Genetic Association and Gene Expression Analysis Identify FGFR1 as a New Susceptibility Gene for Human Obesity

Hong Jiao, Peter Arner, Suzanne L. Dickson, Hubert Vidal, Niklas Mejhert, Corneliu Henegar, Magdalena Taube, Caroline Hansson, Anke Hinney, Pilar Galan, Chantal Simon, Angela Silveira, Anna Benrick, John-Olov Jansson, Anne Bouloumié, Dominique Langin, Martine Laville, Cyrille Debard, Tomas Axelsson, Mikael Rydén, Juha Kere, Karin Dahlman-Wright, Anders Hamsten, Karine Clement, and Ingrid Dahlman*

Context: Previous studies suggest a role for fibroblast growth factor receptor 1 (FGFR1) in the regulation of energy balance.

Objective: Our objective was to investigate whether FGFR1 is an obesity gene by genetic association and functional studies.

Design: The study was designed to genotype common FGFR1 single-nucleotide polymorphisms (SNP) in large cohorts, confirm significant results in additional cohorts, and measure FGFR1 expression in human adipose tissue and in rodent hypothalamus.

Setting: General community and referral centers for specialized care was the setting for the study.

Participants: We genotyped FGFR1 SNP in 2438 obese and 2115 lean adults and 985 obese and 532 population-based children. Results were confirmed in 928 obese and 2738 population-based adults and 487 obese and 441 lean children. Abdominal sc adipose tissue was investigated in 202 subjects. We also investigated diet-induced, obese fasting, and fed rats.

Main Outcome Measures: We analyzed the association between FGFR1 SNP and obesity. In secondary analyses, we related adipose FGFR1 expression to genotype, obesity, and degree of fat cell differentiation and related hypothalamic FGFR1 to energy balance.

Results: FGFR1 rs7012413*T was nominally associated with obesity in all four cohorts; metaanalysis odds ratio $= 1.17$ (95% confidence interval $= 1.10–1.25$), and $P = 1.8 \times 10^{-6}$, which was $P = 7.0 \times 10^{-8}$ in the recessive model. rs7012413*T was associated with FGFR1 expression in adipose tissue ($P < 0.0001$). In this organ, but not in skeletal muscle, FGFR1 mRNA ($P < 0.0001$) and protein ($P < 0.05$) were increased in obesity. In rats, hypothalamic expression of FGFR1 declined after fasting ($P < 0.001$) and increased after diet-induced obesity ($P < 0.05$).

Conclusions: FGFR1 is a novel obesity gene that may promote obesity by influencing adipose tissue and the hypothalamic control of appetite. (J Clin Endocrinol Metab 96: E962–E966, 2011)

Fibroblast growth factor receptor 1 (FGFR1) is activated by several fibroblast growth factors, and previous studies suggest a role for FGFR1 signaling in the regulation of energy balance. We have shown that human sc adipose tissue secretes the FGFR1 ligand FGF1 (1). Silencing of FGFR1 inhibits differentiation (adipogenesis) in human precursor cells (2, 3). Furthermore, adipocyte number is a major determinant for the fat mass in adults, and fat cells are continuously being renewed in adult humans (4). In addition, modulation of hypothalamic FGFR1 signaling in rodents decreases food intake (for details, see Supplemental Data, pub-
lished on The Endocrine Society’s Journals Online web site at http://jcem.endojournals.org) (5–7).

Against this background, we have investigated common single-nucleotide polymorphisms (SNP) in the FGFR1 gene for association with obesity. To further strengthen the notion of FGFR1 as an obesity gene, we studied the expression of FGFR1 in human adipose tissue, and also in the hypothalamic region of the rat brain, in relation to energy balance. Finally, we investigated the influence of FGFR1 genotype on adipose gene expression.

Subjects and Methods

The study was approved by the local ethics committees. All adults gave their informed consent to participation. For subjects under age 18, written authorization was obtained from the parents.

Cohorts

The cohorts for genetic studies are described in Supplemental Table 1 and Supplemental Methods. Cohort 1 comprised obese adults with body mass index (BMI) of 30.0 kg/m² or higher and lean with BMI under 25.0 kg/m², all having European ancestry and living in the greater Stockholm area. Cohort 2 comprised French obese and population-based control children (8). The obese population had BMI Z-score of 3 or higher. In this case, in the obese population, we used the Rolland and Cacheria methodology who defined BMI curve and evolution in the French population (9). The control children participated in a population-based physical activity study (10). Phenotypes were collected before the intervention. Cohort 3 comprised adult French morbidly obese (BMI ≥ 40.0 kg/m²) cases and population-based control subjects. The adults in the control group were participants of SU.VI.MAX (11). Phenotypes were collected at study entry. Cohort 4 encompassed German extremely obese children and adolescents (BMI Z-score = 4.6 ± 2.3) and adult lean controls (BMI Z-score = −1.4 ± 0.4) (12). The BMI of the obese patients was above the 90th BMI percentile for German children and adolescents (see www.mybmi.de).

Subjects included in analysis of human abdominal subcutaneous adipose tissue were from cohort 1 (see above). In these studies, obesity was defined as BMI over 30 kg/m² and leanness as BMI under 25 kg/m². These subjects are described in Supplemental Methods. All subjects were healthy according to self-report. An abdominal adiposity index was used to define BMI curve and evolution in the French population (9). The control children participated in a population-based physical activity study (10). Phenotypes were collected before the intervention. Cohort 3 comprised adult French morbidly obese (BMI ≥ 40.0 kg/m²) cases and population-based control subjects. The adults in the control group were participants of SU.VI.MAX (11). Phenotypes were collected at study entry. Cohort 4 encompassed German extremely obese children and adolescents (BMI Z-score = 4.6 ± 2.3) and adult lean controls (BMI Z-score = −1.4 ± 0.4) (12). The BMI of the obese patients was above the 90th BMI percentile for German children and adolescents (see www.mybmi.de).

Subjects included in analysis of human abdominal subcutaneous adipose tissue were from cohort 1 (see above). In these studies, obesity was defined as BMI over 30 kg/m² and leanness as BMI under 25 kg/m². These subjects are described in Supplemental Methods. All subjects were healthy according to self-report. An abdominal adiposity index was used to define BMI curve and evolution in the French population (9). The control children participated in a population-based physical activity study (10). Phenotypes were collected before the intervention. Cohort 3 comprised adult French morbidly obese (BMI ≥ 40.0 kg/m²) cases and population-based control subjects. The adults in the control group were participants of SU.VI.MAX (11). Phenotypes were collected at study entry. Cohort 4 encompassed German extremely obese children and adolescents (BMI Z-score = 4.6 ± 2.3) and adult lean controls (BMI Z-score = −1.4 ± 0.4) (12). The BMI of the obese patients was above the 90th BMI percentile for German children and adolescents (see www.mybmi.de).

Genotyping

The FGFR1 gene is encoded on chromosome 8 and is in Caucasian samples composed of two haploblocks separated by a region with low LD (www.hapmap.org). We genotyped markers that tagged the common (frequency > 10%) haplotypes as well as a number of markers in the region with low LD. See Supplemental Methods for details.

Quantitative real-time PCR

FGFR1 mRNA was quantified by quantitative real-time PCR as described in Supplemental Methods. We calculated relative changes of the target gene employing the comparative method (User Bulletin no. 2; Applied Biosystems, Foster City, CA).

Western blot

We performed Western blot as described (16) with commercial FGFR1 (catalog item Sc-121; Santa Cruz Biotechnology, Santa Cruz, CA) and β-actin (catalog item A2066; Sigma Chemical Co., St. Louis, MO) antibodies.

Statistical analysis

We used Haploview (17) to test for Hardy-Weinberg equilibrium, and to evaluate association between single SNP or haplotypes and obesity. The χ² test was used to test for association between alleles and obesity. For metaanalysis, the inverse variance method was used for pooling of cohort results. The combination of data and the combined value of the odds ratio (OR) and 95% confidence interval (CI) were calculated using the random-effects estimate method implemented in the R package. Model-based tests were carried out to evaluate association of...

Department of Biosciences and Nutrition (H.J., J.K., K.D.-W.), Karolinska Institutet, and Clinical Research Centre (H.J., J.K.), Karolinska University Hospital, SE-141 57 Stockholm, Sweden; Department of Medicine at Karolinska Institutet and Karolinska University Hospital (P.A., N.M., M.R., I.D.), SE-141 86 Stockholm, Sweden; Department of Physiology/Endocrinology (S.L.D., M.T., C.H., A.B., J.O.J.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, SE-405 30 Gothenburg, Sweden; University of Lyon (H.V., C.S., M.L., C.D.), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U)-870, Institut National de la Recherche Agronomique (INRA) U-1235, Human Nutrition Research Center, Hospices Civils de Lyon, F-69600, Oullins, France; INSERM U-872 (C.H., K.C.), Nutriomique (Team 7), and University Pierre and Marie Curie-Paris 6, Cordeliers Research Center, F-75006 Paris, France; Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière Hospital, F-75013 Paris, France; Department of Child and Adolescent Psychiatry of the University of Duisburg-Essen (A.H.); D-45141 Essen, Germany; INSERM U-557/INRA U-1125 (F.G.), Conservatoire national des arts et métiers, UP13, Le Centre de Recherche en Nutrition Humaine d’Ile-de-France, F-93017 Bobigny, France; University Paris 13; and AP-HP, Avicenne Hospital, F-93017 Bobigny, France; University of Strasbourg (C.S.), EA 1801, F-67000, Strasbourg, France; Cardiovascular Genetics Group (A.S., A.H.), Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, SE-17176 Stockholm, Sweden; Rangueil Institute of Molecular Medicine (A.B., D.L.), INSERM U-858, Paul Sabatier University, BP 84225, F-31432 Toulouse, France; and Department of Medical Sciences (T.A.), Molecular Medicine, Science for Life Laboratory, Uppsala University, SE-751 05 Uppsala, Sweden.
The FGFR1 Gene Is Associated with Obesity

Jiao et al., The FGFR1 Gene Is Associated with Obesity
J Clin Endocrinol Metab, June 2011, 96(6):E962–E966

genotype with obesity using logistic regression implemented in
PLINK (http://pngu.mgh.harvard.edu/~purcell/plink/) (18).

Differences in specific quantitative phenotypes between gene-
totypes were evaluated by analysis of covariance with age and
BMI as covariates. Gender did not affect gene expression. The influence of genotype on specific mRNA according to the additive
model was tested by Spearman Rank correlation. Student’s
 t test was used for two-group comparisons. Values are mean ±
SD unless otherwise indicated.

Results

FGFR1 rs7012413 is associated with obesity

We genotyped nine FGFR1 SNP in cohorts 1 and 2
(Supplemental Table 2). Two SNP were not in Hardy-
Weinberg equilibrium and were therefore excluded from
analysis. One SNP in intron 1 of FGFR1, rs7012413, was
associated with obesity in both cohorts, nominal \(P =
0.0043 \) and 0.002, respectively (Table 1). Three more SNP
were nominally associated with obesity in one cohort only:
rs4733930 and rs6983315 in cohort 1 and rs10958700 in
cohort 2 (Supplemental Table 2). No haplotype was as-

associated with obesity in both cohorts, nominal
\(P = 1.8 \times 10^{-6} \), and OR = 1.17
(95% CI = 1.10–1.25). There was no statistical evidence
for heterogeneity in impact on obesity between cohorts.
Body fat in kilograms was measured in 1484 subjects from
cohort 1 with bioimpedance. In this cohort, rs7012413*C
allele was associated with lower body fat \((P = 0.019) \) using a
generalized linear model and adjusting for height
squared, gender, and age.

The impact of rs7012413 on obesity under different
genetic models was tested next in a joint analysis of all
cohorts. The recessive but not the dominant model
reached genome-wide significance \(P = 7.0 \times 10^{-8}
(OR = 1.43; 95% CI = 1.26–1.63) \) vs. \(P = 0.003 \) (OR =
1.13; 95% CI = 1.04–1.22) (Supplemental Table 3).

rs7012413 was associated with obesity in both wo-
men and men (Supplemental Table 3). We performed
bioinformatic analysis to explore a potential function
of rs7012413. According to TFSEARCH (http://
www.cbrc.jp/research/db/TFSEARCH.html), rs7012413*T is
predicted to cause two extra transcription factor binding sites
for nuclear transcription factor Y and CCAAT box binding
proteins compared with rs7012413*C (Supplemental Fig. 1).

FGFR1 mRNA in human adipose tissue is
associated with rs7012413 genotype and obesity

We next studied FGFR1 expression. FGFR1 mRNA in
intact adipose tissue was increased by about one third in
obese women \((P < 0.0001) \) (Fig. 1A). Smaller cohorts were
used to explore in more detail the pattern of expression
of FGFR1. FGFR1 mRNA in isolated fat cells showed a trend
in the sense of increased expression in obese, but the results were
nonsignificant \((P = 0.10) \) (one-sided test gives \(P = 0.05\);
because the aim of this analysis was to confirm the results
from intact adipose tissue, we think the one-sided test is
appropriate to use) (Fig. 1B). Furthermore, FGFR1 pro-
in adipose tissue was increased 2-fold \((P < 0.05) \) in
obese women (Fig. 1C). By contrast, FGFR1 mRNA in
human skeletal muscle was not influenced by obesity (re-
sults not shown). Finally, FGFR1 mRNA was increased
during differentiation in vitro of precursor cells to adi-
pocytes \((P < 0.01) \) (Fig. 1E). There was a significant over-
total effect of rs7012413 genotype on adipose FGFR1
expression in all subjects combined \((P < 0.001) \) and in the
obese \((P = 0.005) \). TT and CT genotype subjects showed
higher FGFR1 mRNA levels than CC subjects (Supple-
mental Table 4). CT subjects had slightly higher expres-
sion levels of FGFR1 than TT subjects; this may be caused
by the small number of TT subjects \((n = 6) \). An additive
model was significant \((P = 0.018) \).

Hypothalamic FGFR1 mRNA expression is
regulated by energy balance in rodents

The hypothalamic expression of FGFR1 was signifi-
cantly decreased \((P < 0.01) \) by an overnight (16 h) fast and

TABLE 1. Association of FGFR1 SNP rs7012413 with obesity

<table>
<thead>
<tr>
<th>Nationality</th>
<th>Cohort</th>
<th>Obese cases (female/male)</th>
<th>Controls (female/male)</th>
<th>Call rate (%)</th>
<th>Cases (T) (n)</th>
<th>Controls (T) (n)</th>
<th>Cases (C) (n)</th>
<th>Controls (C) (n)</th>
<th>Allele (T) in Cases (%)</th>
<th>Allele (T) in Controls (%)</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swedish</td>
<td>1</td>
<td>1526/912</td>
<td>1163/952</td>
<td>96.9</td>
<td>1449 3337</td>
<td>1109 2923</td>
<td>30.3</td>
<td>27.5</td>
<td>0.0043</td>
<td></td>
<td></td>
</tr>
<tr>
<td>French</td>
<td>2</td>
<td>641/344a</td>
<td>289/243c</td>
<td>95.8</td>
<td>721 1155</td>
<td>331 683</td>
<td>38.4</td>
<td>32.6</td>
<td>0.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>French</td>
<td>3</td>
<td>682/246b</td>
<td>1630/1108</td>
<td>96</td>
<td>521 1035</td>
<td>1690 3786</td>
<td>34</td>
<td>31</td>
<td>0.049</td>
<td></td>
<td></td>
</tr>
<tr>
<td>German</td>
<td>4</td>
<td>278/209c</td>
<td>271/171</td>
<td>100</td>
<td>306 668</td>
<td>240 640</td>
<td>32</td>
<td>27</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>3127/1711</td>
<td>3353/2474</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- Lean and population-based controls.
- Cohorts comprising children in which BMI Z-scores were used to define obesity status as defined in Materials and Methods.
- Population-based controls. Cohort 2 population-based controls include 29 obese children, and cohort 3 population-based controls include five morbidly obese adults.

Downloaded from: https://academic.oup.com/jcem/article-abstract/96/6/E962/2834748 by guest on 01 March 2019
increased ($P < 0.05$) in diet-induced obese rats (Fig. 1, E and F).

Discussion

We report a common SNP, rs7012413, in the first intron of the FGFR1 gene that is associated with obesity in four cohorts, together comprising 4838 obese cases and 5827 lean or population-based controls. We show that FGFR1 mRNA in sc adipose tissue is associated with rs7012413 genotype and obesity status as well as fat cell differentiation. Furthermore, in rodent studies, we observe that hypothalamic expression of FGFR1 is correlated with energy balance.

Association of rs7012413 with obesity was observed in both adults and children. This is in agreement with the recent report that most obesity-susceptibility loci are already associated with anthropometric traits in children/adolescents (19). FGFR1 SNP have previously been examined for association with BMI in 629 individuals from 207 families who were not ascertained based on obesity (20). The lack of association between FGFR1 and obesity in the study by Kaess et al. (20) is not surprising given the limited power of the sample and does not exclude an impact of FGFR1 on obesity.

rs7012413 could hypothetically affect gene expression because many genes have multiple transcriptional regulatory regions. In vitro experiments will be necessary to test the significance of the predicted binding sites associated with one allele of the SNP. Of note, we cannot rule out that rs7012413 is in close LD with another SNP that mediates the impact on obesity and mRNA levels. However, rs7012413 is located in a region spanning intron 1 to 2 that displays low LD between markers, and among other markers genotyped in the region, none is associated with obesity in both cohorts 1 and 2.

Previous studies have shown that FGFR1 regulates human preadipocyte differentiation in vitro (2, 3). We here report that FGFR1 genotype is associated with adipose tissue mRNA levels, and FGFR1 mRNA is up-regulated after differentiation of human adipose tissue precursor cells to adipocytes. Together, these results together are consistent with the hypothesis that FGFR1 could be a regulator of adipogenesis that contributes to obesity by regulating fat cell number. Fat cell number is a major determinant for fat mass (4).

FGFR1 gene variants may also influence obesity by other independent mechanisms, e.g. modulating central regulation of food intake. We demonstrate the novel finding that FGFR1 expression in the rat hypothalamus decreases during a short time of fasting and increases during long-time overfeeding.

In summary, we identified FGFR1 as a novel obesity gene that may promote obesity by influencing adipose tissue and the hypothalamic control of appetite.

Acknowledgments

We are grateful to BEA, the bioinformatics and expression analysis core facility, and MAF, the mutation analysis facility, at the Karolinska Institute for performing genotyping and for excellent technical support by Gaby Åström, Eva Sjölén, Elisabeth Dungner, and Kerstin Wåhle. We are indebted to Véronique Pelloux and Rohia Alili for DNA preparation.

Address all correspondence and requests for reprints to: Ingrid Dahlman, Karolinska University Hospital in Huddinge, Department of Medicine, M63, SE-141 86 Stockholm, Sweden. E-mail: ingrid.dahlman@ki.se; or Juha Kere, Department of Bioiences and Nutrition, Karolinska Institutet, SE-141 57 Stockholm, Sweden, E-mail: juha.kere@ki.se.

This work was supported by grants from AFA Insurance, the Swedish Heart and Lung Foundation, the Swedish Research Council (Project 8691), Novo Nordic Foundation, Swedish Diabetes Association, the Knut and Alice Wallenberg Foundation and the Stockholm County Council (Project 562183). This work is part of the project "Hepatic and adipose tissue..."

References