Book Reviews


If you want to learn Ragin’s Qualitative Comparative Analysis (QCA) and you happen to know French, do not hesitate, just take De Meur’s and Rihoux’ book. It’s definitely the best textbook up until now. I agree with Dirk Berg-Schlosser that the book reflects ‘both the substantive and didactic concerns of the authors’. Above all they do not limit themselves to nice didactical examples to explain the ins and outs of the technique, but go for real life examples, showing the reader the possibilities of QCA in different scientific disciplines.

The book starts with what is in my opinion its weakest part. The authors use a lengthy 44 pages to express their ‘faith’ in QCA as the ‘Third Way’ between quantitative and qualitative research methodology. This discussion is not only coloured by rather caricatured pictures of both qualitative and quantitative research practices, but also by the typically French traditions in what is seen as quantitative and qualitative research. As is well known by now, ‘third ways’ do not always offer the solution to all problems in politics, neither do they in (social) science. One can see QCA indeed as a ‘third way’ between the intensive (interpretative) single unit case study à la Eckstein (Bartolini, 1993) and the more extensive research methods using, say, 50 or more cases in a study. Indeed, QCA tries to answer the analytic problems arising when one wants to study not one but a few cases (typically between 7 and 20) in a comparative way using a limited number of variables (usually between 4 and 10, called conditions in the QCA vocabulary). Although examples exist and are given in the book of QCA with 78 cases and 3 (dichotomized) conditions, one can question the advantages of QCA to, for example, log-linear modelling in studies like these. Certainly, Ragin (1987, 1994) himself and the authors of this book are well aware of the links between QCA and other statistical analysis methods (like for example log-linear modelling and Boolean factor analysis).

This part is followed by what I see as the first of the two best chapters of the book, the explanation of QCA with a fictitious example, using set diagrams and simple but necessary Boolean algebra. The example is created in such a way that it possesses the nice properties illustrating the necessity to analyse both successes and failures, with and without so-called ‘logic cases’ and ‘missing data or don’t cares’ (the different zones, as they are called) and the necessity to avoid ‘contradictive simplifying hypotheses’. The chapter continues with the analysis of Rokkan’s classic data on the conditions for ‘splits in working class parties’. The example makes clear that QCA can be used not only in an exploratory way, but also in a confirmative way. Further on, the necessity of going for ‘minimal formula’ in the different zones is clearly shown.

This chapter can be read as a critique on the way some researchers use QCA for analysis only (aware or unaware) of the domain of the successes, claiming to show a causal connection this way. Although this is not stated explicitly, it becomes clear in this chapter that only under the severe restriction of (partial) complementary of the analysis of the successes and the analysis of the failures, possible causal claims can be formulated (Swyngedouw, 2004).

The third chapter is a ‘tour d’horizon’ of the applications of QCA in different scientific disciplines. Its strength lies in showing the rich difference of possible applications of QCA. The examples point not only to the straightforward application of the algorithm, but also to more advanced use of different possibilities in QCA (e.g., what to do in case of contradictory simplifying logical cases; or with heterogeneous populations; confirmative hypotheses testing; testing competitive hypotheses; the use of ‘contradictory cases’ to push the analysis further…).

In the fourth and last chapter the authors shoulder the heavy burden of answering the most common criticisms on QCA. The most severe critique was formulated by Goldthorpe (1997) in his defence of quantitative extensive statistical research methodology. Some of these criticisms, as the authors correctly state, do not target QCA as such, but rather the comparative research method in general, regardless of the analysis tool used.
This series contains the following: the question of variable selection, the so-called Galton problem or the question of the independence of the cases, the black-box problem or the question how the found causal relation is actually realized. All these are methodological questions common to comparative research regardless of the quantitative or qualitative technique used. Other criticisms are more pertinent and not always fully answered by the authors.

Being myself an early student of log-linear models in the 1980s the first obvious critique – the one of the exclusive use of dichotomous variables in QCA – sounds familiar. The same arguments as 20 years ago are used to defend the use of dichotomous variables (the authors) and to reject it (Goldthorpe). The final conclusion will also be the same: while being a limitation, it offers opportunities too. Most of the time, it is this option – with the known loss of information – or no analysis at all, given the lack of alternative analysis methods.

More serious is the questioning of the robustness of the results of QCA. Goldthorpe shows that one single measurement change for one condition for one case can change the solution dramatically. The reason for this is clear: QCA is not a probabilistic statistical analysis tool, but a Boolean analysis tool. Boolean relations are by nature deterministic: something is either present or not present. Something in between – for example in most cases but not all – does not exist. A consequence of this deterministic nature is that measurement errors – made while observing or while creating dichotomous variables – may lead to incorrect results. This is more likely to be the case with QCA than with extensive survey research, given the fact that QCA works with small-N.

This leads automatically to the critique that the results of QCA are dependent on the cases selected. Different case selections can indeed give rise to different analysis results. Given the qualitative nature of QCA, purposefully selective ‘samples’ are used mostly if the population under scrutiny is not extremely limited. As in all qualitative research, careful explanation of case selection and convincing arguments are the only remedy. This is not the same as saying that QCA would be sensitive to outliers. Indeed, it is not. Contrary to what is the case with linear regression analysis, an outlier will not bias the overall analysis result in QCA, but will add an extra term to the solution. A good analyst will easily notice if this is the case.

De Meur and Rihoux conclude that QCA has never promised to be ‘the’ technique miracle. And indeed it knows its drawbacks. One has to weigh up the pros and cons before using it. But I agree with De Meur and Rihoux when they say that in the zone of the small-N research, QCA forms a tool that makes qualitative research formal and replicable, that it does justice to the causal complexity of social phenomena, that it looks for parsimonious explanations, and that it can be used exploratively and confirmatively. These are, for me, enough reasons to take it seriously indeed. And reading this book is a good start.

Marc Swyngedouw
Institute of Social and Political Opinion research (ISPO),
K. U. Leuven, Belgium

Notes

1. Sometimes referred to as ‘(partial) symmetric causality’.

References


DOI: 10.1093/esr/jch013, available online at www.esr.oupjournals.org

The world of the empirical human and social sciences is divided, to a large extent, into ‘qualitative’ and ‘quantitative’ camps. The former, at one extreme, seeks to describe and interpret a single case or event in an idiographic manner, covering it in all its complexity in a ‘deep’ or ‘thick’ (Geertz) way. This is the domain of most historians, social anthropologists, psychiatrists, criminologists, etc. employing a large variety of techniques. The latter, by contrast, attempts to establish commonalities across a larger number of cases and to find, if possible, some generalizations as to common conditions and causes which can be extrapolated to a larger universe. This last possibility, by necessity in the social and to some extent also in the natural sciences, has to be based on probabilistic