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ABSTRACT

In recent years, the Northern Hemisphere midlatitudes have suffered from severe winters like the extreme

2012/13winter in the easternUnited States. These cold spells were linked to ameandering upper-tropospheric

jet stream pattern and a negative Arctic Oscillation index (AO). However, the nature of the drivers behind

these circulation patterns remains controversial. Various studies have proposed different mechanisms related

to changes in the Arctic, most of them related to a reduction in sea ice concentrations or increasing Eurasian

snow cover.

Here, a novel type of time series analysis, called causal effect networks (CEN), based on graphical models is

introduced to assess causal relationships and their time delays between different processes. The effect of dif-

ferent Arctic actors on winter circulation on weekly to monthly time scales is studied, and robust network

patterns are found. Barents andKara sea ice concentrations are detected to be important external drivers of the

midlatitude circulation, influencing winter AO via tropospheric mechanisms and through processes involving

the stratosphere. Eurasia snow cover is also detected to have a causal effect on sea level pressure inAsia, but its

exact role on AO remains unclear. The CEN approach presented in this study overcomes some difficulties in

interpreting correlation analyses, complements model experiments for testing hypotheses involving tele-

connections, and can be used to assess their validity. The findings confirm that sea ice concentrations in autumn

in the Barents and Kara Seas are an important driver of winter circulation in the midlatitudes.

1. Introduction

The recent cold winters in North America and Eurasia

were characterized by a meandering jet stream pattern

that allowed cold Arctic air to reach lower latitudes

(Cohen et al. 2014b). Moreover, these winters were

dominated by a negative phase of the Arctic Oscillation

index (AO), which is usually associated with pronounced

meridional wind patterns, whereas in a positive AO phase

strong zonal flow dominates the wind field. Although a

negative AO and meandering flow patterns have been

linked to surface extremes (Thompson 2001; Coumou

et al. 2014; Screen and Simmonds 2014), it is intensively

discussedwhat themechanisms behindAOvariability are.

Classical atmosphere dynamic theories relate a

meandering jet stream structure to above-normal sea
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surface temperatures in the tropical Pacific (Palmer and

Mansfeld 1984; Palmer and Owen 1986; Trenberth et al.

1998). Warming of the tropical Pacific intensifies evapo-

ration, increasing thunderstorm activity in that region. The

associated latent heat release can then trigger large-

amplitude planetary waves, affecting the midlatitude flow.

In contrast, some recently proposed theories focus on

the polar region, claiming that anomalous atmospheric

circulations can be linked to low Arctic sea ice concen-

trations as observed during the last two decades

(Petoukhov and Semenov 2010; Francis and Vavrus

2012; Jaiser et al. 2012; Handorf et al. 2015). A reduction

in sea ice cover in summer leads to the ocean taking up

more energy in this season. Since sea ice works as an

insulating shield blocking the ocean–atmosphere in-

teraction, less sea ice in autumn and early winter facili-

tates larger heat fluxes from the relatively warm ocean

into the atmosphere. Kim et al. (2014) focus on the

Barents and Kara Seas in particular and argue that re-

duction in sea ice concentration preferentially in this

area leads to a weakened AO via the stratospheric polar

vortex. They link the additional heat release to the at-

mosphere caused by sea ice loss in early winter to

anomalously high geopotential heights over the Barents

and Kara Sea region in addition to lower than normal

geopotential heights over northern western Europe and

eastern Asia. This observed wavelike structure indicates

upward propagation of large-scale planetary waves into

the stratosphere, interfering with the predominantly

zonal flow in the lower stratosphere. As a result, the

stratospheric zonal flow weakens, and the geopotential

heights and wind anomalies descend to the troposphere,

which is also called a ‘‘breakdown’’ of the polar vortex.

As a consequence, cold Arctic air reaches lower lati-

tudes, thereby forming large meanders. Those pressure

anomalies, respectively meandering of the jet stream,

are then most often reflected in a negative phase of AO.

Kim et al. (2104) base their analysis on theoretical

physical considerations and observational data. They

validate their results using climate model simulations,

which reproduce similar patterns, supporting their

proposed theory.

A similar mechanism was proposed by Cohen et al.

(2007, 2013, 2014a), who linked increased fall snow cover

in Eurasia to changes in surface pressure anomalies,

causing a similar chain of effects. Based on observational

data and correlation analysis, they hypothesize that an

extended Eurasian snow cover in fall, likely resulting

from decreasing Arctic sea ice, leads to increasing sea

level pressures over central Asia in early winter. As a

result, a disturbed pressure pattern in the polar region is

observed, leading to increased vertical wave activity and

poleward heat flux. This is followed by anomalously high

geopotential heights in the stratosphere, associated with

stratospheric warming andweakening of the polar vortex,

and, respectively, a negative surface AO, as described by

Baldwin and Dunkerton (1999).

To study the atmospheric response to changes in the

Arctic, different methods have been used. Cross-

correlation analysis is widely applied to detect linear

relationships and their time delays between different

processes (Polvani andWaugh 2004; Cohen et al. 2014a).

However, correlation can be highly biased by autocor-

relation effects, by indirect connections via a third pro-

cess, or by a common driver leading to noncausal,

spurious correlations that limits its interpretability

(Runge et al. 2014). Also, it does not give any answer on

the direction of the relationship so that it is not an ade-

quate tool to study causal effects. Therefore, climate

models are used to investigate atmospheric changes due

to a controlled perturbation of the system (Deser et al.

2010; Petoukhov and Semenov 2010; Handorf et al.

2015). This approach allows us to interpret results as

causal effects forced by the input data. However, con-

clusions are strictly limited to the extent of the physical

realism of the climate model used. It remains question-

able whether models capture important processes like

ocean–ice feedbacks (Tremblay et al. 2007), land–snow

interactions (Furtado et al. 2015), troposphere–stratosphere

interactions (Manzini et al. 2014), and Rossby wave

propagation (Gray et al. 2014) accurately. Thus, both

climate model experiments and correlation analysis of

observational data are restricted in their interpretability

(Barnes and Screen 2015).

Here, we analyze observational data with a novel

method based on graphical models called causal effect

networks (CEN). This method overcomes spurious cor-

relations due to autocorrelation, indirect effects, or com-

mon drivers (at least among the observed variables

included) using a causal discovery algorithm, as proposed

by Runge et al. (2012b,a, 2014). This algorithm is a

modified version of the Peter Spirtes and Clark Glymour

(PC) algorithm (Spirtes et al. 2000), which was first ap-

plied to climate research by Ebert-Uphoff and Deng

(2012) to study interactions between major climate

modes. Causal discovery approaches have since been used

to study atmospheric flows (Deng and Ebert-Uphoff

2014), causal relationships in the Walker cell in the

tropics (Runge et al. 2014), the monsoonal dynamics in

the Pacific–IndianOcean (Runge et al. 2015), and decadal

ocean circulation in the Atlantic (Schleussner et al. 2014).

The aim of this paper is to explain how to apply this

method and showhow it can be used for hypothesis testing

in the context of teleconnections in climate research. We

apply CEN to observational and reanalysis data in order

to understand how different mechanisms that might
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cause a negative AO in winter are causally related with

each other. In this study, we limit ourselves to testing a set

of proposed Arctic mechanisms. In contrast to tropical

mechanisms, they operate on similar subseasonal time

scales, which facilitates a simultaneous analysis.

The article is structured as follows: In section 2, the

data selection is described, and section 3 gives a de-

tailed description of the two different steps of the

CEN algorithm on the basis of an example. In section

4, the sensitivity of the parameter settings and tem-

poral resolution is analyzed, and structure and ro-

bustness of the graphs are discussed in the framework

of the tested hypothesis. Finally, in section 5 we con-

clude and assess the potentials and limitations of the

presented method.

2. Data

Different actors can influence midlatitudinal winter

circulation. The first step of our analysis is hence to come

up with a reasonable choice of processes that are ex-

pected to be relevant for the analysis. This includes the

selection of physical variables that should serve as

proxies for the considered processes, of suitable data

sources, and of a reasonable time resolution of the data.

As stated, we limit the analysis to Arctic processes

and follow Kim et al. (2014) and Cohen et al. (2014a)

with respect to data selection. We therefore include

Barents and Kara sea ice concentrations (BK-SIC) as

well as Eurasia snow cover (EA-snow) in our analysis as

possible causal drivers of a negative AO. We further

include sea level pressure in the Ural Mountains region

(Ural-SLP), as defined in (Cohen et al. 2014a) and sea

level pressure in the Lake Baikal area as a proxy for

Siberian High variability (Sib-SLP). Following Kim

et al. (2014) and Cohen et al. (2014a), we include the

zonally averaged poleward heat flux y*T* at 100mb

(y flux) to capture the troposphere–stratosphere cou-

pling. This is a widely used proxy for vertical wave ac-

tivity, whereby y denotes the meridional wind velocity,

T stands for temperature, and the asterisk denotes de-

viations from the zonal mean (Polvani andWaugh 2004;

Dunn-Sigouin and Shaw 2015). There aremany possible

ways to describe polar vortex activity (PoV), but for

consistency with Kim et al. (2014) and Cohen et al.

(2014a) we calculate geopotential height anomalies

poleward of 658N, averaged over pressure levels from

10 to 100mb to define the strength of the stratospheric

polar vortex. Eurasia snow data are described in

(Robinson et al. 1993) and are provided by NOAA.1

Sea ice concentration data were taken from theNimbus-7

SMMR and DMSP SSM/I–SSMIS passive microwave

dataset provided by the National Snow and Ice Data

Center.2 The AO is provided by NOAA,3 and for the

remaining variables we used ERA-Interim data.4

In summary, our analysis contains seven different

actors (Table 1): Barents and Kara sea ice concen-

trations, Eurasia snow cover, the Arctic Oscillation

index, vertical wave activity, polar vortex strength, sea

level pressure over the Ural Mountains, and Siberian

High activity. For each variable, we consider the time

period January 1979–December 2014, which is most

reliable in the reanalysis because of availability of

satellite data.

We calculate monthly means of daily data for each

variable, as we are testing mechanisms that are ex-

pected to act on monthly time scales. Thereby, we

perform linear interpolation of the snow data and for

some years of the sea ice concentration dataset, where

daily data are not available. To gain additional in-

formation on the time scale of the considered processes,

we perform additional analysis using half-month means

as well as quarter-month means of every variable

(Fig. 1). For half-monthly data, we take the mean from

the 1st–15th and from the 16th–30th of each month and

for February from 1st–14th and 15th–28th, respectively,

(thus ignoring the 31st of all applicable months as well

TABLE 1. Table of variables and regions of every considered actor.

Abbreviation Actor Variable/unit Region (level)

BK-SIC Barents Kara sea ice Sea ice area fraction 708–808N, 308–1058E
EA-snow Eurasia snow cover Snow-covered area fraction 408–808N, 308–1808E
AO Arctic Oscillation index Geopotential height (m) 208–908N (1000mb)

y flux Vertical wave propagation Poleward eddy heat flux y*T* (Km s21) 458–758N (100mb)

PoV Polar vortex Geopotential height (m) 658–908N (10–100mb)

Sib-SLP Siberian High Sea level pressure (mb) 408–658N, 858–1208E
Ural-SLP Ural Mountains sea level pressure Sea level pressure (mb) 458–708N, 408–858E

1 http://gis.ncdc.noaa.gov/all-records/catalog/search/resource/

details.page?id5gov.noaa.ncdc:C00756.
2 http://nsidc.org/data/nsidc-0051.
3 http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_

ao_index/ao.shtml.
4 http://apps.ecmwf.int/datasets/data/interim-full-daily/.
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as the 29th of February in leap years). To construct

quarter-monthly time series, we calculate the mean

from the 1st–7th, 9th–15th, 16th–22nd, and 24th–30th

(neglecting hence the 8th, 23rd, and 31st of all appli-

cable months) and for February from the 1st–7th, 8th–

14th, 15th–21th, and 22th–28th, respectively. This ap-

proach has the advantage that the different time series

are still in sync with each other, facilitating the com-

parison of associated CENs.

For each variable and time resolution, we calculate

climatological anomalies (observed value minus the

multiyear mean), fromwhich we then compute the area-

weighted spatial average over the defined region (see

last column in Table 1). This way we create single time

series for each time resolution and each actor (see Fig. 2

for monthly data). Since CEN construction requires

stationary time series, we remove the linear trend if

present. For our analysis this is only the case for BK-

SIC. Additionally, we change the sign of PoV such that

positive values (negative geopotential height anomalies)

indicate a strong polar vortex.

3. Method

The causal effect networks approach is based on two

steps: 1) reconstructing the causal parents of each actor

using a causal discovery algorithm (Runge et al. 2012a,b,

2014), which is amodification of the PC algorithm (Spirtes

et al. 2000) for time series. As explained in the following,

this step is based on iterative conditional independence

tests using partial correlation. 2) In a second step, the

strength of causal links is quantified using a linear version

of Pearl’s (2013) causal effect measures. Thereby the

parents are used in a multiple linear regression analysis to

test the significance and strength of causal dependencies

between all pairs of actors at a range of time lags.

Here we use a linear approach to estimate and in-

terpret causal links, but the two-step procedure of causal

FIG. 1. Schematic picture of different time scales, whereby each box indicates one time step.

(bottom) Quarter-monthly time series consists of 4 times and 2 times more data points, re-

spectively, than (top) monthly and (middle) half-monthly time series.

FIG. 2. Monthly time series of all calendar months of climatological anomalies of each actor

from January 1979 to December 2014.
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reconstruction and quantification can also be embedded

in an information–theoretic framework to study causal

information transfer accounting for nonlinear relation-

ships between variables. For a detailed explanation of the

method, including a mathematical analysis as well as nu-

merical testing, we refer to Runge et al. (2012b,a, 2014).

All calculations presented in this study were performed

using the Python package Time Series Graph Based

Measures of Information Transfer (TiGraMITe), which

provides the CEN algorithm and is freely available.5

In the following, we explain how to apply CEN to test

causality of the hypotheses discussed in the introduction.

a. Step 1: Detecting causal effects

The first step of the CEN algorithm aims to find causal

relationships between the different actors and their as-

sociated time lags. The scope of this step is to identify

past processes that directly influence each actor. We call

those processes the parents of an actor, and they will be

used later to determine the actual strength and the sign

of the causal relationships.

Cross correlation can give a first impression of the pair-

wise linear relationship between two processes X and Y.

However, it is not able to identify causal links because the

bivariate analysis can be biased by autocorrelation of the

two variables, by common drivers, or by indirect links via a

third process Z (Figs. 3a,b,c). For example, cross correla-

tion of two independent processes X and Y can be high if

one of the processes is strongly autocorrelated (Fig. 3a).

Also, imagine that Z causes X and Y (Fig. 3c); then cross-

correlation analysis would find a strong correlation be-

tweenX andY even though there is no direct link between

them. To detect causal links, a multivariate analysis is re-

quired, which takes all potential actors into account.

Recall that two processes X and Y are conditionally

independent, given a third process Z, if P(X\Y jZ) 5
P(X jZ)P(Y jZ), whereby P denotes the probability

function. In the linear case, this can be tested by re-

moving the linear influence ofZ from bothX andY and

testing for the correlation between their residuals

(partial correlation). In the previous case (Fig. 3c), X

and Y would then be conditionally independent, given

Z. In the example illustrated in Fig. 3b, process X

causes Z, which in turn influences Y. Process X and Y

are thus conditionally independent, given Z, and a high

correlation coefficient between X and Y only occurs

because of the indirect link via Z.

This section discusses how the CEN algorithm uses

iterative partial correlations to identify noncausal cor-

relations, as depicted in Fig. 3. The extent to which

such a databased analysis allows us to conclude on a

physical causal mechanism depends on the included

variables, time resolution of the data, and assumptions,

such as stationarity. Two free parameters are involved:

the significance level a for the partial correlation tests

and the maximum time delay tmax.

CALCULATING THE PARENT PROCESSES

As an illustrative example, we start with finding those

processes on a monthly time scale among our actors

that have a direct causal effect on the winter

[December–February (DJF)] PoV. We look at the

monthly time series for every actor (Fig. 2), having

thus a sample length of 108 time steps. We define a two-

sided significance level a 5 0.01 and a maximum time

lag of tmax 5 3 months, implying that parent processes

more than threemonths ago or those with a significance

below 99% will be neglected.

First, for every actorX, the cross-correlation function

r(Xt-t, PoVt) is calculated for time shifts of t 5 1 up to

the maximum time shift tmax 5 3 months. Note that, if

we study causal effects on winter PoV, this implies that

the monthly time series PoVt only consists of winter

data, but the lagged or driving variable contains data

from other seasons (in particular, autumn, but also

summer when t . 3). Here, the expression ‘‘driver’’ is

FIG. 3. Possible scenarios leading to a correlationwithout a direct causation between processX and

Y: (a) inflated correlation due to autocorrelation; (b) indirect chain via Z; (c) common driver Z.

5 https://www.pik-potsdam.de/members/jakrunge.
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used in its statistical meaning of being conditional de-

pendent and shifted in time. For t 5 1, the expression

r(Xt-1, PoVt) denotes the Pearson correlation coefficient

of November–January data of processX and December–

February data of PoV (see Fig. 4), whereas for t 5 3 the

linear influence of the three months shifted September–

November data of actor X on PoV in winter (DJF) is

measured. For example, for the influence of Eurasia snow

cover (X 5 EA-snow) on the polar vortex with a time

delay of t 5 1, we obtain:

r(EA-snow
t21

, PoV
t
)520:262,

which is significant at the a 5 0.01 level. This indicates

that there is a negative linear relationship between

early winter [November–January (NDJ)] snow and the

winter polar vortex. This seems reasonable since a large

snow cover in Eurasia is indicated to induce a weak-

ened polar vortex (Cohen et al. 2014a). The cross-

correlation function is now calculated and evaluated

for every actor XЄfBK-SICt-t, EA-snowt-t, AOt-t,

y fluxt-t, PoVt-t, Sib-SLPt-t, Ural-SLPt-tg and every time

lag tЄf1, 2, 3g. We find that, besides EA-snow (with

t 5 1), also Ural-SLP (with t 5 1 and t 5 2), AO (with

t 5 1), PoV (with t 5 1), and y flux (with t 5 1) are

significantly correlated with winter PoV. Sorted by the

strength of correlation starting with the strongest in

absolute value, the set of potential parent processes of

PoV in this zeroth iteration step without any condi-

tioning is:

P0 5 fy flux
t21

, PoV
t21

,Ural-SLP
t21

, Ural-SLP
t22

,AO
t21

, EA-snow
t21

g.

To test these potential drivers for conditional in-

dependence, we next calculate partial correlations:

r(X
t2t

,Y
t
jZ),

which measure the linear influence from process X on Y,

excluding the influence of some set of variables Z. This

thus checks if X and Y are conditionally independent

given Z. We choose Z as a subset of P0 such that Z

denotes a set of other processes that potentially in-

fluences the bivariate correlation coefficient r(Xt2t, Yt).

In each iteration stepP1,P2, . . . , we condition on a newZ,

whereby the algorithm first takes only one condition and

starts with the process that is strongest correlated (in

absolute value)with processY. Then the dimension of the

subset selected from the remaining parents is increased,

and different two-dimensional conditions are tested, and

so on for higher dimensions. If the partial correlation

significance test of a pair Xt-t and Yt is nonsignificant

given Z, the process Xt2t is removed from the set of po-

tential parents. If, however, the partial correlation r(Xt2t,

Yt jZ) remains significant for all tested Z, then actor X is

considered to directly influence Y with a time lag of t.

Returning to our example, we first test condition

Z 5 fy fluxt-1g and find

r(EA-snow
t21

, PoV
t
j y flux

t21
)520:147,

which is not significantly different from zero at our

chosen level, and hence we find that EA-snow and PoV

are conditionally independent (at a time delay of one

month) if the influence of y flux from the same time shift

is excluded. We thus conclude that there is no direct

influence from EA-snow on PoV with a delay of one

month and that the significant correlation between them

r(EA-snowt21, PoVt)520.261 is due to the influence of

y flux. For example, EA-snow could be linked to PoV

indirectly via y flux (as in Fig. 3b). On the other hand, if

we take X 5 Ural-SLPt21 Є P0 and condition on the

same Z 5 fy fluxt21g, we find

r(Ural-SLP
t21

, PoV
t
j y flux

t21
)520:281

which is still significantly different from zero. In other

words, the linear influence of Ural-SLPt-1 on PoVt can-

not exclusively be explained by the linear influence of

y flux.

We calculate partial correlations for all the elements

from P0 conditioning on Z 5 fy fluxt-1g and find that

some of them are conditionally independent from PoV

given y fluxt-1, which can thus be neglected as potential

FIG. 4. Schematic picture of time series considered to measure influence of actor X on winter

PoV with a time lag t 5 1, whereby the time series only consist of the dark gray boxes.
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drivers of winter PoV. This way we obtain a much

smaller set of potential parent processes of PoV:

P1 5 fy flux
t21

, PoV
t21

, Ural-SLP
t21

g � P0 .

Now the algorithm proceeds by conditioning on the

process that was second strongest correlated with PoV:

that is, Z 5 fPoVt21g. We thus check if some of the

potential drivers of PoV only occur because of the au-

tocorrelation of PoV. Calculating partial correlations of

the elements of P1 conditioning on Z 5 fPoVt21g gives

only values significantly different from zero such that

P2 5 P1. The last possibility of picking only one condi-

tion is Z 5 fUral-SLPt21g, where we find again that all

the partial correlations remain significantly different

from zero such that P3 5 P2 5 P1. Sorting the elements

by the strength of their partial correlation value in the

last iteration step, we have

P3 5 fy flux
t21

,Ural-SLP
t21

, PoV
t21

g.

Now we increase the dimension of Z and condition on

two possible drivers from P3. Thus, we start with Z 5
fy fluxt21, Ural-SLPt21g � P3 and calculate

r(PoV
t21

, PoV
t
j y flux

t21
,Ural-SLP

t21
)5 0:268,

which is still significantly different from zero. When

testing for the other possibilities (Z5 fy fluxt21, PoVt21g
andZ5 fUral-SLPt21, PoVt21g), the partial correlations
remain significant. Since there are no more combinations

for choosing Z, the algorithm converges and stops.

We have now found the set of direct drivers of winter

PoV (relative to the variables taken into account), which

we call its parents, denoted by

P
PoV

5 fy flux
t21

, Ural-SLP
t21

, PoV
t21

g.

In other words, we found that (given the settings of

tmax 5 3 and a 5 0.01) winter PoV is directly driven by

itself with a delay of one month and by y flux and Ural-

SLP with a delay of one month but is (linearly) condi-

tionally independent of all other processes.

The procedure described for PoV is performed for all

actors, yielding a set of parents for every actor (see

Table 2):

P5fP
AO

,P
BK-SIC

,P
EA-snow

,P
y flux

,P
PoV

,P
Sib-SLP

,P
Ural-SLP

g.

Note that the interpretation of the significance level a as

the probability of false rejections of the hypothesis of a

noncausal link is not strictly valid here since we tested

every possible link multiple times by conditioning on

different processes (see discussion section).

b. Step 2: Quantifying causal effects

In the second step, we use the sets of parents to de-

termine the strength of causal relationships. The case

of t 5 0 (i.e., when there is no time shift between the

actors) was omitted when calculating the parents. In

this step, we will nevertheless quantify the significant

instantaneous relationships conditional on the parents.

As stated above, such contemporaneous links can, in

general, not be interpreted in a causal way. Some might

turn out to be causal parents at a higher time resolu-

tion, but some might be just due to excluded common

drivers. We address this issue later by studying differ-

ent time lags.

As mentioned, the set of derived parents depends on

the significance level a, which here, however, cannot be

well interpreted because of the multiple testing prob-

lem. To better assess significance, we therefore test ev-

ery possible combination of actors and time lags again

(including links from parents) using the causal parents

as a conditioning set.

In general, multiple linear regression can be used to

measure the influence a system of variables (the in-

dependent variables) has on a different (dependent)

variable. However, it can often be challenging to

define a set of independent variables that can explain the

dependent variable. The list of causal parents provides a

reasonable choice for those variables with their associ-

ated time lags. We calculated the link strength using

standardized multiple linear regression coefficients

based on our list of parents for the case of a 5 0.01 and

up to a maximum lag of tmax 5 3. We found that PoV is

influenced from the past by PPoV 5 fy fluxt21, Ural-

SLPt21, PoVt21g. To calculate if process X significantly

influences PoVwith a time lag of t$ 0, we formulate the

standardized linear regression model

PoV
t
*5b

0
1b

1
(y flux

t21
* )1b

2
Ural-SLP

t21
*

1b
3
PoV

t21
* 1b

4
X

t2t
* 1 « .

TABLE 2. Table of parent processes of each actor for winter

(DJF) data and with the settings a 5 0.01 and tmax 5 3. The sub-

script denotes the time lag in months. The parent processes are

then used in the second step of the CEN algorithm in order to

quantify the link strength in terms of linear regression coefficients.

Actor Parents P
AO AOt-1, BK-SICt-2

BK-SIC BK-SIC t-1, PoVt-2

EA-snow EA-snowt-1

y flux PoVt-1

PoV y fluxt-1, Ural-SLPt-1, PoVt-1

Sib-SLP None

Ural-SLP BK-SICt-3
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Here the beta coefficients biwith iЄf0, 1, 2, 3, 4g denote
the standardized regression coefficients, « stands for

the error term, and the asterisk indicates that the time

series have been normalized and standardized. The

regression coefficients express how much the different

independent variables contribute to variability in PoV

in terms of standard deviations. Interpreted causally

(Pearl 2013), this means that if X is increased by one

standard deviation, keeping the other variables fixed,

then PoV increases by b4 standard deviations. The

b coefficient of X is tested for significance at a 5 0.01

with the null hypothesis b 5 0, which would mean that

variable X does not contribute significantly to the de-

pendent variable PoV.

To test if, for example, X 5 EA-snow significantly

influences winter PoV with a delay of one month t 5 1,

we calculate the standardized linear regression model

and choose EA-snowt-1 as well as the parents of PoV as

independent variables to explain PoV:

PoV
t
*5b

0
1b

1
y flux

t21
* 1 b

2
Ural-SLP

t21
* 1 b

3
PoV

t21
*

1b
4
EA-snow

t2t
* 1 « .

Wegetb4520.076, which is not significant at thea5 0.01

level such that the influence fromEA-snow on PoVwith a

delay of one month is considered to be absent. If we,

however, calculate the influence of y fluxwith t5 1 (which

is also inPPoV) onwinter PoV, we obtain a significant beta

coefficient b1 5 20.514. Thus, y flux is concluded to be

causally influencing the winter polar vortex with a delay of

one month and with a strength of b1 5 20.514; that is, a

one-standard deviation increase in y flux leads to a nega-

tive change of about half a standard deviation in PoV.

We test the influence of every actor XЄfBK-SICt-t,

EA-snowt-t,AOt-t, y fluxt-t, PoVt-t, Sib-SLPt-t,Ural-SLPt-tg
and every time lag tЄf0, 1, 2, 3g on PoV aswell as on every

other actor in the formof standardized linear regression.The

remaining significant links form our causal effect network.

Note, it is possible that, in this step, significant direct

links are identified that had been rejected in the first

step. Nevertheless, by testing every potential link again,

we can better interpret the statistical meaning of a as the

probability of falsely rejecting the null hypothesis that a

lagged variable Xt-t is independent of Yt given the par-

ents of Yt selected with the causal algorithm. However,

we will see that our list of parents strongly coincides with

the significant strong links identified in the second step.

4. Results and discussion

We construct CEN for winter circulation and with

different a and tmax settings. Visualization of CEN as a

process graph gives an easy to interpret picture of the

underlying complex teleconnection pattern. Only the

significant links are presented in the graph, and

the numbers next to the links stand for the associated

time lag t. Instantaneous links are represented by

dashed links and have no direction or time shift. The

node color (in case the variable influences itself) and

the link color represent the standardized regression

coefficient (beta values) and hence capture the strength

of the causal relationship. If two processes are linked

for more than one time lag, then all lags are given

(sorted by strength), with the link color based on the

strongest connection. The time lag for autodriven data

is not shown in the graph, but predominantly actors are

lag-1 autocorrelated.

For the settings a 5 0.01 and tmax 5 3 and using

monthly data, we obtain the CEN as in Fig. 5a. We find

evidence that BK-SIC have a negative effect on Ural-

SLP with a time delay of three months. Thus, low sea ice

in autumn can lead to increased surface pressure in

winter. We also find a positive link between Ural-SLP

and y flux with a delay of one month, which means that

higher surface pressure can increase the poleward heat

flux and, respectively, the vertical wave activity. This is

consistent with the mechanisms proposed by Cohen

et al. (2014a) and Kim et al. (2014). Moreover, we can

see in Fig. 5a, that increasing vertical wave activity

induces a weakening of the stratospheric polar vortex

with a delay of one month. Hence, the CEN depicts the

troposphere–stratosphere coupling described by Kim

et al. (2014) and Cohen et al. (2014a). We also see a

reverse relation from the stratosphere into the tropo-

sphere, whereby a weak PoV leads to increasing sea ice

in the Barents and Kara Seas and to less vertical wave

activity. We find no causal link connecting a weak polar

vortex to a negative AO. However, we have a positive

instantaneous link between them, which might indicate

that this connection is happening on a submonthly time

scale. In addition to the mechanisms involving the

stratosphere, we also detect a direct positive link from

BK-SIC to AO. Thus, we find that Barents and Kara sea

ice in fall induces a weakening of AO in winter without

any stratospheric connection. However, AO is also in-

stantaneously related to Ural-SLP with a negative sign,

which is in turn strongly positively related with Sib-SLP.

Even though the instantaneous links provide no di-

rection, they are in accordance with the expectation that

AO is negative when sea level pressure in the Arctic

is high. The same is true for the instantaneous links

connecting Sib-SLP and Ural-SLP to each other with

respect to BK-SIC. In addition to the influence of Ural-

SLP on PoV via y flux, we also find a weaker direct

causal link between them with a delay of one month,
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suggesting that high sea level pressure in central Asia

can induce a weakening of the polar vortex directly, or

via processes which are not part of the tested hypothesis.

The positive instantaneous link between EA-snow and

Sib-SLP is indicating that increasing snow cover in

Eurasia is associated with a strengthened Siberian High,

which is consistent with the hypothesis of Cohen et al.

(2014a). The autoregressive influence (with a time lag of

one month) is, as expected, especially high for BK-SIC

and EA-snow and weaker for PoV and AO. Ural-SLP,

Sib-SLP, and y flux are not significantly causally influ-

enced by their values in the months before.

FIG. 5. CENs of actors of winter (DJF) circulation based upon monthly mean data. With

a maximum time lag of (a)–(c) tmax 5 3 and (d)–(f) tmax 5 5 and with significance levels

(a),(d) a 5 0.01, (b),(e) a 5 0.025, and (c),(f) a 5 0.
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We performed sensitivity analyses of the CEN to the

parameter settings used and found the detected links to

be robust.We limit ourselves to analyzing only links that

go back to late summer. Figure 5 shows the winter

months CENs associated with different significance

levels (a 5 0.01, 0.025, and 0.05 in the rows) and for

maximum time lags of three and five months (columns).

Not surprisingly, the number of significant links in-

creases when we increase a, most of them involving the

two actors based on sea level pressure (Figs. 5b,e,c,f).

Also, links associated with time lags of more than three

months (Figs. 5d–f) appear when increasing the maxi-

mum time lag tmax, however only for larger a values.We

see that all links in Fig. 5a appear in all other graphs as

well. For a significance level a. 0.01 (Figs. 5b,e,c,f), we

see that decreasing BK-SIC induces stronger Sib-SLP

with a lag of two months. This is in accordance with the

mechanism described by Kim et al. (2014). We also see

for a . 0.01 that increasing EA-snow is also in-

stantaneously positively linked to Ural-SLP. For a lon-

ger time lag, we find that EA-snow is negatively

influencing sea level pressure in the Ural-SLP with a

delay of five months (Figs. 5e,f). For a 5 0.05, we even

find some evidence that EA-snow can influence AO

directly, and thus it seems again that processes not in-

volving the stratosphere are present. Overall, the CEN

structure as in Fig. 5a appears for all tested parameters.

As explained in the method section, instantaneous

links provide no information on the direction. To gain

further information on the direction of those links and to

further test the robustness of our findings, we construct

CENs also for half-monthly and quarter-monthly time

series (see Figs. 6a,b). Since the datasets are then 2 times

and 4 times longer, respectively, and consist of shorter

time steps, we adjust our settings for the CEN algorithm.

To make the results comparable with Fig. 5a, we there-

fore double and quadruple tmax, respectively, to refer to

the same time shift. Since for higher time resolutions

more potential links are tested for significance, we adjust

the a value accordingly.6 Comparing Fig. 5a with CENs

based on half-monthly (Fig. 6a) and quarter-monthly

(Fig. 6b) time series with the samemaximum time shift of

three months and an adjusted significance level

a5 0.005625 for half-monthly and a5 0.003 for quarter-

monthly data, we find a robust pattern of the involved

causal processes. Especially the troposphere–stratosphere

connection is clearly visible in all CENs. For the CEN

based on half-monthly data (Fig. 6a) the connection to

vertical wave propagation (y flux) is via the Siberian

region (Sib-SLP), whereby this region is directly influ-

enced by the Ural Mountains (Ural-SLP) area. On a

quarter-monthly time scale, both regions directly influ-

ence y flux, which in turn influences PoV (Fig. 6b).On the

FIG. 6. CEN of actors of winter (DJF) circulation for (a) half-monthly data with tmax 5 6 and a 5 0.005 625 and

(b) quarter-monthly data with tmax 5 12 and a 5 0.003.

6 If n denotes the number of actors, then N 5 n2(tmax 1 1) 2 n

potential links are tested. Thus, N 5 189 (monthly), N 5 336 (half

monthly) andN5 630 (quarter monthly). To calculate the adapted

a, we use a simple Bonferroni correction and divide a5 0.01 by the

multiplicity of the performed tests.
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other hand, we have a direct link from PoV to AO

(Fig. 6b) in the quarter-monthly based CEN, which in-

dicates that a weakening of the polar vortex causes a

negative AO on a weekly time scale. Also, there are di-

rect links connectingUral-SLP toEA-snow, BK-SIC, and

Sib-SLP, which shows that the Ural Mountains region

has a strong influence on the surrounding regions on

submonthly time scales, which is in accordance with the

tested hypothesis. However, the strong instantaneous

links between tropospheric-based actors (AO, Ural-SLP,

Sib-SLP, and EA-snow) remain for all time scales, in-

dicating that those causal processes are occurring on

subweekly time scales or are due to common drivers. The

darker node colors show that, at submonthly time scales,

autoregressive processes become larger.

In summary, the CEN algorithm provides robust re-

sults, whereby additional links can predominantly be

explained by changing parameter settings and by the

temporal resolution of the underlying time series. Barents

and Kara sea ice is detected to play an important role on

winter circulation, especially on the monthly time scale

(Fig. 5), both by being responsible for changes in the

pressure profile over the Ural Mountains region and by

influencing AO directly. Thus, mechanisms effecting AO

not involving the stratosphere seem to be important too.

We assume that other processes, for example, as de-

scribed by Petoukhov and Semenov (2010), not repre-

sented by our choice of actors play a role, connecting

Arctic sea ice and AO. As stated by Cohen and Kim, we

find a connection of surface pressure (Ural-SLP) and

upward wave activity (y flux) into the stratosphere for all

parameter settings and time scales (Figs. 5, 6). On lower

time scales, we also have a direct link from Sib-SLP to

y flux (Fig. 6). These findings confirm the hypothesis that

higher pressure over central Asia leads to increasing

vertical wave activity into the stratosphere (Cohen et al.

2014a). The Ural Mountains region as a preferred loca-

tion for atmospheric blocking (Wang et al. 2009) seems to

play a central role for winter circulation, being linked to

the tropospheric actors AO, BK-SIC, Sib-SLP, and EA-

snow on all time scales. Further, the region is responsible

for coupling with the stratosphere (Figs. 5, 6). In this

context, we expect that the link connecting Ural-SLP to

PoV directly, and not via y flux, can at least partly be

explained by hemispheric-wide averaging of the actors

y flux and PoV (in contrast to the regional actor Ural-

SLP). Additionally, it is possible that a common driver

not included in this analysis is responsible for this direct

link. For example, tropical teleconnections like ENSO

could influence both theArctic stratosphere and sea level

pressure in central Asia (Butler et al. 2014). Additionally,

we find that the increased vertical wave activity can

induce aweakening of the PoV,whereas PoV is positively

connected to surfaceAO (Figs. 5, 6). Thus, our findings are

consistent with the troposphere–stratosphere–troposphere

mechanisms described by Cohen et al. (2014a) and Kim

et al. (2014). We also find a reverse connection, linking a

weak PoV to increasing Barents and Kara sea ice and

decreasing y flux. This provides a negative feedback on a

time scale of approximately one to two months. The role

of EA-snow seems to be more complex. We find no evi-

dence that late autumn snowfall in Eurasia influences the

sea level pressure in central Asia, as proposed by Cohen

et al. (2014a). However, we find that EA-snow is in-

stantaneously linked to Sib-SLPwith positive sign and for

a. 0.01 also to Ural-SLP (Figs. 5, 6). On a monthly time

scale, we also have a direct negative link to Ural-SLP

(with a lag of five months) and for a 5 0.05 also to AO

(with a lag of two months). Overall, our findings are less

robust for EA-snow.

5. Conclusions

In the context of hypothesis testing, we constructed

causal effect networks (CEN) in order to unravel causal

relationships and their time delays between different ac-

tors of midlatitude winter circulation. We restricted our-

selves to studying Arctic mechanisms, based on those

proposed by Kim et al. (2014) and Cohen et al. (2014a).

For each of the seven actors, we constructed one index at

different temporal resolutions. CEN construction was

performed by first deriving a set of parents for each actor,

consisting of the conditional dependent processes (step 1).

Then those parents were used to estimate the strength and

statistical significance of links employing linear regression

models (step 2). We only considered effects on winter

circulation and applied the method to monthly, half-

monthly, and quarter-monthly time series. We found

that themethodprovides robust results for different values

of the significance levela andmaximum time delay tmax as

well as for the considered range of temporal resolutions.

Figure 7 (respectively, Fig. 5a) contains the most ro-

bust links on a monthly scale, whereby results are pre-

sented according to the approximate geographical

location of the actors. Overall, our findings are largely

consistent with previously proposed hypotheses under

consideration, whereby especially Barents and Kara sea

ice is detected to be an important external driver for

winter circulation. Our CENs confirm the proposed

troposphere–stratosphere coupling, which is evident for

all tested parameter settings. However, we also find a

robust pattern indicating a direct tropospheric connec-

tion of Barents and Kara sea ice and AO, as, for ex-

ample, proposed by Petoukhov and Semenov (2010).

The direct link connecting Ural-SLP to PoV might be

due to unconsidered tropical mechanisms influencing
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both the stratosphere and sea level pressure in Eurasia,

as documented by Butler et al. (2014). The role of

Eurasia snow cover is less robust but seems to influence

sea level pressure in Asia significantly.

Since the CEN algorithm requires the choice of the

free parameters tmax and a and depends on the temporal

resolution of the underlying data, changing settings can

produce different graphs. However, by including sensi-

tivity tests for different parameter settings and time

scales, we report robust results. Also, it should be noted

that the CEN approach assumes stationary time series.

Long-term trends or changing trends within the studied

time period might affect the results (Overland and

Wang 2005) and require a careful treatment of the data.

However, here we only found a clear negative linear

trend in the sea ice data. The causal interpretation of the

resulting CENs also depends on the choice of actors such

that the inferred parents can still be due to not-yet-

included other variables. The challenge of how to

choose adequate actors can also be assessed by different

methods, such as dimension reduction via principal

component analysis (Runge et al. 2015). Nonetheless,

the CEN algorithm is especially useful for testing hy-

potheses if consistency of the data choice is assured.

The scope of this paper was to introduce and explain

the CEN algorithm and how it can be applied to address

questions associated with teleconnections in the global

climate system. In this context, CENs can overcome

ambiguities of correlation analyses and provide a prac-

tical supplemental method to model experiments in or-

der to test hypotheses. Moreover, CENs could be used

also on model data to assess their validity. Here we

limited ourselves to linear measurements, but CENs can

also be constructed using nonparametric approaches

(e.g., from information theory) (Runge et al. 2012b,a).

Further research should address the question of how

tropical mechanisms contribute to midlatitude winter

circulation (Palmer 2014; Trenberth et al. 2014) and also

the different hypotheses related to summer circulation

(Overland et al. 2012; Coumou et al. 2015).
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