Expression and Functional Role of Urotensin-II and Its Receptor in the Adrenal Cortex and Medulla: Novel Insights for the Pathophysiology of Primary Aldosteronism

Luisa Giuliani, Livia Lenzini, Michele Antonello, Enrico Aldighieri, Anna S. Belloni, Ambrogio Fassina, Celso Gomez-Sanchez, and Gian Paolo Rossi

Departments of Clinical and Experimental Medicine (Department of Clinical and Experimental Medicine-Internal Medicine 4) (L.G., L.L., E.A., G.P.R.), Vascular Surgery (M.A.), Human Anatomy and Physiology (Section of Anatomy) (A.S.B.), and Chair of Pathology (A.F.), School of Medicine, University of Padua, I-35121 Padua, Italy, and Division of Endocrinology (C.G.-S.), G. V. (Sonny) Montgomery Veterans Affairs Medical Center, and Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi 39216

Context: The involvement of urotensin II, a vasoactive peptide acting via the G protein-coupled urotensin II receptor, in arterial hypertension remains contentious.

Objective: We investigated the expression of urotensin II and urotensin II receptor in adrenocortical and adrenomedullary tumors and the functional effects of urotensin II receptor activation.

Design: The expression of urotensin II and urotensin II receptor was measured by real time RT-PCR in aldosterone-producing adenoma (n = 22) and pheochromocytoma (n = 10), using histologically normal adrenocortical (n = 6) and normal adrenomedullary (n = 5) tissue as control. Urotensin II peptide and urotensin II receptor protein were investigated with immunohistochemistry and immunoblotting. To identify urotensin II-related and urotensin II receptor-related pathways, a whole transcriptome analysis was used. The adrenocortical effects of urotensin II receptor activation were also assessed by urotensin II infusion with/without the urotensin II receptor antagonist palosuran in rats.

Results: Urotensin II was more expressed in pheochromocytoma than in aldosterone-producing adenoma tissue; the opposite was seen for the urotensin II receptor expression. Urotensin II receptor activation in vivo in rats enhanced (by \(182 \pm 9\%\); \(P < 0.007\)) the adrenocortical expression of immunoreactive aldosterone synthase.

Conclusions: Urotensin II is a putative mediator of the effects of the adrenal medulla and pheochromocytoma on the adrenocortical zona glomerulosa. This pathophysiological link might account for the reported causal relationship between pheochromocytoma and primary aldosteronism. (*J Clin Endocrinol Metab* 94: 684–690, 2009)

The functional regulation of the adrenal gland involves paracrine interactions of numerous peptides (for review, see Refs. 1 and 2). Urotensin II (UII), a vasoactive peptide acting through specific UII receptors (UT-Rs) (3–6), is widely expressed in many tissues (7–12), including the vasculature and the adrenal gland (13–15). The finding of UII and UT-R gene transcripts in aldosterone-producing adenoma (APA) and pheochromocytoma (Pheo) (14, 16) suggested the participation of UII in the regulation of blood pressure and body fluid homeostasis; however, the quantitative expression of UII and UT-R in APA and Pheo and the biological effects of UII in the adrenal gland were unknown. Therefore, molecular techniques were used to quantify...
Adrenomedullary and adrenocortical tumors

250 ng/ml; for urinary metanephrine, 0.4–1.5

in vivo

aldosterone concentration,

mmol/liter; for plasma renin activity, 0.65–2.65 ng Ang-I/ml

secretion at adrenal vein sampling (21), surgery, pathology, and fol-

Data are expressed as median (interquartile range).

Means ± SEM or (range). Normal values are: for serum K⁺ concentration, 3.6–4.5

mmol/l; for plasma cortisol concentration, 50–

110 ng/dl; for plasma aldosterone concentration, <11.0 ng/dl; for plasma cortisol concentration, 50–

250 ng/ml; for urinary metanephrine, 0.4–1.5 μmol/24 h; for urinary normetanephrine, 0.57–1.9 μmol/24 h. NA, Not available.

tify precisely the UII and UT-R transcripts in APA and Pheo and
to pinpoint UII- and UT-R-related pathways in adrenocortical
and adrenomedullary tumors. The presence of the UII peptide
was investigated by immunoblotting and immunohistochemistry
in APA and Pheo. Finally, the role of UT-R activation on the
adrenocortical expression of aldosterone synthase (CYP11B2)
and 11β hydroxylase (CYP11B1) was investigated by means of
an in vivo UII infusion taking advantage of palosuran, a specific
UT-R antagonist (17–19).

Patients and Methods

Adrenalspecimens

Adrenocortical tissues from 22 patients with APA and adrenomed-

dular tissues from 10 patients with Pheo were investigated. Histologi-
cally normal adrenocortical (NAC) and normal adrenomedullary
(NAM) tissue obtained from six patients with renal cancer carcinoma
undergoing unilateral nephrectomy and ipsilateral adrenalectomy and
from five patients adrenalectomized for nonfunctioning incidentally dis-
covered adrenal mass (“incidentaloma”) were studied as controls for the
APA and Pheo tissues, respectively. The use of tissues followed our in-
stitutional guidelines; all patients gave an informed consent. The tissues
were processed as described (20). The diagnosis of APA was based on lateralization of aldosterone
secretion at adrenal vein sampling (21), surgery, pathology, and fol-

ter preoperative, postoperative, or follow-up data. At follow-up, demonstration of normokalemia and cure or
improvement of hypertension, as previously defined (22, 23), were re-
quired. Pheo was diagnosed according to state-of-the-art criteria (24)
and confirmed at pathology, histology, and immunostaining for chro-
mogranin A and synaptophysin.

Measurement of UII and UT-R mRNAs

UII and UT-R mRNAs were measured with a real time RT-PCR with
Universal ProbeLibrary Probes and Universal ProbeLibrary Assay De-
sign by ProbeFinder Software (Roche, Monza, Italy) (www.lc480.it), in the LightCycler 480 Instrument (Roche).

Porphobilinogen deaminase, an accepted housekeeping gene for both adrenal cortex and medulla gene
expression studies, was similarly processed to normalize for RNA qua-
tity and reverse transcription efficiency (25). The specificity of the am-
plicons was verified by sequencing analysis. UII and UT-R expression in
Pheo was calculated relative to porphobilinogen deaminase, used as an internal control, and to the control pools of NAC and NAM
necrotic tissue, used as calibrators, for APA and Pheo, respectively. Quantification of gene expression was carried out by comparative Ct (2-ΔΔCt)
method.

Two-color microarray-based gene expression

cRNA was synthesized from 500 ng of total RNA using the Low RNA
Input Linear Amplification Kit and the Two-Color RNA Spike-In (Ag-
lent Technologies, Palo Alto, CA) (26), as detailed in Supplemental Methods (published as supplemental data on The Endocrine Society’s Journals Online web site at http://jcem.endojournals.org). The Labeled/Amplified cRNA was hybridized on an oligomicroarray chip (Whole
Human Genome Microarray Kit, 1 × 44K, G4112A; Agilent Technolo-
gies) that contains about 44,000 60-mer in situ synthesized sequences representing the whole human genome. Details for data analysis are
reported in Supplemental Methods.

UII and UT-R protein expression and
immunohistochemistry

Immunoblot analysis with a goat polyclonal antibody was used to
investigate the expression of UII and UT-R at the protein level, as detailed in Supplemental Methods. The UII antibody is directed against the C-
terminal portion of the UII precursor from which mature UII originates.
The membranes were incubated overnight at 4°C with a primary antibody
against UII (1:500 dilution) or UT-R (1:500), both from Santa Cruz
Biotechnology (Santa Cruz, CA) and then with the horseradish peroxi-
dase conjugated secondary antibody goat anti-rabbit IgG (1:5000; Amersham Biosciences Europe, Freiburg, Germany). Detection was made with the en-
hanced chemiluminescence system from Pierce (CELBio, Milan, Italy).

Blots were analyzed by the Quantity One Program of VersaDOC 1000
(Bio-Rad, Milan, Italy). Deglycosylation of protein extracts was per-
formed by Enzymatic Protein Deglycosylation Kit (Sigma, Milan, Italy).

TABLE 2. Relative expression (ΔΔCt) of the UII and UT-R genes and their ratio in the normal adrenal medulla and cortex and in
adrenomedullary and adrenocortical tumors

<table>
<thead>
<tr>
<th>Adrenomedullary tissue</th>
<th>UII mRNA (arbitrary units)</th>
<th>UT-R mRNA (arbitrary units)</th>
<th>UII/UT-R ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pheo</td>
<td>1.11 (0.00–3.45)</td>
<td>0.06 (0.00–0.51)</td>
<td>4.79 (0.00–69.39)</td>
</tr>
<tr>
<td>Normal medulla</td>
<td>1.0 (0.17–1.83)</td>
<td>1.00 (0.15–1.85)</td>
<td>1.00 (0.00–3.78)</td>
</tr>
<tr>
<td>Adrenocortical tissue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APA</td>
<td>0.05 (0.00–0.43)</td>
<td>10.5 (0.7–18.9)</td>
<td>0.013 (0.00–0.128)</td>
</tr>
<tr>
<td>Normal cortex</td>
<td>1.33 (0.00–2.73)</td>
<td>1.0 (0.00–3.5)</td>
<td>1.00 (0.44–1.56)</td>
</tr>
</tbody>
</table>

Data are expressed as median (interquartile range).

a P < 0.01 vs. NAC.

b P < 0.035 vs. APA.

c P < 0.05 vs. NAM.

d P < 0.001 vs. Pheo.

Downloaded from https://academic.oup.com/jcem/article-abstract/94/2/684/2598689 by guest on 15 December 2018
Details for immunohistochemistry are given in Supplemental Methods.

UT-R activation in rats

To investigate whether the UT-R activation up-regulates the adrenocortical expression of the CYP11B2 and CYP11B1, UII (600 pmol/kg·h) (27) was infused by osmotic minipumps (model 2ML2; Alzet, Palo Alto, CA) either alone or on top of the UT-R antagonist palosuran (300 mg/kg) (18) into normotensive male Sprague Dawley rats (of about 250 g body weight; n = 11). Angiotensin II (Ang II) (700 μg/kg·d) was infused in parallel as positive control (28). After 1-wk infusion, the rats were killed, the adrenal gland was snap-frozen in isopentane, precooled on dry ice, and then stored under liquid nitrogen until used for immunohistochemistry and gene expression studies. Specific antibodies against the rat CYP11B2 or CYP11B1 (29) were used for immunohistochemistry. Binding was detected in the tissue sections processed as described in Supplemental Methods. Negative controls were performed by omission of the primary antibody. Sections were mounted and examined at 5× magnification, using a Leica DQ optical microscope. The immunoreactive area was then calculated with a specific routine developed to detect in an operator-independent fashion the brownish staining as percentage of the total adrenal cortex.

Plasma aldosterone concentrations were measured before and after the UII infusion as described (27).

Statistical analysis

Natural logarithm transformation of UII and UT-R genes expression was undertaken to achieve a normal distribution. Comparison of transcript levels between the normal adrenal tissue, the APA, and the Pheo tissue was carried out with ANOVA and Bonferroni post hoc test. The statistical analysis was carried out with the SPSS for Windows software (version 15.01; SPSS Italy Inc., Bologna, Italy); the microarray results were analyzed as reported (26).

Results

Patient characteristics

The main features of patients with APA and Pheo are shown in Table 1. The APA patients showed overtly elevated plasma aldosterone levels and aldosterone renin ratio (ARR), and low values of serum K⁺ and plasma renin activity (22). The Pheo patients had markedly increased urinary metanephrine and normetanephrine excretion. All patients showed cure of the hyperaldosteronism or the Pheo and a marked fall of blood pressure after adrenalectomy.

Quantitative real time RT-PCR

UII and UT-R gene mRNAs were detected in all human adrenal tissues. The specificity of the amplicons was confirmed by sequencing. The UII and UT-R expression showed intermediate values in both the NAC and NAM tissue; however, UII was significantly more expressed in Pheo than in APA, whereas UT-R showed an opposite expression pattern (Table 2). Thus, the ratio of UII/UT-R mRNA differed markedly between Pheo and APA. No correlation between the UII/UT-R mRNA and plasma aldosterone, the aldosterone renin ratio, and mean blood pressure before adrenalectomy was found in the APA.

Immunoblotting and immunohistochemistry

Immunoblot analysis showed the UII precursor peptide and UT-R protein in the NAC and APA and Pheo tissue (Fig. 1A).
Under denaturing conditions, all adrenal specimens showed, besides the expected UT-R band found in the positive control (myocardium), two additional bands, one of about 60 kDa and one of about 80 kDa. After deglycosylation, the 60-kDa band disappeared.

Immunohistochemistry confirmed the UII (precursor and peptide) expression in Pheo (Fig. 1, B–D); it showed prominent staining of groups of cells arranged in nodules and scattered throughout the tissue and sometimes located perivascularly. Only a weak immunostaining for UII could be occasionally detected in the APA.

The specificity of UII detection was confirmed by lack of staining upon tissue exposure to the secondary antibody and the detection reagents after omission of the primary antibody (Fig. 1E) and after preabsorption with UII.

Gene expression profiling by microarrays

With a whole transcriptome analysis, we found marked differences of expressed sequences between APA and Pheo (relative to their respective controls): 30 sequences were overexpressed and 435 underexpressed in APA; 3213 were overexpressed and 1064 underexpressed in Pheo. APA showed a lower UII gene expression than NAC. By contrast, Pheo exhibited over- and underexpression of UII and the UT-R, respectively, compared with NAM tissue.

We used the same whole transcriptome approach to pinpoint genes whose expression clustered with the UII and UT-R genes in adrenocortical tissues. An agglomerative clustering algorithm was applied to the APA and Pheo transcriptome profiles to identify putative mediators of UT-R signaling. This allowed pinpointing 100 sequences that clustered with the UT-R in either APA or Pheo. Of these, 18 sequences exhibited a similar expression trend in both APA and Pheo (Table 3). Few sequences corresponded to as yet functionally unknown genes; among them we could identify two G protein-coupled receptors [G protein-coupled receptor 153 and galanin receptor 3 (GALR3)], nine transcription mediators, two regulators of cell differentiation/apoptosis (BMP8A and CARD9), and three genes encoding for enzymes implicated in protein metabolism processes (ADAMTS7, DUSP15, and MSRA).

Effect of chronic activation of the UT-R on the rat adrenal cortex

UII infusion markedly increased the CYP11B2 expression in the adrenocortical zona glomerulosa of normotensive rats. This increase (Fig. 2, A and C) was associated with a significant increase of plasma aldosterone concentration (Fig. 3); it was more striking than that induced by a high dose of Ang II (Fig. 3B) and was blunted by palosuran (Fig. 3D). Quantitative analysis of CYP11B2 immunostaining confirmed that the effect of UII occurred via UT-R (Fig. 2E). Both UII and Ang II increased also CYP11B1 expression, but for UII this effect was less marked than that on CYP11B1 (data not shown) and nonspecific because it was unaffected by palosuran. Therefore, the specific stimulation of CYP11B2 by UII was more evident after correction for the effect on CYP11B1 (Fig. 2E).

Discussion

The ubiquitous expression of UII and UT-R in vascular tissue (30) and the intimate relationship of the vasculature with the adrenal cortex and medulla suggested that blood vessel wall-derived UII could modulate the release of adrenal hormones and thereby regulate blood pressure.

Takahashi et al. (14) reported the transcripts of UII and its receptor in four APA and seven Pheo and an increased UII-like immunoreactivity in one of six Pheo. Morimoto et al. (31) confirmed immunostaining for both UII and UT-R in Pheo, and for UII in the adrenal medulla and to a lesser extent in the cortex and in adrenocortical tumors. At variance, Zeng et al. (16) described a lower UII and UT-R expression in Pheo tissue, compared with

TABLE 3. Homo Sapiens genes that cluster with the UT-R in APA and Pheo by oligomicroarray analysis

<table>
<thead>
<tr>
<th>Gene name</th>
<th>Accession no.</th>
<th>Description</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADAMTS7</td>
<td>NM_014272</td>
<td>ADAM metalloprotease with thrombospondin type 1 motif, 7</td>
<td>Proteolysis</td>
</tr>
<tr>
<td>BHLHB4</td>
<td>NM_080606</td>
<td>Basic helix-loop-helix domain containing, class B, 4</td>
<td>Transcription</td>
</tr>
<tr>
<td>BMP8A</td>
<td>NM_181809</td>
<td>Bone morphogenetic protein 8a</td>
<td>Cell differentiation</td>
</tr>
<tr>
<td>CARD9</td>
<td>BC070091</td>
<td>Caspase recruitment domain family, member 9</td>
<td>Regulation of apoptosis</td>
</tr>
<tr>
<td>CEBPA</td>
<td>NM_004364</td>
<td>CCAAT/enhancer binding protein</td>
<td>Transcription</td>
</tr>
<tr>
<td>DUSP15</td>
<td>NM_080611</td>
<td>Dual specificity phosphatase 15</td>
<td>Protein amino acid dephosphorylation</td>
</tr>
<tr>
<td>EN2</td>
<td>NM_001427</td>
<td>Engrailed homolog 2</td>
<td>Transcription</td>
</tr>
<tr>
<td>FOXQ1</td>
<td>NM_033260</td>
<td>Forkhead box Q1</td>
<td>Transcription</td>
</tr>
<tr>
<td>GALR3</td>
<td>NM_003614</td>
<td>Galanin receptor 3</td>
<td>Neuropeptide signaling pathway</td>
</tr>
<tr>
<td>GPR153</td>
<td>NM_207370</td>
<td>G protein-coupled receptor 153</td>
<td>G protein-coupled receptor protein signaling</td>
</tr>
<tr>
<td>GRIN1</td>
<td>NM_021569</td>
<td>Glutamate receptor, ionotropic, N-methyl D-aspartate 1</td>
<td>Ion transport</td>
</tr>
<tr>
<td>MLL3</td>
<td>NM_170606</td>
<td>Myeloid/lymphoid or mixed-lineage leukemia 3</td>
<td>Transcription</td>
</tr>
<tr>
<td>MSRA</td>
<td>NM_012331</td>
<td>Methionine sulfoxide reductase A</td>
<td>Protein metabolic process</td>
</tr>
<tr>
<td>PHOX2A</td>
<td>NM_005169</td>
<td>Paired-like (aristata) homeobox 2a</td>
<td>Transcription</td>
</tr>
<tr>
<td>SOX1</td>
<td>NM_005886</td>
<td>SRY (sex-determining region Y)-box 1</td>
<td>Transcription</td>
</tr>
<tr>
<td>SOX17</td>
<td>NM_022454</td>
<td>SRY (sex-determining region Y)-box 17</td>
<td>Transcription</td>
</tr>
<tr>
<td>TSPAN10</td>
<td>NM_031945</td>
<td>Tetraspanin 10</td>
<td>Unknown</td>
</tr>
<tr>
<td>ZNFS79</td>
<td>NM_152600</td>
<td>Zinc finger protein 579</td>
<td>Transcription</td>
</tr>
</tbody>
</table>

The sequences reported showed an expression profile similar to UT-R, e.g. high in APA and low in Pheo.
the normal adrenal tissue, but they provided neither peptide measurement nor comparison with NAM tissue as referent. Therefore, it was not only contentious whether UII was differentially expressed between the normal adrenal cortex and medulla and between Pheo and APA, but also, more importantly, whether UII played any functional role in the adrenal gland.

The present results can fill this gap of knowledge; notwithstanding a relatively large spread of the data, the Pheo exhibited higher UII mRNA content than the APA (Table 2), which showed the lowest level among all adrenal tissues examined.

It is noteworthy that an opposite expression profile of UT-R transcripts across adrenal tumors was detected: the APA showed higher mRNA levels than the Pheo and the normal adrenal medulla, suggesting down-regulation of UT-R when UII expression is enhanced and vice versa. These differences suggest a pathophysiological role of UII in the adrenal gland.

Our studies also showed the UII peptide and the UT-R protein in the normal adrenal cortex and in the APA and Pheo tissue. At immunoblotting, besides the expected 43-kDa band (detected in the human myocardium), we found two additional bands of 60 and 80 kDa in all adrenal specimens (Fig. 1A, bottom). The disappearance of the 60-kDa band after protein deglycosylation indicates the occurrence of a glycosylated form of UT-R in the adrenal. The persistence of the 80 kDa after this treatment in APA suggests the presence of UT-R dimerization, a finding that deserves further specific research. Overall, the UII overexpression in Pheo suggests a major role of UII in the pathophysiology of these tumors and particularly in a subset of them that have been causally associated with primary aldosteronism (32–36).

Detection and localization of UII in Pheo tissue and related pathway

Immunohistochemistry confirmed that UII peptide is synthesized in Pheo (31) and furnished novel information on its localization. It showed a specific staining of clusters of Pheo cells, sometimes arranged in nests and located in perivascular regions (Fig. 1, B–D). The differences of UII and UT-R transcripts between APA and Pheo detected with a whole transcriptome analysis and using the NAC and NAM as reference could be confirmed by RT-PCR, thus extending previous findings (14, 16). Moreover, we identified 18 sequences (Table 3) with an expression profile similar to that of UT-R, e.g. high in APA and low in Pheo. Of these, two pertain to G protein-coupled receptors: the galanin receptor 3 (GALR3) and G protein-coupled receptor 153 (GPR153). GALR3 binds galanin, a neuropeptide that is synthesized in the adrenal medulla, and Pheo and is involved in the regulation of adrenocortical function (37). GPR153 encodes an orphan receptor not characterized as yet (38). Of the other sequences, SOX1 and SOX17 entail transcription factors belonging to a class of genes known to be expressed during adrenal fetal development (39). Therefore, these findings emphasize the importance of the interactions between the medulla and cortex and implicate these novel mediators in the UII-related molecular mechanisms.

Effects of UT-R activation in the rat adrenal cortex

We explored the functional effect of a chronic UT-R overactivation on CYP11B2 or CYP11B1 expression with a 1-wk in-
fission of UII in the presence or absence of an UT-R antagonist in normotensive rats. This experiment was made possible by two recent accomplishments: 1) the development of specific antibodies for these enzymes (29); and 2) the discovery of the UT-R antagonist palosuran (18). UII markedly increased the plasma concentration of aldosterone (Fig. 3) and the CYP11B2 expression in the zona glomerulosa (Fig. 2); this latter effect was blunted by palosuran, thus indicating that it occurred via UT-R activation. Moreover, the UII-induced stimulation of CYP11B2 is likely to be physiologically relevant because the result was more potent than that elicited by a high dose of Ang II, the most widely known secretagogue for aldosterone. Hence, our data support the hypothesis that UII synthesized in the adrenal medulla, and to a larger extent in Pheo, stimulates aldosterone secretion by specifically turning on the expression of the CYP11B2 gene in the zona glomerulosa.

Conclusions

The present results showed the expression of UII in the normal human adrenal gland, in APA and, at a higher level, in Pheo tissue. The opposite trend of expression of UII receptor between APA and Pheo, along with the differences of genes implicated in UII signaling, supports a role of UII in the paracrine interactions between the adrenal medulla and cortex (1, 2). Being relevant for the regulation of adrenal gland function and for the pathophysiology of Pheo and APA, these interactions might provide a mechanistic explanation for the Pheo that presented clinically as aldosteronism (32–36).

Acknowledgments

Address all correspondence and requests for reprints to: Prof. Gian Paolo Rossi, M.D., FACC, FAHA, Department of Clinical and Experimental Medicine, University Medicine 4, University Hospital, via Giustinian, 2, 33126 Padova, Italy. E-mail: gianpaolo.rossi@unipd.it.

This study was supported by research grants from The Società Italiana dell’Ipertensione Arteriosa and The Foundation for Advanced Research in Arterial Hypertension and Cardiovascular Disease (F.O.R.I.C.A.) (to G.P.R.). L.L. is supported by a research fellowship of the University of Padova.

Disclosure Statement: The authors of this manuscript have nothing to declare.

References

