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Automated Generation of Fault
Scenarios to Assess Potential
Human Errors and Functional
Failures in Early Design Stages
Human errors are attributed to a majority of accidents and malfunctions in complex engi-
neered systems. The human error and functional failure reasoning (HEFFR) framework
was developed to assess potential functional failures, human errors, and their propagation
paths during early design stages so that more reliable systems with improved performance
and safety can be designed. In order to perform a comprehensive analysis using this frame-
work, a wide array of potential failure scenarios need to be tested. Coming up with such use
cases that can cover a majority of faults can be challenging for engineers. This research
aims overcome this limitation by creating a use case generation technique that covers
both component- and human-related fault scenarios. The proposed technique is a time-
based simulation that employs a modified depth first search (DFS) to simulate events as
the event propagation is analyzed using HEFFR at each time-step. The results show that
the proposed approach is capable of generating a wide variety of fault scenarios involving
humans and components. Out of the 15.4 million scenarios that were found to violate the
critical function, two had purely human-induced faults, 163,204 had purely non-human-
induced faults, and the rest had a combination of both. The results also show that the frame-
work was able to uncover hard-to-detect scenarios such as scenarios with human errors
that do not propagate to affect the system. In fact, 86% of all human action combinations
with nominal human-induced component behaviors had underlying human errors.
[DOI: 10.1115/1.4047557]
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1 Introduction
Human error has been attributed as a major cause of accidents

and performance losses in complex engineered systems [1,2]. On
average, 60–80% of all aviation accidents are caused by human
error [3]. The National Safety Council reports that 90% of mobile
crane crashes are results of operator error [4]. The U.S. Navy esti-
mates that skill-based errors cost around $3.3 billion over a
period of 4 years [3]. In addition, compensations due to musculo-
skeletal disorders associated with poor working conditions
amount to $45–55 billion annually [3]. Similarly, the Institute of
Medicine estimates that between 44,000 and 98,000 Americans
die each year due to medical errors that can be prevented or miti-
gated, which costs around $17 billion [1]. Furthermore, human
error is directly linked to the partial nuclear meltdown at Three
Mile Island, reactor explosion at Chernobyl, and gas leak in
Bhopal, India, which all took a heavy toll on both local and
global economies, communities, and ecologies [5]. The above
body of evidence shows that not only human errors are prevalent
but also they are costly and at times fatal. If one looks further
into these failures, the cause is often a combination of both technical
and human elements acting upon each other over time rather than a
single failure type [6,7]. Hence, it is important to analyze both com-
ponent failures and human errors in combination from a risk mitiga-
tion standpoint rather than analyzing one or the other in isolation.
Design changes made later in the design process after design deci-
sions and resource allocations are committed are costly and time-

consuming [8] leading to budget overruns and missed deadlines.
Hence, it is not only important to analyze both component failures
and human errors but also do it during early design stages.
Engineers have relied on component failure assessment tech-

niques and human reliability assessment techniques to assess the
risk of component failures and human errors, respectively. Tech-
niques such as Failure Modes and Effects Analysis [9], Fault Tree
Analysis [10], and Event Tree Analysis [11] have been traditionally
used to assess component failures. They have also been used to
assess human errors by switching the context to humans. However,
this is usually performed by separate experts, meaning the combined
effects of human errors and component failures cannot be assessed.
They also require detailed component models, making them applica-
ble only during later design stages. In a bid to move failure assess-
ment to early design stages, methods such as Functional Failure
Identification and Propagation [12], Conceptual Stress, and Concep-
tual Strength Interference Theory [13] were developed. These
methods do not address human errors with enough detail. Human
reliability assessment methods such as Systematic Human Error
Reduction and Prediction Approach [14] and Technique for
Human Error Rate Prediction [15], on the other hand, only assess
human errors and are only applicable during later design stages.
As a result, recent research has yielded human error and compo-

nent failure assessment techniques such as a joint analysis using
Function Failure Design Method (FFDM) and Systematic Human
Error Reduction and Prediction Approach (SHERPA) [16], Func-
tion Human Error Design Method (FHEDM) [17], and Human
Error and Functional Failure Reasoning (HEFFR) [18] that are
capable of analyzing both component failures and human errors
in combination early in design, not just to mitigate potential failures
but also to minimize cost and time to market. HEFFR differs from
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the aforementioned methods because it is capable of analyzing the
propagation paths of the faults, giving additional insight into how
the failures and human errors propagate to affect the overall
system. It also can be coupled with other computational design
tools such as Digital Human Modeling (DHM) to perform ergo-
nomic evaluations early in design [19].
HEFFR uses critical event scenario inputs to produce potential

functional failures, human errors, and their propagation paths as
outputs. To perform a comprehensive analysis, HEFFR requires
input scenarios that cover a majority of if not all component failures
and human errors. A major shortcoming of HEFFR is that it relies
on the designer(s) to come up with such use cases; thus making it
highly subjective. Also, it is highly unlikely that anyone or a
group can capture use cases exhaustively enough to cover a major-
ity of the fault scenarios. The overall goal of this research is to over-
come these limitations of HEFFR by coming up with a method to
automatically generate use cases that can potentially cover a wide
range of fault conditions involving both component failures and
human errors. Automatically generating use cases will lessen sub-
jectivity and allow designers to focus their time and efforts
toward other important tasks rather than spending human resources
generating use cases.
Functional Failure Identification and Propagation (FFIP) [12], a

precursor of HEFFR, suffered from the same limitations as
HEFFR when it comes to scenario generation. To address these lim-
itations, previous research has introduced an automated scenario
generation method that generates event trees for failure events for
which the systems’ safety functions fail to activate [20]. One short-
coming of this technique is that event trees related to only one trig-
gering event can be studied at a time. Inherent Behavior of
Functional Models (IBFM) [21] is another failure assessment tech-
nique that automatically generates fault scenarios by first simulating
one fault at a time and eventually progressing to exhaustively simu-
late faults by incrementing the number of faults introduced at a time
by one. IBFM uses functional behaviors instead of component
behaviors to simulate faults which makes the fault generation
method not applicable to HEFFR since HEFFR relies on component
behavior models to simulate faults. There are several other auto-
mated event tree generation methods that either do not directly
pertain to system design [22,23] or are only applicable at later
design stages [24–26]. Additionally, none of the methods discussed
generate use cases that include potential fault conditions relating to
human errors. Hence, there is a need to explore other avenues that
use model-based scenario generation to overcome the limitations of
HEFFR.
In the software engineering field, model-based testing is a sys-

tematic method used early in the software development lifecycle
to test software [27]. This includes automatically generating and
evaluating test cases [27]. Unified Modeling Language (UML) is
widely used in industry and academy to represent software
systems in a graphical manner [28]. It compromises a collection
of nine different types of graphs (e.g., activity and state) that can
represent both structural and dynamic elements of a software
system [28]. UML-based test case generation is one of the most
commonly used test case generation methods in software engineer-
ing because of its universal nature and convenience of use [29]. It is
also known to be highly effective at system-level software testing
[29]. Since its graphical nature, similarities with the use of multiple
graphs to represent the system in HEFFR, ease of implementation,
and applicability during early design stages, we chose the UML-
based automated test case generation methods as a basis to this
research.
This paper uses the UML-based automated scenario generation

techniques as a basis to introduce a method that can automatically
generate use cases as inputs for HEFFR. It uses a modified Depth
First Search (DFS) algorithm, component behavior models, and
the human action classifications to achieve its intended purpose.
A HEFFR analysis is conducted as the algorithm passes through
each level in the search tree to identify the system status and
depending on the functions affected (specified by the user), the

algorithm passes on to the next level or moves on to a new
branch. Overall, this research allows designers to conduct a risk
assessment of component failures and human errors early in
design using HEFFR. Rather than having to retrofit changes or
find workarounds to mitigate potential risk, this approach will
allow designers to come up with complex engineered systems
with minimal potential for failures. Also, this paper demonstrates
the capabilities and limitations of the proposed algorithm using a
liquid tank design example. Note that this paper is based on a
paper presented at the 2020 ASME Computers and Information
Systems in Engineering Conference [30].

2 Background
In this section, we go into detail about previous research that

inspired this novel work. First, we discuss the Human Error and
Functional Failure Reasoning (HEFFR) framework. Next, we
explore existing failure assessment techniques that include auto-
mated fault generation and assess the potential of those methods
to be utilized in automatic use case generation for HEFFR analysis.
Finally, we look into automated test case generation methods used
in software engineering, specifically UML-based test case genera-
tion methods, and explain the reasons behind choosing the approach
to develop the use case generation method introduced in this
research.

2.1 Human Error and Functional Failure Reasoning.
Human Error and Functional Failure Reasoning (HEFFR) [18] is
an extension of Functional Failure Identification and Propagation
(FFIP) [12] framework. It uses three graphical representations to
build a system model and represent human interactions: a Func-
tional Model, Configuration Flow Graph (CFG), and Action
Sequence Graphs (ASG). A Functional Model systematically
decomposes the intended function of the system into subfunctions
and flows where nodes represent functions and arcs represent the
flow of material, energy, or signal. CFGs represent the generic com-
ponents that are needed to fulfill each function in the functional
model as nodes and the flow of material, energy, or signal as
arcs. An ASG is all actions a user needs to perform to interact
with a specific component in CFG arranged in a sequence where
nodes represent actions and arcs represent action outcomes and
control signals. An ASG needs to be created for all components
that interact with humans.
HEFFR uses component behavior models and action classifica-

tions to simulate failure and human errors. Component behavior
models define all nominal and faulty states for each component in
the CFG. Action classifications define all nominal and faulty
action states for each action in the ASG. The critical event scenario
(potential fault conditions) inputs are reasoned using the behavior
simulation to identify the non-human-induced behavior state of
each component in the CFG. The action simulation algorithm
reasons the same input scenarios to determine the action classifica-
tion of each action in ASG and then traces the action classifications
using the ASG to identify the human-induced behavior states
of components that interact with humans. These human-induced
behavior states are then fed into the behavior simulation and subse-
quently into functional failure logic where the function component
relationships and the functional model are used to classify the status
of each function as “Lost,” “Degraded,” or “Nominal.” Finally,
functional failures (if the functional state is “Lost” or “Degraded”),
human errors, and their propagation paths are produced as outputs.
The framework can model both cognitive (e.g., failed detection) and
non-cognitive (e.g., cannot reach an object, where an attempt to
reach is made but cannot be completed due to physical limitations
such as obstruction) human errors and how they affect the func-
tional health of the system. The HEFFR simulation is time-based
where each time-step is discrete events. The overall architecture
of HEFFR is depicted in Fig. 1. More details on how to set up
the modules of HEFFR framework can be found in Refs. [12,18,31].
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HEFFR, when applied solely, is not capable of identifying any
harm the human error can cause to the users or any human perfor-
mance issues. However, when coupled with digital human model-
ing, it enables the evaluation of human performance and safety
early in the design [19]. Another major limitation of HEFFR is
that it relies on the designers to come up with potential fault condi-
tions for inputs. It is important to have a wide range of fault scenar-
ios that can cover most, if not all, potential fault conditions in order
to fully understand the potential risk of failures and human errors. It
is highly unlikely that any one person or a team can come up with
such a range of use cases. In addition, the simulation only analyses
one event scenario at a time. Hence, comparing and contrasting the
impact of different input scenarios can be cumbersome. This paper
addresses these issues by automating the scenario generation and
enabling an exhaustive analysis of all generated scenarios to give
designers more control over analyzing the results.

2.2 Automated Scenario Generation for Complex
Engineered Systems Design and Failure Assessment. Previous
research has attempted to automate scenario generation to conduct
failure assessment and to validate system designs. One such
attempt automatically generates test cases to validate system
design and implementation against requirements using a four-part
algorithm [32]. First, the algorithm uses the requirements model
and the Greedy Search algorithm to identify base scenarios that
have the potential to test all requirements. Next, incomplete base
scenarios are identified and enhanced to make them complete.
Finally, the base scenarios and the enhanced base scenarios are
combined to create a comprehensive list of test cases. TestWeaver
[33] is another automated test case generation tool used for systema-
tic testing. It works like a game of chess where TestWeaver is
playing against the system under test by making a series of
moves with the goal of attaining goal states which force the
system to violate requirements. This allows the testing of a wide
range of alternative paths that can contribute to requirement viola-
tions. This tool was successfully used in the design of the crosswind
stabilization function to the Active Body Control (ABC) suspension

for the Mercedez-Benz 2009 S-Class [34]. Both of the test case gen-
eration methods discussed above do not explicitly search for fail-
ures instead they are intended toward identifying requirement
violations.
There have also been attempts to automate failure assessment by

automating the fault cause and effect scenarios. Prior research has
implemented automated failure cause generation in Failure Modes
and Effects Analysis (FMEA) for diagnostics and prognosis analy-
sis. One such method induces various component failures to the
system and compares results between nominal system behavior
and faulty system behavior to understand the effect of a failed com-
ponent [35]. The algorithm performs this analysis by exhaustively
covering all possible component failures. Another diagnostic appli-
cation of FMEA automatically generates diagnostics and fault anal-
ysis [36]. Another study looks into improving reliability by
automatically generating fault trees. It uses a Finite State Machine
(FSM)-based system model to generate a fault tree that consists
of all possible failures [37]. Another method aimed at mitigating
risk, SimpraPlan [38], uses functional requirements and the physical
structure of the system to generate scenarios that test for system vul-
nerabilities. There are several other methods that automate event
tree generation. However, these event tree generation methods
either do not directly relate to system design [22,23] or require his-
torical data or detailed system data [24–26] making them inapplica-
ble during early design stages. All of the methods presented above
either do not apply in a design context, do not generate human-
related fault conditions, or require detailed system data. Hence,
they are not effective when it comes to generating use cases for
HEFFR analysis.
IBFM [21] uses functional models and functional behavior

models to automatically generate fault scenarios to assess potential
failures and their system-level effects. The simulation starts with
introducing one fault at a time and progresses by incrementing
the number of faults introduced by one. It also allows for
pseudo-time-based simulations. Even though IBFM can be
applied early in design, since it does not consider component beha-
vior models, the scenario generation technique cannot be applied to
HEFFR. Another early design stage failure assessment framework,

Fig. 1 The architecture of human error and functional failure reasoning (HEFFR) method,
where the modules from FFIP are highlighted by the red box

Journal of Computing and Information Science in Engineering OCTOBER 2020, Vol. 20 / 051009-3

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/20/5/051009/6647557/jcise_20_5_051009.pdf by guest on 28 Septem
ber 2022



Functional Failure Identification and Propagation (FFIP), has an
extension in which automated scenario generation is present [20].
It generates event trees for triggering events that fail to activate a
set of predefined safety functions. This method can only evaluate
one triggering event and the corresponding event tree at a time;
thus, making the overall analysis human resource intensive when
a large number of triggering events need to be analyzed. Both of
these methods are not capable of generating human-machine inter-
action related use cases with enough detail to be applied in an
HEFFR analysis. As none of the techniques detailed above
provide a sufficient solution to generate use cases for HEFFR auto-
matically, we were prompted to broaden our research scope to other
fields that utilized model-based system representations. A compar-
ison between the proposed work and the existing risk assessment
methods with automated fault scenario generation is provided in
Table 1.

2.3 Automated Scenario Generation in Software
Engineering. We have explored the Model-Based Testing (MBT)
methods used in software engineering because they involve auto-
mated test case generations. The advantages of MBT are listed as
follows [39]:

• It can reduce design cost.
• It provides the ability to identify issues with requirements.
• It allows testing early in the software design lifecycle.
• It allows for comprehensive tests that exhaustively cover all

potential use cases.
• Fault Detection is more effective and efficient when compared

with other types of software testing.

The advantages of MBT are characteristics that would be ideal in
the use case generation method of HEFFR. Hence, we explored the
test case generation methods utilized in MBT further. One such test
case generation method uses environmental behavior for scenario
generation [40]. It defines the behaviors of the system using event
traces that are made of relations between precedence and inclusion.
Event grammars, which specify the possible event traces, are tra-
versed top-down and left-right to generate test cases and evaluate
cyber-physical systems. Another test case generation framework
uses high-level Petri Nets [41] to generate functional models,
access control models, and potential threat models. Petri Nets is a
systematic method to model and verify software systems [41].
The Petri Net models are then searched using Depth First Search
(DFS) and Breadth First Search (BFS) to generate test cases auto-
matically. A type of Petri Net model (namely Colored Petri Net
model) that can be used to model distributed systems is used in
another approach to generate test cases for distributed system pro-
tocols [42]. This approach takes a simulation-based approach to
automatically generating test cases. In an attempt to overcome chal-
lenges relating to testing and verifying dynamic Simulink models,
Matinnejad et al. proposed a meta-heuristic search-based test case
generation method that covers both continuous and discrete behav-
iors [43]. The test case generation aims to increase the diversity in
the output signals so that the chances of finding unexpected output
signals are maximized. Finally, the generated test cases are priori-
tized based on their likelihood of identifying faults.

Unified Modified Language (UML)-based automated test gener-
ation methods are commonly used MBT types [29]. UML is a
system modeling language that includes several diagrams to repre-
sent the architectural and behavioral aspects of a system [28].
Because of its wide use, usability, and effectiveness, test case gen-
eration methods based on UML are highly popular [29]. One such
method [44] uses state charts to create FSMs using a tool called Per-
formCharts. Then, the FSMs are fed into Condado, a graph theory-
based test case generation tool, to automatically generate test cases
that cover all possible transitions. A similar approach converts state
charts into an intermediate graph which is then traversed based on
various coverage criteria to come up with test cases [45]. Another
method [46] extracts data from class diagrams, sequence diagrams,
and state diagram to automatically generate test cases. Swain et al.
proposed a framework [47] that combines state models and activity
models to create a state activity graph which is then searched using
DFS to generate test cases.
Numerous UML-based test case generation methods use activity

diagrams as the basis to generate test cases. For instance, one
method uses an exhaustive search and a test queue prioritization
technique to identify critical test cases [48]. Another method com-
bines Tabu Search with test cases originating from activity diagrams
to generate test cases [49]. Stallbaum et al. used risk-based prioriti-
zation to generate test cases [50]. The EasyTest method converts
activity diagrams to activity dependency tables, and then into activ-
ity dependency graphs, and traverses using a DFS-based algorithm
to come up with test paths and subsequently test cases [51]. Another
approach to UML-based test case generation is to utilize use case
diagrams as the basis to generate the test cases. For example, one
technique utilizes use case simulations to build test objectives and
sequence diagrams to generate test cases from test objectives
[52]. Another technique uses case and sequence diagrams to
create a system testing graph which is then traversed to generate
test cases [53]. Raza et al. proposed a framework that uses the Inter-
active Overview Diagram and a series of matrix generations to gen-
erate test cases for a specific coverage criteria [54]. Prasanna et al.
came up with a framework [55] that uses object diagrams and
genetic algorithms’ tree cross over technique to generate test
cases exhaustively. Then, the DFS algorithm is used to extract the
test paths.
In summary, the UML-based MBTmethods either utilize a single

diagram or multiple diagrams from the system model to generate
test cases. The resulting test case trees are traversed using a
search algorithm to identify the test paths. Some frameworks go a
step further and prioritize test cases so that more emphasis can be
given to most critical test cases. Similar to UML, the system repre-
sentation in the HEFFR framework uses a combination of graphs to
generate the system model. The similarity in the system representa-
tion and the benefits of MBT guided us toward using UML-based
test case generation as a basis for this research. However, we cannot
use them directly because the system representation in UML is dif-
ferent than in HEFFR. As a result, we have studied the process that
the UML-based approaches have taken and applied it in this
research to automatically generate fault scenarios for the HEFFR
framework. We use the CFG, ASGs, the component behavior
model, and the action classification to generate use cases that repre-
sent a majority of potential component- and human-related faults

Table 1 Comparison between risk assessment methods with automated scenario generation and the proposed work

Ref. [35] Ref. [36] Ref. [37]
SimpraPlan

[38]
IBFM
[21] Ref. [20] HEFFR

Ability to generate scenarios relating to components ✓ ✓ ✓ ✓ ✓ ✓ ✓
Ability to generate scenarios relating to human ✗ ✗ ✗ ✗ ✗ ✗ ✓
Applicability for risk assessment ✓ ✗ ✓ ✓ ✓ ✓ ✓
Applicability during early design stages ✗ ✗ ✗ ✗ ✓ ✓ ✓
Ability to generate a majority of fault scenarios involving both
human and components

✗ ✗ ✗ ✗ ✗ ✗ ✓
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that the system could experience during its lifecycle. A modified
DFS algorithm is then used to search through the use cases and to
evaluate their system-level impact and propagation paths. Section
3 describes the automated scenario generation method and its
implementation with the HEFFR framework in detail.

3 Methodology
The objective of this research is to develop an automated scenario

generation technique that covers a majority of the component- and
human-related fault conditions so that a comprehensive failure anal-
ysis can be conducted using HEFFR. We use the behavior model
and the action classifications to generate fault conditions using tran-
sition functions and a modified DFS. DFS is a tree or graph search
algorithm that searches through a branch as far as possible before
moving on to the next branch [56]. Each level of the branch is con-
sidered as a time-step and each branch as an input scenario for
HEFFR. A HEFFR analysis is done at every time-step to check if
the predefined critical functions are lost. If the functions are lost,
the search stops and the path (branch) and the results (failures
and propagation paths) are stored to a file and the search moves
to the next branch. The search continues until all branches are
evaluated.

3.1 Transition Function. The transition function is a set of
rules that are used to create the child nodes for each mother node.
For our application, these rules change the behavior mode (a state
the component can be in, e.g. for a pipe, it can be leaking,
clogged, or working as expected) of the components to induce
faults. One of the rules makes no change to the mother node, creat-
ing a child node that is exactly the same as the mother. This is done
to study the propagation of faulty behavior without introducing any
further behavior modes. However, the number of time-steps or
number of consecutive child nodes that the “no change rule” is
applied is limited by a user-defined number. The rest of the rules
start with changing the behavior state of one component at a time
until all behavior states for each component are applied. Then, the
behavior modes are changed for two components at a time until
all component combinations are done. This process increments
until the behavior modes of all components are changed to make
sure that all possible combinations are executed. For example, if
the behavior modes of components A, B, and C are A1, A2, B1,
B2, and C1, C2 respectively, the rules applied and the resulting
branches for mother node A1B1C1 are shown in Fig. 2. In order
to avoid explosion of scenarios, once a faulty behavior mode is
introduced for a component, reverting back to a nominal state is
not allowed. However, the transition rules do not stop child nodes
from going to a previously analyzed faulty behavior state (i.e., if
a pipe is leaking, it is allowed to go to clogged and back to
leaking in future time-steps. But it is not allowed to go back to
nominal in the future). In reality, if a failure is present, usually, it
does not go away unless it is repaired. However, one failure can
propagate to another. In rare occasions, external influence can
cause temporary faulty behaviors in components. Such malfunc-
tions go away as the influencing factors resolve. For example,
cold weather can cause fluid to freeze and clog fluid flow in a

pipe until the weather improves. In such cases, designers are
encouraged model those temporary behaviors as a subgroup of
nominal behaviors to allow the algorithm to switch back and
forth between the temporary and nominal behaviors.
When there are components that interact with the human, the

rules are slightly modified. The behavior mode generation for the
component still stays the same. However, the child nodes are
allowed to go back and forth between nominal and faulty behavior
for human-induced behavior modes, because these behaviors do not
involve mechanical failures and they only depend on the human
actions. When a non-human-induced behavior is present, child
nodes are not allowed to go to human-induced behaviors
anymore. When a non-human-induced fault such as a mechanical
failure is present in a component, a humans’ interaction with that
component will not alter the mechanical failure or the system
unless that component is repaired. Hence, considering human
actions for such behavior modes does not add any value. Note
that the action classifications (results of human actions) are not
used to generate scenarios. Instead, the resulting component beha-
vior modes are used to generate scenarios. The HEFFR framework
assumes that the human can only interact with the system through
its components. Thus, the human-induced behavior modes of the
components cover the system-level effects of human error. Hence,
we have chosen not to consider action classifications during sce-
nario generation because this will only increase the possible combi-
nations and not add any value in terms of understanding the
system-level effects of human error.
Action classifications provide valuable information on how

human-induced behaviors are produced. In order to give designers
more details on what specific human actions contribute to human-
induced behaviors, the algorithm does the following. When a
human-induced behavior mode is present, all possible combinations
of action classifications that can result in that specific behavior
mode are generated using the action simulation and presented
with the results of the overall simulation. Even when the behavior
mode is nominal, combinations of action classifications are pro-
vided to the users to make sure that any human errors that fail to
propagate to affect the component behavior do not go unnoticed.
When generating the action classification combinations, the algo-
rithm checks to see if the action classification combination is
viable. For instance, one cannot see an invisible object. The algo-
rithm checks for these relationships using the ASG and if combina-
tions that violate these relationships are present, they are omitted.
These steps make sure that the combinations presented to the user
are as realistic as possible.

3.2 Critical Event Scenario Generation and Evaluation.
The overall process follows the following steps. Note that the
modules from HEFFR is not explained here since they have
already been well documented in previous research [18,19,57].

3.2.1 Initialization. The number of consecutive time-steps the
“no change rule” can be applied is retrieved from the user. The
users are advised to consider the maximum number of time-steps
required to enforce the loss of the critical functions when choosing
the number of consecutive time-steps. For instance, let us assume
that the designers have modeled a hydraulic braking system in a

Fig. 2 An example of an application of the transition function
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way where a leak in the line will cause the fluid to empty in five
time-steps and the brake pad will wear down by 10% on each time-
step if there is a faulty behavior in the caliber. The number of time-
steps the “no change rule” should be applied should be ten instead
of five because it is the maximum number of time-steps it will take
for the braking function to fail. Also, the maximum number of time-
steps that need to be simulated or the lowest level a branch can go to
is also read from the user. These inputs make sure that the algorithm
does not get stuck in a branch indefinitely. Next, the critical func-
tions are read from the users. The behavior modes of all components
and the action classifications of all actions are initialized to a
nominal state. This will serve as the mother seed for the DFS.
Also, the time-step is initialized to zero.

3.2.2 Goal State. The algorithm continues through a branch
until a goal state is achieved. The goal state in this case is the
failure of all critical functions. When a goal state is achieved, the
algorithm writes the path (critical event scenario input to HEFFR)
and the results form HEFFR (functional failures, human errors,
and their propagation paths) to an output file.

3.2.3 Execution of the Transition Function. Two markers are
used to track the application of the rules. They track the rules
applied down and across a branch. When the transition rule is
applied, these markers are updated. If the transition rule is the “no
change rule,” the algorithm checks if it has been applied for the
maximum allowable consecutive applications. If it has, it moves
on to the next rule. When a transition rule is applied, HEFFR anal-
ysis is conducted to check if the critical functions have failed. If the
critical functions have failed, the path of the behavior modes (i.e.,
branch) and the time-steps are written to the output file. The corre-
sponding HEFFR results are also written to the output file. Then, the
search moves to the previous level and the next transition rule is
applied. The above process is iterated until there are no more
rules to be applied in level 1. Every time the search moves to a

new branch, the last time-step from that branch is picked up and
incremented for the new child nodes.
If at least one of the critical functions has not failed, the child

node becomes the new mother node and it is stored with its corre-
sponding time-step. Then, transition rules are applied to the new
mother seed and the process above is repeated. If there are no
rules to be applied at the current level, the search moves back one
level and follows the above steps. Also, if the number of time-steps
reaches the maximum allowable time-steps, the search returns to the
previous level and the above steps are followed. This process is
shown in a high level flowchart in Fig. 3.

3.2.4 Understanding the Results. The output file contains the
fault scenarios with corresponding time-steps and the failures,
human errors, and their propagation paths. We have chosen to
leave the data in its raw form because it will give the designers
the flexibility to analyze for what they are looking for specifically.
For instance, if one is using this framework to identify the behavior
modes that are most vulnerable in terms of having an effect on
certain functions, they can define those functions as critical func-
tions and look at what behavior modes were involved in the shortest
paths that caused those functions to fail. Similarly, if one wants to
compare alternative designs, they can compare the data from the
runs for the alternatives to see which designs had the longest
paths to failure on average. With the emergence of big data and
advances in data science, there are a wide variety of tools to
extract information. Hence, we present as much data as possible
to designers so they can use such tools to extract information that
is tailored to their needs.

4 Working Example
We have chosen a liquid tank design problem to demonstrate the

application and explore the capabilities and limitations of the pro-
posed method. Different versions of this problem have appeared
as case studies in various research studies [12,57–61]. The

Fig. 3 A high-level flowchart of the proposed approach
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problem is to design a liquid tank that holds its water level from
either dropping below a minimum threshold or going above a
maximum threshold. First, a system model is created to represent
the conceptual design of the liquid tank. The functional model,
CFG, ASGs, and a schematic of the system are presented in
Fig. 4. The system consists of two valves, two pipes, and a tank.
An operator is expected to shut off the inlet valve if the water
level is above the maximum threshold and shut off the outlet
valve if the water level is below the minimum threshold. Often,
in complex engineered systems such as aircrafts and nuclear
power plants, operators are expected to monitor displays and
gauges, and operate/interact with the system based on the informa-
tion that is present [62–64]. This case study was chosen as a simpli-
fied version of such scenarios. The functions, corresponding
components, and their behavior modes are shown in Table 2. The
human-induced behavior modes are highlighted using bold text.
For components that require human interactions (inlet and outlet
valve), the actions from ASGs and their classifications are given
in Table 3.
For this study, we chose the number of time-steps a scenario

should be allowed to propagate (number of times the “no change
rule” should be applied) to two. This is because the behavior of

the tank was set such that it would take two time-steps to overflow
or dry out depending on the flow of the liquid. Having more than
two consecutive time-steps is redundant since if the function store
liquid were to fail due to a specific fault, it would in two time-steps.
Hence, analyzing the propagation of the same failure anymore does
not add any further value. We chose the maximum number of time-
steps as five. Since the simulation continuously introduces faults at
each time-step, no single fault scenario can be repeated for more
than two consecutive time-steps, and the tank behavior drives the
failure of function store liquid within two time-steps, ideally,
having up to four time-steps would have revealed a majority of
worse case fault scenario combinations. We chose five time-steps
so that we analyze a step further to uncover any unforeseen fault
conditions. Note that in order to analyze five time-steps (until t=
5), six time-steps need to be analyzed in total because the simulation
starts at t= 0. Analyzing any further will introduce repetition of
faults from previous sets of time-steps. For instance, a scenario
set that was present between time-steps one and three may be
repeated from time-steps five to seven. Since the simulation is time-
based, the number of potential scenarios is infinite if such repeti-
tions are allowed. Hence, to avoid the explosion of scenarios, it is
up to the user to choose the number of total time-steps and
number of time-steps, the “no change rule” can be applied wisely
by considering critical functions and the behavior modes of the
related components.
When creating faults for time-steps, no temporary component

malfunctions were considered (i.e., once a non-human-induced
faulty behavior mode was introduced for a component, it was not
allowed to go back to a nominal behavior mode. However,
human-induced behaviors were allowed to go back and forth
between nominal and faulty behaviors). When generating action
classification combinations that can result in human-induced behav-
iors the following rules were included to keep the scenarios realistic.

• The operators cannot detect a signal without being able to see
it. Hence, When the action classification of the action see water
level is “Not Visible,” combinations with action detect not
equal to “Not Detected—Failed” were omitted.

• One cannot grasp an object without reaching it first. So, when
the action classification for the action reach meant that the
operator did not reach the valve, combinations with action
grasp not equal to “No Action” were omitted.

• One cannot turn a valve without grasping it. Hence, when the
action classification of the action grasp meant that the operator
did not grasp the valve, the combinations with action turn not
equal to “No Action” were omitted.

By executing this case study, we intend to explore if the algo-
rithm is capable of creating effective use cases that cover a wide
range of fault scenarios that involve component failures and

Fig. 4 The system representation of the liquid tank, where the red boxes represent the human involvement [57]

Table 2 Functions, corresponding components, and their
behavior modes

Function Component Behavior states

Import Liquid Valve Nominal Open, Nominal Close,
Failed Open, Failed Close, Stuck
Open, Stuck Close

Guide Liquid
Export Liquid

Transfer Liquid Pipe Nominal, Clogged, Leaking
Supply Liquid
Store Liquid Tank Nominal, Leaking

Table 3 Action classifications of all involved actions

Actions Classifications

Look Visible Not visible
Detect Detected—

Nominal
Not detected—
Nominal

Detected—
Failed

Not detected—
Failed

Reach Reached—
Nominal

Reached—
Failed

Cannot
reach

No action

Grasp Grasped Cannot grasp No action
Turn Turn to close Turn to open Cannot turn No action
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human errors. Then, we study the results to see if the use cases were
useful in identifying potential human errors, component failures,
and their propagation paths by answering questions such as what
are the fault scenarios that affect the critical functions of the
system the fastest? In this case, we have chosen the Store Liquid
function as the critical function because its loss means that the
water level is either too low or too high. While the loss of other
functions may result in the tank not maintaining its liquid level,
the loss by themselves does not mean that the liquid level is not
at a desired level. We also intend to identify the behavior modes
that have the highest chance of affecting the critical function. We
do this by calculating the percentage of scenarios (of all scenarios
identified to cause the critical function to fail) with each type of
faulty behavior modes. Overall, we try to understand if the auto-
mated scenario generation method helps overcome the previously
mentioned shortcomings of HEFFR. Section 5 details the results
from the analysis.

5 Results
The simulation begins by taking the critical function as an input.

Next, the behavior modes of all components are set to nominal—
Nominal Open for valves, Nominal for pipes, and Nominal for the
tank. The initial flow and the water level of the tank are then set
to nominal. Then, the number of time-steps a new node is
allowed to propagate (“no change rule” is applied) and the total
number of time-steps are set. Once these inputs are read, the algo-
rithm begins to evaluate critical event scenarios automatically.
The execution took around 28 min on a personal laptop (IntelCore
i5, 2.9 GHz speed, and 16 GB RAM) which is reasonable consider-
ing the amount of information that can be extracted. In total, around
15 million event scenarios resulted in the function store liquid
failing in t= 5. Only two scenarios were found to have purely
human-induced faulty behaviors whereas 163,204 scenarios had
purely non-human-induced behaviors. The rest of the scenarios
had a combination of both non-human and human-induced faulty
behaviors.
Out of the 1824 possible action classification combinations, only

152 were generated. The rest were omitted (based on the rules
defined in Sec. 4) because they were not realistic. Out of the gener-
ated action classification combinations, four each resulted in
human-induced behaviors: Failed Open and Failed Close. There
were 72 combinations each for Nominal On and Nominal Off. Addi-
tionally, 86% of the action classification combinations that contrib-
uted toward Nominal On and Nominal Off had underlying human
errors (actions in faulty classifications, for example, cannot turn—
when an attempt to turn is made and cannot be physically achieved,
but not due to a component failure) for at least one action meaning
that these errors did not propagate to affect the system. However,
they must be considered when making design decisions because
they may affect the system as the design evolves. Seventy-five
percent of all combinations that led to Nominal Off had the
human error Failed Not Detected. Similarly, detect-related human
errors were prevalent across all behavior modes (50% Failed Detec-
tion in Failed Open, Failed Close, and Nominal On) followed by
reach, grasp, and vision-related errors. The details of this analysis
are shown in Fig. 5, where the percentages are calculated by consid-
ering the number of times an action classification was present in the
action classification combinations that could result in a specific
human-induced behavior.
The shortest path for failure was at four time-steps (t= 3). There

were 10,459 event scenarios that led to the failure of the store liquid
function in four time-steps. All of the event scenarios had the failure
type Leak for the component tank at least once. This is expected
because the function Store Liquid is directly fulfilled by the tank.
A leaking outlet pipe and a clogged inlet pipe were other commonly
occurring failures (79% and 83%, respectively). Failed open was
most common for the outlet valve (78%) and Failed Close was
most common for the inlet valve (78%) among human-induced

behavior modes. The prevalence of the behaviors Leak tank,
Clogged inlet pipe, and Failed Open outlet valve indicate that a
majority, if not all of these event scenarios resulted in a tank dry
out. The detailed analysis of the presence of each faulty behavior
mode in the event scenarios with the shortest path to critical func-
tion failure are shown in Fig. 6.
Using this data, designers may make design decisions to avoid

the leak in the tank and the outlet pipe by trying different materials,
adjusting wall thickness, or recommending additional testing of
these components. Similarly, they may choose to add sensors to
detect clogs in the outlet pipe or check the quality of the liquid to
make sure that there is no residue build-up. For the human-induced
behaviors, detect-related errors are most common followed by
reach-, grasp-, and vision-related errors. To prevent detect-related
errors, designers may choose to make changes to the system by
adding redundant signals or making signals more salient. On the
other hand, they may suggest training to improve the operators
ability to detect signals. Designers may choose to conduct DHM
analyses such as reach analysis and percent vision obscuration to
identify ways to mitigate non-cognitive human errors. Depending
on the workspace design, they may also choose to perform ergo-
nomic assessments such as comfort, lower back compression
force, and biomechanics. They may apply human factors engineer-
ing guidelines, suggest training, or device operational procedures to
mitigate all types of human errors. In contrast, they may not resort to
design decision yet and further analyze the data. They may choose
to find out how the behavior of other functions contribute to the
failure of the tank or repeat the execution with different critical
functions with different input conditions. Either way, when
design changes are made, they may update the system model and
iterate through this process until a satisfactory design is derived.
Note the HEFFR framework, being an early design stage tool,
can only model changes the system functions, components, and
human action sequences. It cannot represent changes to component
parameters (such as thickness and material properties) and human
action parameters (change in anthropocentric and environmental
conditions, etc.), which usually come to light during later design
stages. Hence, the analysis should only be iterated when such
changes are made to the design.

6 Discussion
The working example presented earlier shows how the automated

scenario generation can be used with HEFFR to perform a compre-
hensive analysis to identify potential functional failures, human
errors, and their propagation paths early in design. The presence
of both human-induced and non-human-induced behaviors in the

Fig. 5 The percentage of action classification combinations
with each type of human error
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scenarios indicates that the automatically generated scenarios
included fault conditions involving both humans and components.
The results showed the importance of avoiding behavior modes
such as Leak tank and Clogged input valve to mitigate the potential
loss of the function Store Liquid. Among human actions, detection-
related human errors were most prevalent stressing the need for mit-
igating such errors. Additionally, human errors were present even
when the components were in nominal behavior modes. Even
though these human errors did not propagate to affect the system
under the circumstances the system was analyzed, it is important
to consider them when making design decisions because they
may be exposed in different circumstances.
The above results show the ability of the algorithm to generate a

broad spectrum of fault scenarios involving both components and
humans that can violate the critical function of the system. Only a
small percentage of generated scenarios had purely human-induced
behaviors or non-human-induced behaviors, meaning that if human
errors or component failures were evaluated in isolation, a majority
of potential fault inducing conditions would have been missed. This
shows the importance of assessing the effects of both component
failures and human errors acting in combination to better under-
stand potential risk and promote appropriate mitigation strategies.
The data analysis presented in this paper is minimal when compared
with the information that can be extracted from the data. Only, t= 3
was analyzed in this example. Further analysis can be done at t= 4
or t= 5 to identify how the system behaves when worse case scenar-
ios are not present. Such an analysis can give important information
on how the system will operate under more regular and less severe
fault conditions. The ability to identify human errors that do not
propagate to affect the system is another plus since most system fail-
ures occur through failed to detect, compounding failures. Overall,
the proposed approach allows for a comprehensive failure reasoning
through input scenarios involving the fallibilities of both humans
and components. The results can be used to conduct various types
of analyses, depending on the needs and requirements of the
designers.
The performance-related measures such as the execution time

and the number of scenarios that caused the critical function to
fail of this case study do not necessarily reflect the overall perfor-
mance of the algorithm. Considering the amount of information
that can be extracted and how useful they can be to design a
safer, more reliable system, the execution time for this problem
was acceptable. However, the execution times surrounding more

complex engineered systems and if they outweigh the benefit of
the information received is yet to be seen. A large number of
event sequences were identified to violate the critical function.
We may never know if these numbers mean that the scenarios
included all of the possible combinations of human errors and com-
ponent failures since there is no such data to compare the results
with. However, one can be assured that a majority of such fallibil-
ities were covered because the algorithm evaluated all possible
combinations of behavior modes at least once and the large
volume of results mean that different combination of these behavior
mode combinations was evaluated.
The number of total time-steps and the number of time-steps

where the same scenario can be executed consecutively play a sig-
nificant role in the total number of scenarios evaluated. In fact, the
number of scenarios increases exponentially with each time-step.
Since the simulation is time-based, there is nothing that limits the
number of scenarios except for the time. While having a lot of
data is important to be able to extract a wide variety of information,
repetitive data in large volumes can make this process slow,
resource intensive, and at worse impossible. Designers are encour-
aged to consider the critical functions, the component, and the beha-
vior modes that can induce a failure carefully to minimize the
time-related variables. For example, in the liquid tank case study,
the behavior mode of the tank dictated that it will take two time-
steps for the tank to dry out or overflow from a nominal level.
That determined the total number of consecutive steps as two and
total time-steps as five. If the behavior mode of the valve only
required one time-step for a failure to occur and a designer was eval-
uating the function related to the valve as the critical function, he or
she may choose one or two for consecutive time-steps and two or
three for total time-steps.
Another major contributor to the breadth of the search tree is the

behavior modes of individual components. As the behavior modes
increase, the number of combinations of potential scenarios
increases exponentially, which in turn increases the total number
of available scenarios. Hence, users are encouraged to carefully
consider behavior modes and avoid any redundancy. Based on
the cases presented above, one can argue that the proposed scenario
generation method is vulnerable to data explosion (i.e., too many
scenarios being created). However, these vulnerabilities encourage
designers to think about the behaviors of the components that will
be part of the system they are designing early in the design
process, which can lead to well thought out designs. Additionally,

Fig. 6 The percentage of total event scenarios with each type of faulty behavior mode
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the explosion of the scenarios can be avoided if the contributing var-
iables are handled carefully.
Another way to avoid data explosion is to take a

systems-of-systems approach into the analysis. Complex systems
can be broken down to less complex subsystems. The proposed
approach can be applied to these subsystems to identify the poten-
tial vulnerabilities of them. The resulting data can be used to con-
struct the whole complex engineered system in which the black
box functions of each subsystem will build the functional model,
the subsystems themselves will be components in the CFG, and
the subsystems that interact with human will have ASGs. Then, the
proposed automated scenario generation-based component failure
and human error reasoning framework can be applied to the new
system model. Such an approach will help designers pay attention
to individual components in more detail while making sure that
the overall system vulnerabilities and human fallibilities are
addressed. Overall, the proposed automatic test case generation
technique overcomes some of the shortcomings of the HEFFR
framework. The scenarios generated, cover a wide variety of
failure conditions involving both humans and components. This
approach also allows the analysis of a large number of scenarios
at the same time. The proposed automated scenario generation tech-
nique may be prone to data explosion. However, data explosion can
be avoided and the path to mitigation will help designers come up
with more thought out concepts.

7 Conclusions and Future Work
This paper introduced a novel approach to automatically generate

critical event scenarios that cover a majority of component and
human fallibilities present within a system to identify potential com-
ponent failures, human errors, and their propagation paths during
early design stages. The automatic scenario generation is achieved
by searching through the behavior model and the action classifica-
tions using a depth first search. The Human Error and Functional
Failure Reasoning (HEFFR) framework is used to identify if the
critical functions of the systems will be lost due to the generated
event scenarios, and such scenarios and their failure and human
error propagation paths are presented through an output file. The
designers are encouraged to use data mining techniques to extract
information that is required to fulfill their specific needs. The pro-
posed approach is demonstrated using a liquid tank study.
Finally, the results from the liquid tank study are analyzed to under-
stand the capabilities and limitations of the proposed approach.
This study only applies the proposed approach once to check if

one critical function is failing in a simple problem. Hence, the
reported execution time and the failure scenarios do not particularly
shed light on the overall performance algorithm. As future work, we
will apply this approach to a more complex system with multiple
executions and use the results to improve performance such as exe-
cution time and the number of scenarios executed. The study pre-
sented in this paper does not verify the validity of the proposed
work. The performance of the approach presented in this paper
will be compared with existing methods in the future to study the
validity and general usability of the automated scenario generation
technique. Another area of future work will study results from mul-
tiple executions to look into ways to streamline the transition rules
so that the number of scenarios executed is minimized while opti-
mizing scenario coverage to include a majority of component fail-
ures and human errors. Streamlining the transition rules will help
with improving the overall performance of the automated scenario
generation approach introduced in this paper.
Another area of future work is aimed at introducing a quantitative

measure to the analysis to aid risk-based decision-making. Previous
research has introduced Functional Failure Reasoning [65] which
improves Functional Failure Identification and Propagation by
quantifying risk. Introducing such risk quantification to the pro-
posed approach will aid designers to understand the most vulnerable
functions, and what type of events contribute to such vulnerabilities

and help them make decisions to mitigate the risk of such vulnera-
bilities by preventing the event scenarios that contribute toward
them from happening. Additionally, quantitative scores can be
used to compare alternative designs and make trade-offs. The ulti-
mate goal is to provide designers with a tool that would aid them
design more reliable systems with improved performance and
safety.
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