown - they are less complex than the G2007a functions and they slightly better represent the relationships between fluxes and the nondimensional gradients $\phi_m = \phi_m(\zeta)$, and $\phi_h = \phi_h(\zeta)$, and between the stability parameter and the bulk Richardson number $\zeta = \zeta(R_i)$. Most important is that the application of the new functions improve also the relationship between bulk transfer coefficients and bulk Richardson numbers $C_d = C_d(R_i)$ and $C_h = C_h(R_i)$.

In the following, we first propose the new stability functions. Then, we optimise free constants of these functions in order to improve the representation of the observed relationships.

a. Functional form of new stability functions

We suggest modified universal stability functions as

$$
\phi_m(\zeta) = 1 + \frac{a_m \zeta}{(1 + b_m \zeta)^{2/3}} \quad 0 < \zeta \leq 100
$$

$$
\phi_h(\zeta) = Pr_0 \left(1 + \frac{a_h \zeta}{1 + b_h \zeta}\right) \quad 0 < \zeta \leq 100
$$

where a_m, b_m, a_h, b_h are empirical constants (their values will be determined in the next section), Pr_0 is the neutral-limit Prandtl number as before.

These functions are very similar to those suggested by G2007a (c.f. equations (32) and (33) with (24) and (25)). But they are defined by only four empirical constants and lead to arithmetically simple modified stability correction functions. After integration of (32) and (33) we find

$$
\psi_m(\zeta) = -3 \frac{a_m}{b_m} \left[(1 + b_m \zeta)^{1/3} - 1 \right],
$$

$$
\psi_h(\zeta) = -Pr_0 \frac{a_h}{b_h} \ln(1 + b_h \zeta).
$$
It is important to emphasise that the constraints (i) to (iii) (see Section 4) formulated by G2007a
do not define stability functions uniquely (see the discussion by G2007a), and that all the con-
straints are satisfied by the modified functions (32) and (33) as well. In particular, the limits of
the new stability function (32) and (33) for \(\zeta \to 0 \) and \(\zeta \to \infty \) are similar to those of the G2007a
functions. The asymptotes are given as

\[
\phi_m(\zeta) = \begin{cases}
1 + a_m \zeta, & \zeta \to 0, \\
(a_m/b_m^{2/3}) \zeta^{1/3}, & \zeta \to \infty
\end{cases}
\]

(36)

and

\[
\phi_h(\zeta) = Pr_0 \begin{cases}
1 + a_h \zeta, & \zeta \to 0, \\
1 + a_h/b_h, & \zeta \to \infty.
\end{cases}
\]

(37)

Correspondingly, the asymptotes of the new stability correction functions (34) and (35) are similar
to those of the G2007a functions. In the following, we call the new modified stability functions
(32), (33) and new stability correction functions (34), (35) GLGS functions for simplicity.

b. Optimisation of empirical constants of new stability functions

In order to improve the representation of the observed relationships we apply a new optimisation
strategy for the GLGS functions, which has not been applied until now: Keeping their functional
form unchanged, we assume that the constants \(a_m, a_h, b_m, b_h \) should not be obtained by optimizing
either the agreement with the observed \(\phi_m = \phi_m(\zeta) \), \(\phi_h = \phi_h(\zeta) \) or with the observed \(\zeta = \zeta(Ri_b) \),
\(C_d = C_d(Ri_b) \) and \(C_h = C_h(Ri_b) \) independently from each other, but by the best fit of the functions
altogether.

The optimisation of the coefficients depends on the ranges of the parameters \(\varepsilon, \varepsilon_t \) and on the
value of \(Pr_0 \). For \(\varepsilon, \varepsilon_t \) we consider the ranges (28). There is no obvious reason to use another
value than $Pr_0 = 1$ (see G2007a) or $Pr_0 = 0.98$ (see Sorbjan and Grachev 2010; Sorbjan 2017) as the most relevant value for the SHEBA data.

Applying the trial and error method we find as a compromise the optimal constants

$$Pr_0 = 0.98, \quad a_m = 5.0, \quad a_h = 5.0, \quad b_m = 0.3, \quad b_h = 0.4,$$

(38)

which result in stability functions well suited to represent all relationships mentioned above simultaneously.

The optimized stability functions ϕ_m, ϕ_h and the stability correction functions ψ_m, ψ_h are shown in Figs. 1 and 3 partly together with SHEBA data and with the functions of G2007a. The corresponding approximation of the stability parameter $\zeta(Ri_b)$ is shown in Fig. 4 (panels c,d). The transfer coefficients C_d and C_h based on the new functions are given in Figs. 5 and 6 (panels d,e,f).

One can see from Figures 1 and 3 that the GLGS functions (32) and (33) with the constants (38) fit the SHEBA data reasonably well especially when the locally measured fluxes are used (Fig. 3a and b). Compared with the G2007a functions there is an improvement in the range $\zeta > 5$ for the local data (especially upper-level measurements between 5 m and 18 m height). The modified ϕ_h function agrees also slightly better with the Ranchi data than the G2007a function in the shown range. Also, a slight improvement of agreement with the SHEBA data relative to the G2007a functions is found for the $\zeta(Ri_b)$ relationship for $0.15 < \zeta < 0.25$ (see panels b and d) of Fig. 4). There is also some improvement for $Ri_b < 0.02$ (see panels a and c) with log. x-axes). Namely, for $Ri_b < 0.02$ the blue curve for the typical conditions is slightly closer to the observations when the modified functions are chosen. Note that we used here the values

$$\varepsilon = 1.3 \times 10^4, \quad \varepsilon_t = 1.86 \times 10^4$$

(39)
instead of those given by equation (31). The corresponding values in terms of transfer coefficients at 10 m height and roughness lengths are

\[C_{dn} = 1.78 \times 10^{-3}, \quad C_{hn} = 1.72 \times 10^{-3} \]
\[z_0 = 7.7 \times 10^{-4} \text{m}, \quad z_t = 5.4 \times 10^{-4} \text{m} \]

so that \(\alpha = z_t/z_0 = 0.7 \). This modification results from the demand to improve the \(\zeta(\text{Rib}) \) relation in the near-neutral range where the sensitivity to the roughness is large (see Fig. 4). The new values, which we call in the following also ‘typical’, represent a compromise since in the near-neutral range values of \(C_d \) and \(C_h \) are at the upper limit of the bin averaged SHEBA observations (Figures 5 and 6, panels d,e,f). Finally, there is also an improvement for the transfer coefficients \(C_d(\text{Rib}) \) and \(C_h(\text{Rib}) \) especially in the range \(\text{Rib} < 0.01 \) (Figures 5, 6) but also in the range \(\text{Rib} > 0.1 \) (Fig. D5), which is most important since the transfer coefficients determine the fluxes. This is further discussed in Section 11 and Appendix D.

We stress that the GLGS functions should be understood as a replacement of the G2007a functions for two reasons. The first is the improvement with respect to measurements. Here, especially, the improvement resulting for the transfer coefficients is important since they influence the fluxes. The second is that the new functions allow a more efficient use of the G2007a findings. In general, they are more suitable for the solution of particular problems as will be argued in the following sections discussing benefits of using the new stability functions.

Moreover, it is important to note that according to our analysis the best fit of the new functions either to the stability functions by G2007a or to a version with optimal agreement between the parametrized and the observed \(\zeta(\text{Rib}) \) relationship results in significantly different fitting constants. Optimal coefficients \(P_{r0}, a_m, b_m, a_h \) and \(b_h \) for these both limiting cases are provided in Appendix D. The constants (38) are optimal for the full ranges (28). It is obvious that the reliabil-
ity of the coefficients depends on the ranges of ζ and R_i, for which the functions are defined. A better agreement can be reached, e.g., when the range is limited to $0.05 < \zeta \leq 10$. We will discuss this issue also in Appendix D.

7. Benefits of using the GLGS functions

A numerically efficient calculation of turbulent fluxes for momentum and heat in weather prediction and climate models requires analytically simple formulations of functions representing the wind and temperature profiles.

It is obvious that the new simple functional form of the stability functions (34) and (35) is an advantage and a necessary prerequisite for obtaining an approximate analytical solution of the nonlinear governing MOST equation (23). Using the simpler GLGS functions in the governing MOST equation, a solution $\zeta = \zeta(R_i, \varepsilon_m, \varepsilon_t)$ can be found more easily. It can be used to obtain new parametrizations of the transfer coefficients $C_d = C_d(R_i, \varepsilon_m, \varepsilon_t)$ and $C_h = C_h(R_i, \varepsilon_m, \varepsilon_t)$ and finally of the unknown turbulent fluxes τ and H. It can be expected that these parametrizations are analytically simpler than the solution of Gryanik and Lüpkes (2018), which is based on the original stability correction functions of G2007a, so that it can be installed with less programming effort in numerical models. It is also expected that the parametrizations would be more accurate because the empirical relationships $\zeta = \zeta(R_i)$ and $C_d = C_d(R_i)$ and $C_h = C_h(R_i)$ were already taken into account while constructing the new stability functions.

Many other advantages of using simple analytical formulations for stability functions are discussed by Pleim (2006) and Lüpkes et al. (2012). For example, the normalised transfer coefficients f_m and f_h are the main ingredients of mixing-length closure schemes (also often called first-order closure models or K-theory) used in the atmospheric boundary layer in many climate models. According to the hypothesis of Louis (1979) these functions characterize the stability effects on eddy
viscosity K_m and on the eddy scalar diffusion coefficient K_h with

$$K_m = \frac{w'u'}{\partial U/\partial z} = l_m^2 f_m \left| \frac{d\hat{U}}{dz} \right|, \quad K_h = \frac{w'\theta'}{\partial \Theta/\partial z} = l_m l_h f_h \left| \frac{\partial \Theta}{\partial z} \right|, \quad (41)$$

when the bulk Richardson number is replaced by its numerical gradient Richardson number counterpart. Here, U and V are the x and y components of the mean wind vector \vec{U}, $|d\hat{U}/dz| = [(dU/dz)^2 + (dV/dz)]^{1/2}$, $f_m = 1/\phi_m^2$ and $f_h = 1/(\phi_m \phi_h)$, and l_m and l_h are the neutral limit mixing lengths for momentum and temperature, respectively. The simple functional form of the GLGS functions results in the simple equation (41).

Another benefit of the GLGS functions, also related to their simplicity, arises when they are used for studying the stability dependence of form drag (Lüpkes and Gryanik 2015). However, both K-theory and the effect of form drag are beyond the scope of our current research whose focus is on the parametrization of the near-surface bulk momentum and heat fluxes and corresponding transfer coefficients.

Finally, the new functions result in the observed dependence of the heat flux as a function of ζ with one maximum (not shown here). As shown by Srivastava and Sharan (2019) some other nonlinear stability functions produce two maxima, which contradicts observations.

8. Approximate solution of the governing MOST equation

In order to solve the governing MOST equation (23) using the GLGS functions (34) and (35) we apply a semi-analytical approach following Gryanik and Lüpkes (2018).

We search for an approximate solution $\zeta = \zeta(\hat{R_i_b}, \epsilon_m, \epsilon_t)$ of equation (23) in the functional form

$$\zeta = C\hat{R_i_b} + A\hat{R_i_b}^\gamma \quad (42)$$

with the exponent γ and with the two functions $C(\epsilon_m, \epsilon_t)$ and $A(\epsilon_m, \epsilon_t, \gamma)$.

Accepted for publication in *Journal of the Atmospheric Sciences*. DOI 10.1175/JAS-D-19-0255.1.
The coefficient
\[C = \frac{\ln^2 \varepsilon_m}{\ln \varepsilon_t} \]
(43)
describes the limit \(\hat{R}_{ib} \to 0 \). In this limit the first term in equation (42) coincides with the exact solution. The coefficients \(A(\varepsilon_m, \varepsilon_t, \gamma) \) describe the growth rate of \(\zeta \) at large \(\hat{R}_{ib} \). As shown by Gryanik and Lüpkes (2018) the coefficient \(A(\varepsilon_m, \varepsilon_t, \gamma) \) is given by

\[A = \zeta_a \hat{R}_{ib,a}^{-\gamma} - \frac{\ln^2 \varepsilon_m}{\ln \varepsilon_t} \hat{R}_{ib,a}^{1-\gamma}, \]
(44)

with

\[\hat{R}_{ib,a} = \left(\frac{1 - 1/\varepsilon_m}{1 - 1/\varepsilon_t} \right)^2 \zeta_a \frac{(\ln \varepsilon_t - \psi_{ha})}{(\ln \varepsilon_m - \psi_{ma})^2}, \]
(45)

where

\[\psi_{ma} = \psi_m(\zeta_a) - \psi_m(\zeta_a/\varepsilon_m), \quad \psi_{ha} = \psi_h(\zeta_a) - \psi_h(\zeta_a/\varepsilon_t). \]
(46)

\(\zeta_a \) is the representative value of \(\zeta \), for which the function (42) coincides with the exact solution of the governing MOST equation (23).

For relevant ranges of \(\hat{R}_{ib}, \varepsilon_m \) and \(\varepsilon_t \), the optimal values of the two fitting parameters \(\gamma \) and \(\zeta_a \) are calculated numerically by a variational method using the least-square fit metric

\[J = \frac{1}{\Delta} \int_{0}^{\hat{R}_{ib,max}} \int_{\ln \varepsilon_-}^{\ln \varepsilon_+} \int_{\ln \varepsilon_-}^{\ln \varepsilon_+} \left[\frac{f_k(\hat{R}_{ib}, \varepsilon_m, \varepsilon_t) - f_{k,ex}(\hat{R}_{ib}, \varepsilon_m, \varepsilon_t)}{f_{k,ex}(\hat{R}_{ib}, \varepsilon_m, \varepsilon_t)} \right]^2 d \ln \varepsilon_t d \ln \varepsilon_m d \hat{R}_{ib}, \]
(47)

where \(\Delta = \hat{R}_{ib,max} \ln(\varepsilon_+/\varepsilon_-) \ln(\varepsilon_{t,+}/\varepsilon_{t,-}) \) is a normalisation factor. Subscript \(k = m \) is used for momentum and \(k = h \) for heat. The cost function (47) provides a measure of the deviation of the approximate analytical solution from the exact numerical solution. Note that in Gryanik and Lüpkes (2018) the difference in \(\zeta \) has been minimized but we take here \(f_k \) since finally this is most important for the fluxes. \(J \) depends on the two variables \(\gamma \) and \(\zeta_a \) and on the parameters \(\hat{R}_{ib,max}, \varepsilon_-, \varepsilon_+, \varepsilon_{t,-} \) and \(\varepsilon_{t,+} \), which specify the relevant confidence ranges for stability \(\hat{R}_{ib} \) and roughnesses \(\varepsilon_m \) and \(\varepsilon_t \). Values are \(\hat{R}_{ib,max} = 0.3 \), and for \(\varepsilon_-, \varepsilon_+, \varepsilon_{t,-}, \varepsilon_{t,+} \) those defined by (28). We found that minimizing \(f_m \) or \(f_h \) resulted in values of \(\gamma \) and \(\zeta_a \) that differed only very slightly from each other.
It is worth to note that the coefficient A can be written in more compact form by combining equations (44), (45) and (46). The result is

$$A = \frac{(\ln \epsilon_m - \psi_{ma})^2(\gamma^{-1})}{\zeta_a^{\gamma^{-1}}(\ln \epsilon_t - \psi_{ha})^{(\gamma^{-1})}} \left[\frac{(\ln \epsilon_m - \psi_{ma})^2}{\ln \epsilon_t - \psi_{ha}} - \frac{\ln^2 \epsilon_m}{\ln \epsilon_t} \right]. \quad (48)$$

Formally, the approximate solution (42) is valid for arbitrary stability functions. However, for given $\psi_m(\zeta)$ and $\psi_h(\zeta)$ the quality of approximation depends on the choice of the particular values of γ and ζ_a. These depend on the specific features of the functional form of the stability functions and on the range of independent variables, i.e. $\hat{R_i}_{b,max}$, ϵ_-, $\epsilon_+; \epsilon_{t,-}$ and $\epsilon_{t,+}$.

Using the GLGS functions (34), (35) and applying the cost function (47) in the ranges (28) we find the optimal value of the exponent γ and the optimal stability parameter ζ_a for the set of parameters (38) as

$$\gamma = 3.625, \quad \zeta_a = 7.25. \quad (49)$$

Fig. 7 shows that the solution (49) is unique. This was similar also for the other parameter sets discussed in section 11.

Inserting values (49) into the general equations (42) and (48) with (46), one obtains the new parametrization as

$$\zeta = C\hat{R}_b + A\hat{R}_b^{.625} \quad (50)$$

with the coefficient C given by equation (43) and with

$$A = \frac{(\ln \epsilon_m - \psi_{ma})^{5.25}}{181.3 (\ln \epsilon_t - \psi_{ha})^{2.625}} \left[\frac{(\ln \epsilon_m - \psi_{ma})^2}{\ln \epsilon_t - \psi_{ha}} - \frac{\ln^2 \epsilon_m}{\ln \epsilon_t} \right], \quad (51)$$

where

$$\psi_{ma} = -50.0 \left[1.47 - (1 + 2.17/\epsilon_m)^{1/3} \right] \quad (52)$$

$$\psi_{ha} = -12.25 \ln[3.9/(1 + 2.9/\epsilon_t)]. \quad (53)$$
The results obtained by the approximate analytical and exact numerical solutions for the stability parameter ζ are shown in Fig. 8. The curves visualizing the exact solution were obtained numerically by calculating $\hat{R}_b = \hat{R}_b(\zeta, \varepsilon_m, \varepsilon_t)$ using equation (23) in a given range of ζ for prescribed values of $\varepsilon_m, \varepsilon_t$, and then plotting the result $\zeta = \zeta(\hat{R}_b, \varepsilon_m, \varepsilon_t)$.

Note that in a weather prediction or climate model \hat{R}_b can be calculated based on the predicted wind and temperature as well as humidity at the surface and first grid level. The most accurate procedure for the necessary determination of $\zeta(\hat{R}_b)$ is to solve equation (23) by numerical iteration. The approximate solution can be calculated, however, by the explicit equation (50). It reproduces the exact numerical solution with a mean error smaller than 5% and with a maximal error of 10% in the range $0 < R_i < 0.2$ (so that $0 < \hat{R}_b < 0.16 - 0.2$ for Pr_0 in the range 0.75 to 1). The good agreement of the stability parameters obtained from both solutions indicates that our approximation is reasonable for the considered ranges of stability and roughness.

However, the parametrization can be further simplified. For the representative SHEBA values of the roughness parameters we obtain $\varepsilon_m \gg 1$ and $\varepsilon_t \gg 1$, if so, the small terms $1/\varepsilon_m, 1/\varepsilon_t$ and $\psi_m(\zeta_a/\varepsilon_m)$ and $\psi_m(\zeta_a/\varepsilon_m)$ in equations (45) and (46) can be neglected. Then the functions ψ_{ma} and ψ_{ha} in equations (52) and (53) become independent on the roughness parameters and can be replaced by the constant values $\psi_{ma} = -23.50$ and $\psi_{ha} = -16.67$. As a result of all these simplifications, the parametrization of the stability parameter ζ is provided by equation (50) with the coefficient C as before and with the simplified coefficient (51) found as

$$A = \frac{(\ln \varepsilon_m + 23.50)^{5.25}}{181.3 (\ln \varepsilon_t + 16.67)^{2.625}} \left[\frac{(\ln \varepsilon_m + 23.50)^2}{\ln \varepsilon_t + 16.67} - \frac{\ln^2 \varepsilon_m}{\ln \varepsilon_t} \right]. \quad (54)$$

The differences between the approximate solution (50) with (43) and (51) and the corresponding simplified solution (50) with (43) and (54) are so small that for most curves they are invisible.
in Fig. 8. Therefore, in the following we will use only the simplified equation without loss of accuracy.

Finally, it is worth stressing a drawback of our semi-analytical solution. It does not result in the exact asymptotic behavior of transfer coefficients for \(R_{ib} \to \infty \). But this is not a serious problem because the numerical values of exponents \(\gamma \) for the exact and approximate solutions are very close to each other. The small difference appears due to our intention to achieve a high accuracy in the finite range \(0 < R_{ib} < 0.2 \).

9. Parametrization of transfer coefficients and guide for implementation in climate models

When the approximate solution for the stability parameter \(\zeta(\hat{R}_{ib}, \epsilon_m, \epsilon_t) \) is known, the explicit formulae for the normalized transfer coefficients are obtained algebraically by inserting equation (50) into equation (34) for the stability function \(\psi_m(\zeta) \) and in (35) for the function \(\psi_h(\zeta) \). Then the result is used in equations (19) and (20), where the small terms \(\psi_m(\zeta_a/\epsilon_m) \) and \(\psi_h(\zeta_a/\epsilon_t) \) can be neglected without loss of accuracy as described above. Thus, we obtain

\[
f_m = \left[1 + \frac{50.0}{\ln \epsilon_m} \left(1 + 0.3 \left(\frac{\ln^2 \epsilon_m}{\ln \epsilon_t} R_{ib} + A R_{ib}^{3.625} \right) \right)^{1/3} - 1 \right]^{-2} \tag{55}
\]

and similarly

\[
f_h = f_m^{1/2} \left[1 + \frac{12.5}{\ln \epsilon_t} \ln \left(1 + 0.40 \left(\frac{\ln^2 \epsilon_m}{\ln \epsilon_t} R_{ib} + A R_{ib}^{3.625} \right) \right) \right]^{-1} \tag{56}
\]

with the coefficient \(A \) given by equation (54).

The curves showing these functions are presented in Fig. 9 for the exact solution and for its approximated counterpart. For comparison, in the same figures (here and in following) the lower-most solid lines visualize the transfer coefficients based on the integrated Businger-Dyer stability functions (14). Finally, using equations (55) and (56) in equations (17), we find the formulae for
the transfer coefficients C_d and C_h as

$$C_d = \frac{\kappa^2}{\ln \varepsilon_m + 50.0 \left[(1 + 0.3 \left(\frac{\ln^2 \varepsilon_m}{\ln \varepsilon_t} \hat{Ri}_b + A \hat{Ri}_b^{3.625} \right) \right]^{1/3} - 1 \right]} \right)^2 \quad (57)$$

$$C_h = \frac{\kappa C_d^{1/2}}{\ln \varepsilon_t + 12.5 \ln \left[1 + 0.40 \left(\frac{\ln^2 \varepsilon_m}{\ln \varepsilon_t} \hat{Ri}_b + A \hat{Ri}_b^{3.625} \right) \right]} \quad (58)$$

with the function $A(\varepsilon_m, \varepsilon_t)$ given by equation (54) in both transfer coefficients.

In Fig. 10 we show the transfer coefficients C_d and C_h as a function of \hat{Ri}_b for given ε_m and ε_t. As expected, the transfer coefficients are equal to the neutral limit at $\hat{Ri}_b = 0$ for all ε_m and ε_t, and they decrease monotonically when \hat{Ri}_b increases. This dependence is very common for all transfer coefficients and is in agreement with measurements. The difference between the exact and approximate C_d and C_h is smaller than 5% in the range $0 \leq \hat{Ri}_b \leq 0.2$, which is most often observed (see G2007a and Grachev et al. 2013). The agreement is that high because the approximate solutions (57) and (58) reproduce the exact ones in the limit $\hat{Ri}_b \to 0$ for all values of a_m, b_m, a_h and b_h. And, moreover, in the opposite limit $\zeta \to \infty$ the asymptotes

$$f_m \sim \frac{1}{\zeta^{2/3}} \sim \frac{1}{\hat{Ri}_b^{2.42}}, \quad f_h \sim \frac{1}{\zeta^{1/3} \ln \zeta} \sim \frac{1}{\hat{Ri}_b^{1.21} \ln \hat{Ri}_b}.$$ \quad (59)

also approach the exact solution

$$f_m \sim \frac{1}{\zeta^{2/3}} \sim \frac{1}{\hat{Ri}_b^2}, \quad f_h \sim \frac{1}{\zeta^{1/3} \ln \zeta} \sim \frac{1}{\hat{Ri}_b \ln \hat{Ri}_b}.$$ \quad (60)

The asymptotes (59) for $Ri_b \to \infty$ easily follow from equations (57) and (58) using asymptotic expansion in the small parameter $1/Ri_b$.

Thus, the equations (57), (58) with (54) represent the main result of this work. Due to the compact functional form of the GLGS functions they provide new, explicit non-iterative parametrizations of the transfer coefficients C_d and C_h as a function of \hat{Ri}_b for given parameters Pr_0, ε_m and ε_t. When the parametrizations are implemented in a model we recommend testing a hierarchy, by

Accepted for publication in *Journal of the Atmospheric Sciences*. DOI10.1175/JAS-D-19-0255.1.
using either representative values for both ε_m and ε_t (level 1) or a representative value for ε_m and assume $\varepsilon_m = \varepsilon_t$ (level 2). Using these assumptions, simplified analytical expressions for C_d and C_h can be easily derived.

10. Comparison with earlier parametrizations

In this section we compare the non-iterative parametrizations of transfer coefficients based on the GLGS functions with earlier non-iterative parametrizations of Gryanik and Lüpkes (2018), which are based on the G2007a stability functions, and with parametrizations of Louis (1979) and Louis et al. (1981), which are often used in climate models.

Parametrizations of the transfer coefficients C_d and C_h based on the G2007a stability functions were given already by Gryanik and Lüpkes (2018). Their explicit formulae, expressing C_d and C_h in terms of the bulk Richardson number R_i, ε_m and ε_t are given by equations (17) with the neutral values of C_{dn} and C_{hn} from equation (18) and with the functions f_m and f_h given by

\[f_m = \left[1 - \frac{1}{\ln \varepsilon_m} \left(10.29 - 19.5x \right) \right. \]
\[+ \left. 2.18 \ln \frac{(x + 0.67)^2}{x^2 - 0.67x + 0.45} \right]^{-2} \]
\[f_h = \left[1 - \frac{1}{\ln \varepsilon_t} \left(2.16 - 2.5 \ln(1 + 3\zeta + \zeta^2) + 1.12 \ln \frac{\zeta + 0.38}{\zeta + 2.62} \right) \right]^{-1} \]

where $x = (1 + \zeta)^{1/3}$ and ζ is provided by the parametrization of the stability parameter

\[\zeta = \frac{\ln^2 \varepsilon_m}{\ln \varepsilon_t} R_i + \frac{(\ln \varepsilon_m + 11.3)^{3.82}}{11.5(\ln \varepsilon_t + 6.4)^{1.91}} \left[\frac{(\ln \varepsilon_m + 11.3)^2}{\ln \varepsilon_t + 6.4} - \frac{\ln^2 \varepsilon_m}{\ln \varepsilon_t} \right] R_i^{2.91}. \]
These parametrizations were derived for the same ranges of stability Ri_b and roughness parameters ϵ_m and ϵ_t as considered in the present work. The optimal values for the exponent γ and the parameter ζ_a related to the G2007a stability functions were determined as

$$\gamma = 2.92, \quad \zeta_a = 3.6.$$

Thus especially the value for ζ_a differs from the value 7.25 related to the GLGS functions.

Figure 11 shows the differences between the functions f_m and f_h following from equations (61) and (62) and from (55) and (56). Obviously, the scheme based on the G2007a functions produces too large values of f_m and f_h in the region $Ri_b > 0.1$ although there is a large improvement relative to the Louis (1979), Louis et al. (1981) and Launiainen (1995) schemes as discussed in Gryanik and Lüpkes (2018). We refer the reader to the latter work for a detailed study of differences between their scheme and earlier ones. We just stress here that relative to the SHEBA data a significant overestimation of momentum and heat fluxes by Louis (1979) was found and that the essential dependence of f_m and f_h functions on roughnesses and their interplay with stability effects was completely absent. But as Figure 12 shows, due to the overestimation of f_m and f_h in the very stable range, also C_d and C_h are overestimated when the original G2007a functions are chosen. This would lead to an overestimation of the fluxes as well.

Concerning the dependence on roughness we add here one important point, which was not yet mentioned by Gryanik and Lüpkes (2018). Many models use approaches as those of Louis (1979) and Louis et al. (1981) where the normalised transfer coefficients depend on Ri_b only. For example, the parametrization, which is used in the ECMWF model for a long time, applies the simple parametrization

$$f_m = \frac{1}{(1 + b Ri_b)^2}.$$

34

Accepted for publication in *Journal of the Atmospheric Sciences*. DOI 10.1175/JAS-D-19-0255.1.
with the numerical constant \(b = 4.7 \). When this parametrization is used in (17) \(C_d \) and \(C_h \) depend on the roughness parameter \(\varepsilon_m \) only due to the corresponding dependence of \(C_{dn} \) and \(C_{hn} \). Louis derived the functional form and adjusted the coefficients of his parametrization (65) on the basis of the Businger-Dyer stability functions, due to which the fluxes of momentum and heat amount to zero for a Richardson number larger than the critical one. At the time of the derivation of the Louis approach these were the only well documented stability functions. Using the Businger-Dyer stability correction functions Louis computed \(f_m \) and \(f_h \) as functions of \(R_{ib} \) for different \(\varepsilon_m = \varepsilon_t \) and then proposed the best fit for all curves. Implicitly such a fit assumes the existence of some representative \(\varepsilon_m \) for a relevant range of roughness. For the Businger-Dyer stability functions the dependence of the normalized transfer coefficients on the roughness, is indeed, very small (see, e.g., figure 2 in Gryanik and Lüpkes 2018). So, they were approximated by Louis as depending only on stability. Later, the Louis approach was applied without discussion to many other stability functions. Delage (1997) adjusted the only coefficient \(b \) of the parametrization (65) to the new value \(b = 12 \). This value was optimal to fit results based on the stability functions of Beljaars and Holtslag (1991), which do not contain a critical Richardson number.

All this shows that there are important conceptual differences between the parametrizations of Louis and the new ones.

11. Discussion

In this section we discuss the flexibility and robustness of the GLGS functions. Finally, we provide an overview of the assumptions and important constraints.
a. The flexibility/robustness of the new stability functions

Our analysis of the previous sections revealed that the functional form of the GLGS functions is flexible in the sense that they can be used for an optimal approximation not only of the nondimensional gradients, but also of the stability parameter - bulk Richardson number relationship. It was demonstrated that the assumptions for the optimisation offer constraints for the empirical constants. However, the following questions can be asked: How robust are the values of these constants and how far does the accuracy of the nondimensional gradients decrease when only the $\zeta(R_i)$ dependence is optimised?

To answer these questions we performed a sensitivity analysis, which is presented in detail in Appendix D. Summarising the results, our analysis shows that it is extremely difficult to establish an accurate approximation of the stability functions fulfilling all requirements namely to minimize the differences to the observed flux - gradient and flux - profile relationships and to the transfer coefficients using the same empirical constants a_m, b_m, a_h, b_h and Pr_0. The optimal set of parameters for one of the relationships differs significantly from the optimal set for the other relationship.

However, we stress that the GLGS functions provide a reasonable compromise solution when the set of parameters (38) is used.

Furthermore, it is possible to define a set of constants, for which the $\zeta(R_i)$ relationship and the transfer coefficients can almost not be distinguished from those based on the original G2007a functions. This result is important because it shows that the G2007a functions could be replaced by a simpler formulation just for practical reasons, namely to save computing time in climate and weather prediction models.

Finally, we stress that important constraints, which were imposed on the original stability functions of G2007a (their constraints i-iii, page 328) are approximately satisfied by the GLGS func-
tions (34) and (35) as well. So, the limit of the modified ϕ_m-function for $\zeta \to \infty$ is $(a_m/b_m^{2/3}) \zeta^{1/3}$.

With the proposed values $a_m = 5$ and $b_m = 0.3$ we obtain the numerical limit 11.2 $\zeta^{1/3}$ compared to 6.5 $\zeta^{1/3}$ as obtained from the corresponding G2007a function. We argued that this difference causes only a small discrepancy in the near-neutral range due to the relatively small sensitivity of the ϕ_m function to b_m. However, it became important for a better reproduction of the SHEBA data for stronger stability. The limit of the modified ϕ_h-function for $\zeta \to \infty$ is a constant equal to $1 + a_h/b_h = 12.5$ (using $Pr_0 = 1.0$). This is twice larger than the value 6.0 of G2007a and than the value 6.2 resulting from functions by Webb (1970). For the SHEBA data the limit is reached already for $Ri_b > 10$. One can see also that the larger limit 12.5 is still in the scatter of the SHEBA data. The value $a_h = 5.2$ by Webb (1970) is similar to the value 6.0 found by G2007a and very close to our result $a_h = 5.0$, if one accepts the accuracy estimation of 30% by Webb (1970) and Högström (1996) for the MOST coefficients. Although until today the physical mechanisms explaining the scatter of a_h for large stability are unknown, the levelling of ϕ_h is well documented by measurements. It is attributed to the non-stationarity of turbulence at the large stability limit (Mahrt 2007) and to the ceasing of developed Kolmogorov turbulence in the range of large stability (Grachev et al. 2013).

b. Overview of assumptions and important constraints

Our assumptions are the following ones:

(i) The universal functions depend linearly on ζ at small ζ, namely $\phi_m \approx 1 + a_m \zeta$ and $\phi_h(\zeta) \approx 1 + a_h \zeta$ for $\zeta \to 0$. The universal function for momentum ϕ_m is proportional to $\zeta^{1/3}$ in the limit $\zeta \to \infty$, but the function for heat ϕ_h approaches a constant value $Pr_0(1 + a_h)$ in the same limit $\zeta \to \infty$.

(ii) The stability functions fit the measured data in the available range of the stability parameter
ζ, simultaneously approximating the flux-nondimensional gradient relationship and the stability parameter - bulk Richardson number (ζ - Ri_b) relationship reasonably well.

(iii) Both functions φ_m(ζ) and φ_h(ζ) are analytically integrable functions of ζ resulting in analytically tractable stability correction functions ψ_m(ζ) and ψ_h(ζ).

(iv) The functions ψ_m(ζ) and ψ_h(ζ) and their derivatives do not have any singularities at ζ = 0, thus allowing a continuous matching with the stability functions in the unstable range ζ < 0.

(v) The stability correction functions ψ_m(ζ) and ψ_h(ζ) are applicable for all ζ, i.e. provide reasonable physical characteristics of the bulk transfer coefficients. They must be monotonically decreasing functions with respect to the stability parameter ζ (Sharan and Kumar 2010).

The assumption (i) on the limit ζ → 0 is probably the most solid one. The asymptotic limit ζ → 0 (often called log-linear limit, or limit of the Businger-Dyer stability function, or simply Businger-Dyer limit) is well supported by data from field measurements, laboratory experiments and numerical simulations. It holds for a limited range of stability 0 < ζ < 0.08 (corresponding to 0 < Ri_b < 0.05 for the stability functions of G2007a). This fact is well documented by earlier studies (see, e.g., Businger et al. (1971) and Webb (1970)), as well as by results of recent field measurements (see, e.g., G2007a). However, the region of validity of the log-linear asymptotes depends on the used stability functions (see Fig. 1).

The constraint (i) on the limit ζ → ∞ is less solid. As shown by G2007a, the asymptote for φ_m (often called u*_less limit) holds for very large ζ. But in this range the measurement of fluxes is difficult due to their small values. The asymptote for φ_h(ζ) which levels off at large ζ is also very uncertain in the range of extremely large stability. The reason is again related to the difficulty of measuring small heat fluxes. Both the stability functions for momentum and for heat have an
accuracy not higher than 20% – 30% (see e.g. Webb 1970; Foken 2006). The plots in Fig. 1(b) also demonstrate that the asymptotes (ii) are not accepted by all authors.

The constraint (ii) is satisfied by the GLGS functions by construction.

The constraint (iii) guaranties a reasonably simple analytically tractable functional form of stability correction functions \(\psi_m(\zeta) \) and \(\psi_h(\zeta) \). From a first point of view the constraint (iii) has a technical character and has no obvious theoretical support. However, keeping in mind that wind speed and temperature profiles are explicitly involved in the calculation of many physical characteristics of the stable surface layer, the constraint (iii) becomes practically very desirable. Corresponding benefits were already discussed in section 7 in details.

The constraint (iv) of a smooth matching with the convective stability range \((\zeta < 0)\) is realized for the GLGS functions without problems. Indeed, the argument of analyticity at \(\zeta = 0 \) holds due to the linear dependence of \(\psi_m(\zeta) \) and \(\psi_h(\zeta) \) on \(\zeta \) for \(\zeta \to 0 \). This constraint actually is not new. Louis (1979) applied this constraint to establish continuous and smooth transfer coefficients at \(Ri_b = 0 \) in numerical models. From equations (34) and (35) it is obvious that continuity and smoothness of transfer coefficients in \(Ri_b \) immediately follows from continuity and smoothness of the \(\psi_m(\zeta) \) and \(\psi_h(\zeta) \) functions in \(\zeta \) (see equations 34 and 35) and vice versa.

The constraint (v) suggested by Sharan and Kumar (2010) implies that

\[
\frac{d C_k}{d \zeta} \leq 0, \quad C_k(0) = C_{kn}, \quad k = [d, h] \tag{66}
\]

for any given stability correction function \(\psi_m(\zeta) \) and \(\psi_h(\zeta) \) in the range \(0 \leq \zeta \leq \infty \) and for all relevant values of the roughness parameters. This hypothesis is based on, and supported by, all measurements that are known nowadays with reasonable accuracy. The constraint (66) provides a rigorous criterion for the upper bound of the region of applicability of the stability correction functions \(\psi_m \) and \(\psi_h \). Sharan and Kumar (2010) used the criterion in order to prove that the
stability functions of G2007a are applicable for all ζ. It is expected that the GLGS functions (34) and (35) are applicable as well, since they closely approximate the functions of G2007a. Our straightforward analysis (see Appendix C) indeed leads to the conclusion that the inequalities (66) are satisfied by the GLGS functions. If so, the GLGS functions are applicable and have no upper bound for the region of applicability, similar to the G2007a functions.

Finally, to the best of our knowledge, the above full list of constraints was never formulated before explicitly. The establishing of constraints is important not only for empirical stability functions. They can be interpreted also in a more general context, i.e. as constraints, which must be imposed on any stability function, derived theoretically from advanced closure models of second and higher order. Even when the equations for stability functions can be derived from the set of second-order or third-order closure model equations, the solution of these equations provides stability functions in implicit form (see, e.g. Canuto et al. 1994). Their inversion, as a rule, cannot be carried out analytically, so only a numerical or an approximate analytical method of inversion can be used. In the latter case the described constraints provide a guiding line, to avoid erroneous results. The same is true also for spectral closure models (e.g., Sukoriansky et al. 2005; Galperin and Sukoriansky 2010). Their complex results obtained by rigorous theoretical methods require a fractional polynomial fit to obtain a simple functional form of stability functions in the context of MOST (see Sukoriansky 2008; Tastula et al. 2015). For fitting the knowledge of constraints is very useful.

Summarizing, we have shown that all constraints (i) to (v) are fulfilled by the GLGS functions (33) and (33) so that they are established correctly.
12. Summary and conclusions

This work starts with a summary of prior investigations by Grachev et al. (2007a) (G2007a), of Grachev et al. (2015) and Gryanskik and Lüpkes (2018) concentrating on the use of SHEBA data for the parametrization of near-surface fluxes of heat and momentum. Based on these publications a modification and extension of the Grachev et al. (2007a, 2015) formulation of the MOST stability functions is proposed. This results in corresponding parametrizations of transfer coefficients for momentum and heat. The most important results can be summarized as follows:

1. The newly derived stability functions (GLGS) have the same accuracy with respect to data as the original stability functions by G2007a, but their functional form is simpler, so that they are well suited for a practical application in weather and climate models.

2. The new functions are extended to account for their dependence on the neutral limit turbulent Prandtl number Pr_0, the effect of which was not included in the original formulation. As was shown later by Sorbjan and Grachev (2010) Pr_0 can have a significant impact on momentum and heat transfer.

3. For the adjustment of the new functions to measurements we followed a new strategy. Namely, free constants were chosen to represent both the observed flux-nondimensional gradient relationship, the $\zeta - Ri_b$ relationship and the stability dependence of transfer coefficients for heat and momentum simultaneously.

4. It is shown that the GLGS functions are slightly superior to the G2007a functions with respect to the representation of the stability parameter - bulk Richardson number relationship, so also to the corresponding transfer coefficients for momentum and heat.

Accepted for publication in Journal of the Atmospheric Sciences. DOI 10.1175/JAS-D-19-0255.1.
5. The applicability of the modified and extended GLGS stability functions is proven for all values of the stability parameter ζ using a method proposed by Sharan and Kumar (2010).

6. Using the GLGS functions new non-iterative bulk parametrizations of the transfer coefficients of momentum and heat are obtained following an approach of Gryanik and Lüpkes (2018). The transfer coefficients are formulated as functions of the bulk Richardson number Ri_b, of the neutral limit turbulent Prandtl number Pr_0 and of the non-dimensional roughness parameters for momentum $\varepsilon_m = z/z_0$ and heat $\varepsilon_t = z/z_t$.

7. By comparison with SHEBA data it is shown that traditional parametrizations underestimate or overestimate the transfer coefficients for large Ri_b depending on the prescribed value of Pr_0. The new transfer coefficients agree better with SHEBA data for strong stability ($Ri_b > 0.1$) than previous parametrizations and they agree well with those based on the Dyer-Businger functions in the range $Ri_b \leq 0.1$.

8. It is shown that roughness has a significant effect on the stability dependence of the transfer coefficients when the new stability functions are used. This confirms a result of Gryanik and Lüpkes (2018) based on the G2007a functions.

9. Finally, for the practical application in weather and climate models we proposed a hierarchy of the new non-iterative parametrizations of different levels of complexity.

Summarising, we state that the new non-iterative surface layer scheme is superior to other schemes describing the turbulent mixing in polar regions and probably everywhere on earth, so that we recommend it for practical use. We think that biases in the results of climate models during stable stratification should not be avoided by enhancing the efficiency of turbulent mixing. Other mechanisms, e.g., of ice/snow-atmosphere interaction can be responsible for such biases.
We recommend modellers to test the new scheme in weather prediction and climate models, where it can be easily implemented. Although, the new parametrizations are proposed for the calculation of turbulent surface layer fluxes over sea-ice covered polar regions during neutral and stable stratification (for a range of parameters that is comparable with SHEBA data), in principle, they can be used everywhere in models where MOST stability functions can be applied (see discussion by Gryani and Lüpkes (2018) and by Srivastava et al. (2020)).

Acknowledgments. We are glad to thank Drs. D. Chechin, S. Danilov, T. Foken, B. Galperin, M. Gryschka, D. Mironov, I. Repina, D. Sein and S. Sukoriansky for fruitful discussions of many aspects of stratified turbulence, as well as for the helpful comments and suggestions. We thank P. Srivastava and M. Sharan for providing us with the Ranchi data, which were obtained during the DST/MoES CTCZ programme. We gratefully acknowledge the funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Project number 268020496 TRR 172, within the Transregional Collaborative Research Center ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms (AC). Part of the work was also funded by the Helmholtz Association (Germany) and the Russian Science Foundation in the priority thematic area of Climate Research (project HRSF-0036). The work was also supported by the Helmholtz Climate Initiative REKLIM (Regional Climate Change). Finally, we thank three anonymous reviewers for valuable comments, which helped to improve the manuscript.

APPENDIX A

List of stability functions ϕ_k and stability correction functions ψ_k

Below, we list the most often used stability functions and stability correction functions in addition to those of Businger Dyer and G2007a. These are the functions of Holtslag and De Bruin...
(1988), Beljaars and Holtslag (1991), Cheng and Brutsaert (2005), and Sukoriansky (2008), which we write in their traditional forms and mention also their region of applicability. We remind the reader that the stability functions of Businger Dyer have originally been adjusted to the range $0 < \zeta < 1$.

The stability functions of Holtslag and De Bruin (1988) assume the Rayleigh analogy between momentum and heat, which means that $\phi_m(\zeta) = \phi_h(\zeta)$. The functions are given as

$$\phi_m(\zeta) = \phi_h(\zeta) = 1 + a\zeta + b\zeta(1 + c - d\zeta) \exp(-d\zeta), \quad 0 < \zeta \leq 10. \quad (B1)$$

The corresponding stability correction functions read as

$$\psi_m(\zeta) = \psi_h(\zeta) = -a\zeta - b\left(\zeta - \frac{c}{d}\right) \exp(-d\zeta) - \frac{bc}{d}, \quad 0 < \zeta \leq 10 \quad (B2)$$

with the four constants $a = 0.7$, $b = 0.75$, $c = 5$, $d = 0.35$ for both $\psi_m(\zeta)$ and $\psi_h(\zeta)$.

Beljaars and Holtslag (1991) proposed for momentum the stability function (B2) of Holtslag and De Bruin (1988), but the new function for heat is given as

$$\phi_h(\zeta) = 1 + a\zeta \left(1 + \frac{2a}{3}\zeta\right) + b\zeta(1 + c - d\zeta) \exp(-d\zeta), \quad 0 < \zeta \leq 10. \quad (B3)$$

$$\psi_h(\zeta) = -\left(1 + \frac{2a}{3}\zeta\right)^{3/2} + 1 - b\left(\zeta - \frac{c}{d}\right) \exp(-d\zeta) - \frac{bc}{d}, \quad 0 < \zeta \leq 10. \quad (B4)$$

with the same four constants $a = 1$, $b = 0.667$, $c = 5$ and $d = 0.35$ for both $\psi_m(\zeta)$ and $\psi_h(\zeta)$.

The functions of Cheng and Brutsaert (2005) are defined as

$$\phi_k(\zeta) = 1 + a_k \frac{\zeta + \zeta^{b_k}(1 + \zeta^{b_k}(1 - b_k)/b_k)}{1 + (1 + \zeta^{b_k})^{1/b_k}}, \quad 0 < \zeta \leq 5 \quad (B5)$$

and

$$\psi_k(\zeta) = -a_k \ln \left[\zeta + (1 + \zeta^{b_k})^{1/b_k}\right], \quad 0 < \zeta \leq 5 \quad (B6)$$

Accepted for publication in *Journal of the Atmospheric Sciences*. DOI 10.1175/JAS-D-19-0255.1.
where $k = \{m, h\}$. Here $a_m = 6.1$, $b_m = 2.5$ for the momentum stability function ($k = m$) and $a_h = 5.3$ and $b_h = 1.1$ for the heat stability function ($k = h$).

Sukoriansky (2008) established the stability functions

$$
\phi_m = 1 + 2.25 \zeta - 0.4 \zeta^2, \quad 0 < \zeta < 2.81 \quad \text{(B7)}
$$

and

$$
\phi_h = 0.7 \left[1 + 2 \zeta - 0.7 \zeta (\zeta - 1/2)^4\right], \quad 0 < \zeta < 1.64. \quad \text{(B8)}
$$

The corresponding stability correction functions ψ_m and ψ_h are

$$
\psi_m = -(2.25 \zeta - 0.2 \zeta^2), \quad 0 < \zeta < 2.81 \quad \text{(B9)}
$$

and

$$
\psi_h = -0.7 \left(2 \zeta + 0.14 \left[(\zeta - 1/2)^5 + (1/2)^5\right]\right), \quad 0 < \zeta < 1.64. \quad \text{(B10)}
$$

Here, a mispresentation of functions (B9) and (B10) by Sukoriansky (2008) is corrected. All corrections have been accepted by Sukoriansky (private communication).

In contrast to empirically based functions the functions of Sukoriansky (2008) do not have free parameters. All coefficients given in equations (B7) and (B8) have been derived rigorously under several well established assumptions (see Sukoriansky and Galperin 2013, and references therein).

APPENDIX B

Dependence of stability functions on Pr_0

In this appendix we clarify some issues related with the definition of the stability function ϕ_h and stability correction function ψ_h and their dependences on the neutral limit Prandtl number Pr_0.

Accepted for publication in Journal of the Atmospheric Sciences. DOI 10.1175/JAS-D-19-0255.1.
The Prandtl number Pr in general and its neutral limit in particular represent important characteristics of turbulent flows. It is a measure of the relative importance of mechanical and thermal mixing. Physically, the assumption $Pr \neq 1$ originates from the conceptual differences between length and time-scales of dissipation/mixing for momentum and heat.

Although observable physical characteristics of the surface layer are invariant with respect to any definition of the dependence on Pr_0, the functional forms of the MOST equations and stability functions depend on this definition. Establishing an empirical value of Pr_0 depends not only on an agreement on the functional form of the stability functions ϕ_m and ϕ_h in the limit of vanishing stratification, but - as becomes clear, e.g., from equation A1 below - also on the used value of the von Karman constant and on the definition of the Obukhov length L. Several researchers prefer not to use Pr_0 at all and use the von Karman constant for temperature κ_t instead (see, e.g., Zilitinkevich et al. 2002; Zilitinkevich and Esau 2007). Then the constant κ_t is introduced similar to the von Karman constant κ as a matter of convenience to ensure $\phi_h(0) = 1$. In this case Pr_0 is defined as $Pr_0 = \kappa / \kappa_t$. Zilitinkevich et al. (2002) used, e.g., $\kappa = 0.4$ and $\kappa_t = 0.42$ so that $Pr_0 = 0.95$.

In the main text of our work we use the definition (1) for the Obukhov length following Monin and Yaglom (1971) with $\kappa = 0.4$ as in Högström (1988) and with the multiplicative formulation of ϕ_h where Pr_0 occurs as a factor. The normalization conditions are given by equations (6) and (7). This follows the traditional line accepted by the modelling community.

Another possibility, which is often used for the processing of measurements (Andreas 1987; Foken 2017) is to use equation (4) for momentum with the normalization (6) together with

$$\frac{\kappa z}{Pr_0 \theta_*} \frac{d \Theta}{dz} = \phi_h(\zeta), \quad (A1)$$

with the normalization

$$\phi_h(0) = 1. \quad (A2)$$
In this case, for self-consistency, equations (11) must be replaced by

\[\psi_k(\zeta) = \int_0^{\zeta} \frac{1 - \phi_k(\zeta')}{\zeta'} d\zeta', \quad \phi_k(\zeta) = 1 - \zeta \frac{d\psi_k}{d\zeta}, \quad k = [m, h]. \] (A3)

The governing MOST equation reads then

\[\hat{R}_b = \frac{(1 - 1/\varepsilon_m)^2}{1 - 1/\varepsilon_i} \frac{\ln \varepsilon_i - [\psi_h(\zeta) + \psi_h(\zeta/\varepsilon_i)]}{[\ln \varepsilon_m - \psi_m(\zeta) + \psi_m(\zeta/\varepsilon_m)]^2}, \quad \hat{R}_b = \frac{R_i}{Pr_0}. \] (A4)

If an alternative definition is preferred it is straightforward to reformulate our results in terms of this definition. For example, Businger et al. (1971) formulated the log-linear stability function for heat as \(\phi_h(\zeta) = 0.95 + 7.8\zeta \) (given here in the form corrected by Högström (1988) to the use of \(\kappa = 0.4 \)), or, in general, as

\[\phi_h(\zeta) = Pr_0 + a_h^i \zeta, \] (A5)

where \(Pr_0 = 0.95 \) and \(a_m = 7.8 \). It is thus an additive formulation for the inclusion of \(Pr_0 \), which, in contrast to our formulation above, does not include the effect of \(Pr_0 \) in the stability correction term. It is obvious that after introducing \(a_h Pr_0 = a_h' \) a multiplicative formulation follows, which reads \(\phi_h(\zeta) = 0.95(1 + 7.8/0.95\zeta) \). Very often \(a_h' \) from (A5) is used in the framework of equations (13) without a clear statement that a correction was already included.

Finally, we stress that one must clearly distinguish between the different formulations of equations concerning \(Pr_0 \). They are not interchangeable, and mixing of them can lead to erroneous results, e.g., to a dependence of \(\psi_h \) on \(Pr_0 \) in the limit \(\zeta \to 0 \) (see, e.g., Sharan et al. 2009; Sukoriansky 2008). For example, the stability correction functions of Sukoriansky (2008) loose their status, because they approach the constant limit for vanishing stratification \(\zeta \to 0 \). Recently, such pseudo-stability correction functions were also introduced for unstable conditions by Sharan et al. (2003), Sharan et al. (2009), and Sharan and Kumar (2010). It is in contradiction with the traditional definition (see equation 12).
Finally, we note that one must also be careful with the formulation of bulk formulae for the heat flux. For example, Louis (1979) and Pithan et al. (2015) use equation (16) as

$$H_f = (1/Pr_0) c_p C_h |\vec{U}(z)| [\Theta_v(z) - \Theta_0]. \quad (A6)$$

In this case Pr_0 would have to be skipped in equation (18).

APPENDIX C

Applicability of the GLGS functions

According to Sharan and Kumar (2010) stability functions are applicable, if the inequalities (66) hold for all values of ζ in the range $0 \leq \zeta \leq \infty$. Combining equations (17) with (18), (19) and (20) the inequalities (66) can be easily reformulated in terms of stability correction functions as

$$Y_m Y'_m \geq 0, \quad Y'_m Y_h + Y_m Y'_h \geq 0, \quad (C1)$$

where by definition $Y_k(\zeta) = \ln \epsilon_k - \psi_k(\zeta) + \psi_k(\zeta/\epsilon_k)$ with $k = [m, h]$. Equation (C1) must be valid in the range $0 \leq \zeta \leq \infty$ for all values of the given parameters ϵ_k. Here the prime means a partial derivative in ζ. Using the GLGS functions (34) and (35) we obtain

$$Y_m = \ln \epsilon_m + 3 a_m b_m \left[(1 + b_m \zeta)^{1/3} - (1 + b_m \zeta/\epsilon_m)^{1/3} \right] \quad (C2)$$

$$Y_h = \ln \epsilon_t + Pr_0 \frac{a_h}{b_h} \left[\log(1 + b_h \zeta) - \log(1 + b_h \zeta/\epsilon_t) \right] \quad (C3)$$

and

$$Y'_m = a_m \left[(1 + b_m \zeta)^{-2/3} - (1 + b_m \zeta/\epsilon_m)^{-2/3} \right] \quad (C4)$$

$$Y'_h = Pr_0 a_h \left[(1 + b_h \zeta)^{-1} - (1 + b_h \zeta/\epsilon_t)^{-1} \right] \quad (C5)$$

Since both $\epsilon_m > 1$ and $\epsilon_t > 1$ the functions Y_m, Y_h as well as Y'_m, Y'_h are always larger than 0, so that conditions C1 are fulfilled and the transfer coefficients are decreasing functions in the whole range of $\zeta > 0$.

Accepted for publication in *Journal of the Atmospheric Sciences*. DOI 10.1175/JAS-D-19-0255.1.
To summarize, we have proven that the GLGS functions are in agreement with constraint (66). So they are applicable for all values of ζ.

APPENDIX D

Sensitivity of the GLGS functions on the choice of parameters

A first impression of the sensitivity of the GLGS functions on the parameters a_m, b_m, a_h, b_h, and Pr_0 can be obtained by Fig. D1 showing the ϕ_m and ϕ_h functions obtained when all parameter values are varied by $\pm 30\%$ relative to their optimal values given by (38). This choice of variation is in line with Webb (1970) and Högström (1996) who estimated the standard deviation for a_m and a_h as 30%. Fig. D1 shows that the differences between curves for a different choice of parameters in the given limits are small compared with the scatter of the SHEBA data around the theoretical curves. This allows us some freedom for the choice of parameters.

With respect to ϕ_h a modification of Pr_0 has the largest effect. For $\zeta < 0.08$ the value of Pr_0 is by far the most important value for a good agreement with observations. As will be shown below Pr_0 affects also strongly the $\zeta (Ri_h)$ relationship in this stability range. However, the first tests have been carried out without a modification of the originally chosen value $Pr_0 = 0.98$.

We conclude from Figure D1 also that the sensitivity on a_m, b_m and a_h, b_h depends on the range of considered stability. It is obvious that for $\zeta < 0.1$ the sensitivity is small compared with the sensitivity in the range $\zeta > 0.1$. Sorbjan (2017) optimized the agreement of the ϕ_m and ϕ_h functions with SHEBA data for $\zeta < 0.6$ by using $a_m = 4.7$ while G2007a proposed $a_m = 5.0$ (and $a_h = 5.0$), which formed the reason for our choice of a_m and a_h in the set of constants (38). This value is also in the range of the finally suggested values (a_m between 4.3 and 6.0) by Högström (1988, 1996). However, it is also obvious that especially in the near-neutral range ($\zeta < 0.02$) values of constants can vary a lot without a large effect. This motivated us to test also other values of a_m than the...
optimal one to obtain perhaps an improved agreement with respect to the $\zeta(Rib)$ relation and to f_m, f_h and C_d, C_h.

Due to the above findings we tested a combination of constants assuming $a_m = 7.0$, which - as we show below - improves slightly the agreement with respect to f_m, f_h for $0.05 < Rib < 0.2$ and for C_d, C_h in the range $0.1 < Rib$. The value 7.0 for a_m forms an upper limit for a reasonable choice with respect to ϕ_m since a larger value would lead to larger differences (15%) to the SHEBA data especially in the near-neutral range ($Rib < 0.05$) (not shown). For the choice $a_m = 7.0$ and $Pr_0 = 0.98$ we found then the optimal set of constants

$$Pr_0 = 0.98, \ a_m = 7.0, \ a_h = 5.0, \ b_m = 0.67, \ b_h = 0.4.$$ \hspace{1cm} (D1)

The corresponding values of γ and ζ_a are 2.63 and 5.1. Results for ϕ_m and ϕ_h obtained with (D1) are shown in Figure D2. The comparison with the corresponding Fig. 3 obtained with the optimal constants (38) shows only small differences. Moderate differences are visible for the $\zeta(Rib)$ relationship (compare Fig. 4 with Fig. D3). Namely, in the range $Rib \approx 0.1 - 0.15$ the curves based on (D1) agree slightly better with the observations than the results based on (38). An improvement becomes clearer by considering the f_m and f_h functions as well as C_d and C_h, which represent the most important quantity with respect to modelling since values of transfer coefficients determine the turbulent fluxes. Figures D4 and D5 show these functions obtained with (D1) and (38). Differences between the results occur in the range $0.01 < Rib < 0.2$ while outside of this range there are almost no differences. For $0.01 < Rib < 0.035$ the set of constants (D1) has slight advantages but a larger advantage for $0.035 < Rib < 0.2$. There is especially a better agreement with the SHEBA data measured at 8.9 m height, which is closest to 10 m height, so to the level, which is mostly considered as a reference for values of transfer coefficients.
One might argue that results based on the assumption \(a_m = a_h = 5.0 \) could perhaps be further improved using other values for \(b_m \) and \(b_h \) than those proposed in (38). However, this leads to drawbacks as shown in Fig. D4 exemplarily for a variation of \(b_m \).

Results are added for two further sets of parameter values. The first one is chosen as an example proving that an optimal agreement only with respect to the \(\zeta(R_i b) \) relationship is not sufficient. This is interesting especially after we have shown already that vice versa an optimal fit of the \(\phi \)-functions to the corresponding SHEBA data resulted in some differences with respect to the measured and modelled transfer coefficients. An optimal agreement solely with respect to the \(\zeta(R_i b) \) relationship is obtained with the parameter values

\[
Pr_0 = 1.4, \quad a_m = 7.0, \quad b_m = 1.6, \quad a_h = 0.3, \quad b_h = 1 \times 10^{-5}. \tag{D2}
\]

Using these values the \(\zeta(R_i b) \) relationship is perfectly approximated in the whole range of stability (Fig. D3). However, as shown in Figure D2 the corresponding \(\phi_h \)-functions (especially their curvature) disagree with the measurements in the range \(\zeta > 1 \) and this leads again to large differences to the SHEBA measurements especially for the transfer coefficients (not shown here). In general, we found that the \(\zeta(R_i b) \) relation in the range \(R_i b < 0.05 \) can be improved when \(Pr_0 \) attains values larger than 1. However, such values are not in agreement with the finding of other authors so that we do not recommend such values at the present stage of research.

There is also a set of parameter values, namely

\[
Pr_0 = 1.0, \quad a_m = 5.0, \quad b_m = 0.603, \quad a_h = 4.3, \quad b_h = 0.9, \tag{D3}
\]

for which the G2007a \(\phi \)-functions are ideally approximated by the GLGS functions with very small differences only (Figure D1). Corresponding results for the \(\zeta(R_i b) \) relationship and for the transfer coefficients can almost not be distinguished from those based on the original G2007a functions.
References

Accepted for publication in *Journal of the Atmospheric Sciences*. DOI10.1175/JAS-D-19-0255.1.

Accepted for publication in *Journal of the Atmospheric Sciences*. DOI10.1175/JAS-D-19-0255.1.

Accepted for publication in *Journal of the Atmospheric Sciences*. DOI:10.1175/JAS-D-19-0255.1.

Accepted for publication in *Journal of the Atmospheric Sciences*. DOI 10.1175/JAS-D-19-0255.1.

Accepted for publication in *Journal of the Atmospheric Sciences*. DOI 10.1175/JAS-D-19-0255.1.

LIST OF FIGURES

Fig. 1. a) The stability functions \(\phi_m \) and \(\phi_h \) of Businger et al. (1971) and Dyer (1974), Holtslag and De Bruin (1988), Beljaars and Holtslag (1991), Cheng and Brutsaert (2005), G2007a (equations 24 and 25), of Sukoriansky (2008) and the functions (32) and (33) (GLGS) plotted versus \(\zeta \). Individual 1-hr averaged SHEBA data based on median fluxes for five levels are shown as grey symbols. \(\zeta \) refers here to the local value at the measurement height. Closed circles mark the maximum \(R_{ib} \), for which the functions are defined. The red circle refers to the Dyer Businger curve. Curves without circle are defined for the whole range shown. b) Percentage error of \(\phi_i \) and \(\phi_0 \) relative to the G2007a functions and c) relative to the Businger-Dyer functions.

Fig. 2. a) The same as Fig 1 but for stability correction functions \(\psi_i \) and \(\psi_H \).

Fig. 3. Stability functions \(\phi_m \) and \(\phi_h \) as a function of \(\zeta \) (log-log scaling). Grey symbols represent SHEBA 1 hr averaged data based on the median fluxes for five measurement levels. In the two bottom panels \(\zeta = z_n / L_1 \) where \(L_1 \) is the Obukhov length at the lowest measurement level \(n = 1 \) and in the two top panels \(\zeta = z_n / L_n \) where \(L \) is the local Obukhov length and \(n \) is the level number. Squares represent bin-averaged data at the measurement levels (red (2.2 m), green (3.2 m), blue (5.1 m), brown (8.9 m), black (14-18.2 m) (all SHEBA) and orange squares are the Ranchi data (Srivastava et al. 2020) obtained at 10 m height. The black solid line represents the functions of G2007a, the red dashed line shows the new functions (32) and (33) using the optimal coefficients (38) \(P_{10} = 0.98 \) and \(a_m = 5.0, b_m = 0.3, a_h = 5.0, b_h = 0.4 \) (a-d).

Fig. 4. Stability parameter \(\zeta \) as a function of \(R_{ib} \). Top (a,b): the red, blue and green solid lines are results obtained with the G2007a functions while the dashed lines represent the corresponding parametrizations of Gryanik and Lüpkes (2018). The blue line belongs to the mean roughness of sea ice found during SHEBA (called here most typical roughness). Other coloured lines belong to extremely low (red) and large (green) roughness. Grey symbols represent SHEBA 1 hr averaged data based on the median fluxes for five measurement levels. Brown bullets represent bin-averaged SHEBA observations. Bottom (c and d): same as two upper graphs but coloured solid lines were obtained with the new stability correction functions (34) and (35) using the optimal coefficients (38) \(P_{10} = 0.98 \) and \(a_m = 5.0, b_m = 0.3, a_h = 5.0, b_h = 0.4 \). Dashed lines represent the approximate solution as explained in Section 8.

Fig. 5. Transfer coefficients \(C_d \) as functions of \(R_{ib} \). The red, blue and green solid lines represent the parametrizations of \(C_d \) and \(C_h \) for \(z_{10} = 10 \) m height of Gryanik and Lüpkes (2018) based on the stability functions of G2007a (panels a, b, c) and based on the GLGS functions (panels d, e, f). The blue lines in panels a, b, c and d, e, f represent the range of ‘typical’ roughness of sea ice but note that different \(\epsilon_m \) and \(\alpha \)-values were used. The other coloured lines belong to extremely low (red) and large (green) roughness. Coloured squares are in panels a, b, c, e the SHEBA observations at the measurement heights \(z = 2.2 \) m (red), 3.2 (green), 5.0 m (blue), 8.9 m (brown), and 14-18 m (black). In panels c and f the squares represent the measurements but related to \(z_{10} \) applying the formula \(C_{d_{10}} = \left[(\log(z_{10}))//(\log(z_{10}))/z_{0}) \right]^2 C_d \) with \(z_0 = 2 \times 10^{-4} \) m.

Fig. 6. Same as Figure 5 but \(C_h \) is shown and values related to \(z_{10} = 10 \) m height are obtained assuming that \(C_{h_{10}} = \left[(\log(z_{10}))//(\log(z_{10}))/z_{0}) \right][[(\log(z))//(\log(z))/z_{10})] C_h \) with \(z = 1.4 \times 10^{-4} \) and \(z_0 = 2 \times 10^{-4} \) m.

Fig. 7. Cost function \(J \) (equation 47) as a function of \(\zeta_0 \) and \(\gamma \). Red dashed lines represent the ideal values (49) with the smallest value of \(J \) for the parameter set (38).
The stability parameter $\zeta = z/L$ as a function of $R_i b$, ϵ_m and α. The solid lines show the exact solutions of the governing MOST equation (23) obtained with the GLGS functions (34) and (35). The dashed lines represent results of the new parametrization (equations 50 - 53 and with 43). The same curves describe also the simplified parametrizations (equations 50 with 43 and 54), since the difference between results of both parametrizations are invisible in the figures. In panels b) and c) curves are shown for $R_i b$ equal to 0.1 (green), 0.15 (blue) and 0.2 (red). Grey symbols represent SHEBA measurements.

Fig. 9. Normalised transfer coefficients f_m and f_h as a function of $R_i b$ for given ϵ_m and α. The thick solid lines show the coefficients obtained using the exact solutions of the governing MOST equation (23) based on the GLGS functions (34) and (35). Thin solid lines with $f_m = f_h = 0$ for $R_i b \geq 0.2$ represent the solution based on the Businger-Dyer stability functions. The dashed green, red, and blue lines show the parametrizations 55 and 56. Brown dashed lines refer to the parametrization by Louis (1979) (Eq. 65). The grey symbols are the SHEBA data at all levels averaged over one hour. Coloured squares represent bin-averages of measurements at different heights where the colour coding is the same as in Figure 5.

Fig. 10. Transfer coefficients C_d and C_h at 10 m height as a function of $R_i b$. The thick solid lines show the coefficients obtained using the exact (iterative) solutions of the governing MOST equation (23) based on the GLGS functions (34) and (35) for ϵ_m and α as indicated in the figure. Dashed green, blue, and red lines represent the results of the approximations (57) and (58). Brown dashed lines refer to the parametrization by Louis (1979) (Eq. 65). Measurements are shown in Figures 5 and 6.

Fig. 11. As Figure 9 but short-dashed lines refer to results obtained with the original stability functions of G2007a.

Fig. 12. As Figure 10 but short-dashed lines refer to results obtained with the original stability functions of G2007a.

Fig. D1. Stability functions ϕ_m and ϕ_h as a function of ζ (with linear vertical axes (top) and logarithmic axes (bottom)). Blue lines refer to the G2007a functions, while the red solid lines are the GLGS functions (32) and (33) with the optimal parameter values (38). Dashed curves represent also the GLGS functions, but with parameters a_m, a_h (red) and b_m, b_h (green) as well as P_i (black) varied by $\pm 30\%$ relative to their values (38). The pink dashed curves are results of the GLGS functions using the parameter values $a_m = 5.0$, $a_h = 4.3$, $b_m = 0.603$, $b_h = 0.9$, $Pr_0 = 1.0$. Individual 1-h averaged SHEBA data based on median fluxes for five levels are shown as grey symbols.

Fig. D2. As Figure 3 but red dashed lines represent the GLGS functions using constants (D2) $a_m = 7.0$, $b_m = 1.6$, $a_h = 0.3$, $b_h = 1 \times 10^{-5}$, $Pr_0 = 1.4$ (a-d) and constants (D1) $a_m = 7.0$, $b_m = 0.67$, $a_h = 5.0$, $b_h = 0.4$, $Pr_0 = 0.98$ (e-h).

Fig. D3. As Fig. 4 but results are based on the GLGS functions using constants (D1) ($a_m = 7.0$, $b_m = 0.67$, $a_h = 5.0$, $b_h = 0.4$, $Pr_0 = 0.98$) (bottom) and (D2) ($a_m = 7.0$, $b_m = 1.6$, $a_h = 0.3$, $b_h = 1 \times 10^{-5}$, $Pr_0 = 1.4$) (top).

Fig. D4. f_m and f_h obtained from SHEBA (symbols with color coding as in Figure 3) and (iterative) results based on the GLGS functions using the constants (D1) (red solid line). The blue lines represent results when $a_m = 5.0$ and $a_h = 5.0$ are prescribed and b_m and b_h are varied (blue solid line: best fit with parameters (38), upper dashed blue line: $b_m = 0.5$, $b_h = 0.4$, lower dashed blue line: $b_m = 0.1$, $b_h = 0.4$. In all cases $\alpha = 0.7$.
Fig. D5. Transfer coefficients C_d and C_h at 10 m height as a function of Ri_b. Solid lines: based on the GLGS functions with the set of constants (38) ($a_m = 5.0$, $b_m = 0.3$, $a_h = 5.0$, $b_h = 0.4$, $Pr_0 = 0.98$) (panels a and b) and with (D1) (panels c and d). Dashed lines (three lowermost lines): based on the Businger-Dyer functions and (three uppermost lines: based on Louis (1979). Dotted lines: based on G2007a. Colours refer to different values of ε_m as in Figure 10. Black symbols represent SHEBA measurements at different heights.
Fig. 1. a) The stability functions ϕ_m and ϕ_h of Businger et al. (1971) and Dyer (1974), Holtslag and De Bruin (1988), Beljaars and Holtslag (1991), Cheng and Brutsaert (2005), G2007a (equations 24 and 25), of Sukoriansky (2008) and the functions (32) and (33) (GLGS) plotted versus ζ. Individual 1-hr averaged SHEBA data based on median fluxes for five levels are shown as grey symbols. ζ refers here to the local value at the measurement height. Closed circles mark the maximum R_i, for which the functions are defined. The red circle refers to the Dyer Businger curve. Curves without circle are defined for the whole range shown. b) Percentage error of ϕ_m and ϕ_h relative to the G2007a functions and c) relative to the Businger-Dyer functions.
Fig. 2. a) The same as Fig 1 but for stability correction functions ψ_m and ψ_h.
Fig. 3. Stability functions ϕ_m and ϕ_h as a function of ζ (log-log scaling). Grey symbols represent SHEBA 1 hr averaged data based on the median fluxes for five measurement levels. In the two bottom panels $\zeta = z_n/L_1$ where L_1 is the Obukhov length at the lowest measurement level $n = 1$ and in the two top panels $\zeta = z_n/L_n$ where L is the local Obukhov length and n is the level number. Squares represent bin-averaged data at the measurement levels (red (2.2 m), green (3.2 m), blue (5.1 m), brown (8.9 m), black (14-18.2 m) (all SHEBA) and orange squares are the Ranchi data (Srivastava et al. 2020) obtained at 10 m height. The black solid line represents the functions of G2007a, the red dashed line shows the new functions (32) and (33) using the optimal coefficients (38) $Pr_0 = 0.98$ and $a_m = 5.0, b_m = 0.3, a_h = 5.0, b_h = 0.4$ (a-d).
FIG. 4. Stability parameter ζ as a function of Ri_b. Top (a,b): the red, blue and green solid lines are results obtained with the G2007a functions while the dashed lines represent the corresponding parametrizations of Gryani and Lüpkes (2018). The blue line belongs to the mean roughness of sea ice found during SHEBA (called here most typical roughness). Other coloured lines belong to extremely low (red) and large (green) roughness. Grey symbols represent SHEBA 1 hr averaged data based on the median fluxes for five measurement levels. Brown bullets represent bin-averaged SHEBA observations. Bottom (c and d): same as two upper graphs but coloured solid lines were obtained with the new stability correction functions (34) and (35) using the optimal coefficients (38) $Pr_0 = 0.98$ and $a_m = 5.0$, $b_m = 0.3$, $a_h = 5.0$, $b_h = 0.4$. Dashed lines represent the approximate solution as explained in Section 8.
FIG. 5. Transfer coefficients C_d as functions of R_i_b. The red, blue and green solid lines represent the parametrizations of C_d and C_h for $z_{10} = 10$ m height of GryaniG and Lüpk (2018) based on the stability functions of G2007a (panels a, b, c) and based on the GLGS functions (panels d, e, f). The blue lines in panels a, b, c and d, e, f represent the range of 'typical' roughness of sea ice but note that different ε_m and α-values were used. The other coloured lines belong to extremely low (red) and large (green) roughness. Coloured squares are in panels a, b, c, e the SHEBA observations at the measurement heights $z = 2.2$ m (red), 3.2 (green), 5.0 m (blue), 8.9 m (brown), and 14-18 m (black). In panels c and f the squares represent the measurements but related to z_{10} applying the formula $C_{dn10} = [(\log(z/z_0)/(\log(z_{10}/z_0))]^2C_{dn}$ with $z_0 = 2 \times 10^{-4}$ m.
FIG. 6. Same as Figure 5 but C_h is shown and values related to $z_{10} = 10$ m height are obtained assuming that

$$
C_{h10} = \left[\frac{\log(z/z_0)}{\log(z_{10}/z_0)} \right] [\log(z/z_t)/\log(z_{10}/z_t)] C_{hn} \quad \text{with} \quad z_t = 1.4 \times 10^{-4} \text{ and } z_0 = 2 \times 10^{-4} \text{ m.}
$$

1307

Accepted for publication in Journal of the Atmospheric Sciences. DOI 10.1175/JAS-D-19-0255.1.
FIG. 7. Cost function J (equation 47) as a function of ζ and γ. Red dashed lines represent the ideal values (49) with the smallest value of J for the parameter set (38).
Fig. 8. The stability parameter $\zeta = z/L$ as a function of Ri_b, ε_m and α. The solid lines show the exact solutions of the governing MOST equation (23) obtained with the GLGS functions (34) and (35). The dashed lines represent results of the new parametrization (equations 50 - 53 and with 43). The same curves describe also the simplified parametrizations (equations 50 with 43 and 54), since the difference between results of both parametrizations are invisible in the figures. In panels b) and c) curves are shown for Ri_b equal to 0.1 (green), 0.15 (blue) and 0.2 (red). Grey symbols represent SHEBA measurements.
FIG. 9. Normalised transfer coefficients f_m and f_h as a function of R_i_b for given ϵ_m and α. The thick solid lines show the coefficients obtained using the exact solutions of the governing MOST equation (23) based on the GLGS functions (34) and (35). Thin solid lines with $f_m = f_h = 0$ for $R_i_b \geq 0.2$ represent the solution based on the Businger-Dyer stability functions. The dashed green, red, and blue lines show the parametrizations 55 and 56. Brown dashed lines refer to the parametrization by Louis (1979) (Eq. 65). The grey symbols are the SHEBA data at all levels averaged over one hour. Coloured squares represent bin-averages of measurements at different heights where the colour coding is the same as in Figure 5.
FIG. 10. Transfer coefficients C_d and C_h at 10 m height as a function of Ri_b. The thick solid lines show the coefficients obtained using the exact (iterative) solutions of the governing MOST equation (23) based on the GLGS functions (34) and (35) for ϵ_m and α as indicated in the figure. Dashed green, blue, and red lines represent the results of the approximations (57) and (58). Brown dashed lines refer to the parametrization by Louis (1979) (Eq. 65). Measurements are shown in Figures 5 and 6.
FIG. 11. As Figure 9 but short-dashed lines refer to results obtained with the original stability functions of G2007a.
FIG. 12. As Figure 10 but short-dashed lines refer to results obtained with the original stability functions of G2007a.
Fig. D1. Stability functions ϕ_m and ϕ_h as a function of ζ (with linear vertical axes (top) and logarithmic axes (bottom). Blue lines refer to the G2007a functions, while the red solid lines are the GLGS functions (32) and (33) with the optimal parameter values (38). Dashed curves represent also the GLGS functions, but with parameters a_m, a_h (red) and b_m, b_h (green) as well as P_r (black) varied by ±30% relative to their values (38). The pink dashed curves are results of the GLGS functions using the parameter values $a_m = 5.0$, $a_h = 4.3$, $b_m = 0.603$, $b_h = 0.9$, $P_{r0} = 1.0$. Individual 1-h averaged SHEBA data based on median fluxes for five levels are shown as grey symbols.
Fig. D2. As Figure 3 but red dashed lines represent the GLGS functions using constants (D2) $a_m = 7.0$, $b_m = 1.6$, $a_h = 0.3$, $b_h = 1 \times 10^{-5}$, $Pr_0 = 1.4$ (a-d) and constants (D1) $a_m = 7.0$, $b_m = 0.67$, $a_h = 5.0$, $b_h = 0.4$, $Pr_0 = 0.98$ (e-h).
Fig. D3. As Fig. 4 but results are based on the GLGS functions using constants (D1) \(a_m = 7.0, b_m = 0.67, a_h = 5.0, b_h = 0.4, Pr_0 = 0.98\) (bottom) and (D2) \(a_m = 7.0, b_m = 1.6, a_h = 0.3, b_h = 1 \times 10^{-5}, Pr_0 = 1.4\) (top).
Fig. D4. f_m and f_h obtained from SHEBA (symbols with color coding as in Figure 3) and (iterative) results based on the GLGS functions using the constants (D1) (red solid line). The blue lines represent results when $a_m = 5.0$ and $a_h = 5.0$ are prescribed and b_m and b_h are varied (blue solid line: best fit with parameters (38), upper dashed blue line: $b_m = 0.5, b_h = 0.4$, lower dashed blue line: $b_m = 0.1, b_h = 0.4$. In all cases $\alpha = 0.7$.
Fig. D5. Transfer coefficients C_d and C_h at 10 m height as a function of Ri_b. Solid lines: based on the GLGS functions with the set of constants (38) ($a_m = 5.0$, $b_m = 0.3$, $a_h = 5.0$, $b_h = 0.4$, $Pr_0 = 0.98$) (panels a and b) and with (D1) (panels c and d). Dashed lines (three lowermost lines): based on the Businger-Dyer functions and (three uppermost lines: based on Louis (1979). Dotted lines: based on G2007a. Colours refer to different values of ϵ_m as in Figure 10. Black symbols represent SHEBA measurements at different heights.