Using A-Train Observations to Evaluate East Pacific Cloud Occurrence and Radiative Effects in
the Community Atmosphere Model

Elizabeth Berry¹, Gerald G. Mace¹ and Andrew Gettelman²

1. University of Utah, Salt Lake City, UT
2. National Center for Atmospheric Research, Boulder, CO

Submitted to Journal of Climate, November 20, 2019

Corresponding author: Elizabeth Berry, 201 S. 1460 E. Rm. 819 (WBB), Dept. of Atmospheric Science, University of Utah, Salt Lake City, UT, 84112. E-mail betsy.berry@utah.edu

Early Online Release: This preliminary version has been accepted for publication in Journal of Climate, may be fully cited, and has been assigned DOI 10.1175/JCLI-D-19-0870.1. The final typeset copyedited article will replace the EOR at the above DOI when it is published.

© 2020 American Meteorological Society
ABSTRACT

Using information from the A-Train satellites, the properties and radiative effects of East Pacific boundary layer clouds are evaluated in the Community Atmosphere Model version 5 (CAM5) from the summer of 2007 and 2008. The cloud microphysical properties are inferred using measurements from CloudSat and CALIPSO (CC) that are then used to calculate the broadband radiative flux profiles. Accounting appropriately for sampling differences between the measurements and the simulation, evidence of the “too few, too bright” low cloud bias is found in CAM5. Single-layer low clouds have a frequency of occurrence of 42% from CC, compared to just 29% in CAM5, while the averaged cloud radiative kernel (CRK) for the model shows stronger cooling. For Stratocumulus in particular, the cooling in the model CRK is a factor of two larger than the observations, implying an overly sensitive tropical low cloud feedback. Differences in the day/night occurrence of Stratocumulus help explain some of the difference in the CRK. The cloud-type microphysics for liquid clouds are represented reasonably well by the model, with a tendency for smaller water paths and smaller effective radii. Overall, the occurrence and CRK have partially compensating errors such that the net cooling at the top of the atmosphere for East Pacific low clouds is -43 W m⁻² in CAM5, compared to -32 W m⁻² from CC.

The cooling effect in the model is accomplished by fewer low clouds with a narrower range of properties, compared to more clouds with a broader range of properties in the observation-based dataset.

1. Introduction

The wide range in climate sensitivity, from 2.1 to 4.7 K for a doubling of CO₂ (Andrews et al., 2012), is due in large part to the uncertainty in cloud feedbacks (Dufresne and Bony 2008; Vial et al., 2013; Ceppi et al., 2017). It’s well-established that much of the intermodel spread in

Accepted for publication in *Journal of Climate*. DOI10.1175/JCLI-D-19-0870.1.
predicted cloud feedbacks is associated with marine boundary layer (MBL) clouds, particularly in the subtropical oceans (Bony and Dufresne 2005; Caldwell et al. 2016) but also at higher latitudes in both hemispheres (Gordon and Klein, 2014). While the sign of the MBL cloud feedback is not certain, most models suggest that MBL cloud cover decreases with warming (Sherwood et al. 2014) implying a positive feedback. Part of the uncertainty in low cloud feedbacks stems from competing effects for low cloud changes (Gettelman and Sherwood 2016), though the dominant mechanism seems to be a drying of the planetary boundary layer due to increased mixing with drier air aloft, as the sea surface temperature rises (Qu et al., 2014). Uncertainty in climate sensitivity has also specifically been traced to the representations of cumulus by shallow convection schemes in GCMs (Zhao et al., 2016; Vial et al., 2016).

Cloud radiative kernels (Zelinka et al., 2012a) have allowed for the direct calculation of cloud-type feedbacks. In addition, the kernel method allows for the feedbacks to be decomposed into components that are due to changes in cloud amount, cloud optical depth, and cloud height. For example, Zelinka et al. (2016) highlights the importance of reductions in low-level clouds, showing that the low cloud amount feedback is the single largest contributor to the spread in net cloud feedback.

Reducing the uncertainty in cloud feedbacks will require accurate simulations of clouds, and an understanding of how cloud cover and properties will change in a warming climate (Stevens and Bony 2013). Information from satellite measurements is helping to diagnose some of the connections between cloud properties and radiation, which can then be used to evaluate and improve models (Wang and Su 2013; Dolinar et al., 2015; Mace and Berry 2017; Winker et al., 2017). From satellite observations, a number of outstanding issues have been identified with the representation of low-level clouds in models. For example, models tend to overestimate the
mean cloud liquid water path (LWP) compared to various observational datasets (Li et al., 2018; Stephens et al., 2019). In spite of large differences in liquid water path and cloud amount, climate models show good agreement in cloud radiative effects (Lauer and Hamilton, 2013), suggesting that some amount of model tuning is used to achieve the constrained radiative fluxes.

The tendency for GCMs to produce low clouds that are underestimated in amount and overly reflective has been well documented. The “too few, too bright” problem was coined by Nam et al. (2012) who showed that models predict overly bright low clouds, even for a correct low cloud cover. Engstrom et al. (2014) also showed that GCMs have a tendency for small cloud fraction to be related to high cloud albedo, compared to MODIS and CERES. Medeiros and Nuijens (2015) evaluated cumulus clouds in the trade wind regions and found that the models generally capture the cloud radiative effect, but underestimate cloud cover, compared to CERES and CALIPSO. Konsta et al. (2016) used CALIPSO data to document the lack of boundary layer clouds around the tropical belt, and the overestimate of the low cloud reflectance compared to PARASOL, and documented the inability of GCMs to reproduce the contrast between higher cloud reflectance observed along the Eastern Pacific Ocean and the lower values over the tropical trade wind cumulus region.

The difficulty in simulating low clouds and their effects is intriguing, given the apparent simplistic nature of these clouds, compared to mixed-phase or ice clouds. For instance, because liquid clouds reside low in the atmosphere, they can more easily be studied by surface remote sensing and be measured by research aircraft. In addition, the spherical shapes of liquid drops greatly simplifies the relationships between their microphysical and radiative properties. However, thin liquid clouds, with water paths < 100 gm\(^{-2}\) can be misleadingly challenging to observe because they tend to be geometrically and optically thin and broken in structure (Turner...
et al., 2007). Active remote sensing, with its vertically-resolved measurements and small footprints have made strides in this area. For example, Chepfer et al. (2008) use CALIPSO data to evaluate cloudiness in a GCM and found discrepancies in marine boundary-layer clouds are more pronounced than in previous evaluations based on passive observations.

Here, we use A-Train satellite observations to evaluate low clouds simulated in the Community Atmosphere Model version 5 (CAM5, Neale et al 2010). Our objective is to evaluate cloud fraction, cloud brightness, cloud microphysical properties, and cloud radiative effects (CREs) in the model. To the extent that the model produces CREs similar to observations, does it do so for the correct reasons, or are there compensating errors that lead to good agreement for the radiation? Our findings will provide insight into the validity of predictions of low cloud feedbacks.

2. Data and methodology

In this study we primarily emphasize low-level liquid clouds, although we present results for all cloud types. We focus on a 20°x20° region in the East Pacific [10S-10N, 90-110W] during two June through September periods (2007 and 2008). The domain is centered on the equator, with the eastern boundary along the longitude of the Galapagos Islands, and located downwind of the maximum coverage for stratocumulus along the east side of the subtropical ocean basin (Rozendaal et al., 1995). This region is characterized by the easterly trade winds and captures the stratocumulus to cumulus transition that occurs as the boundary layer and sea surface temperature increase and stratocumulus gradually transition to scattered trade cumulus (Miller et al., 1998).

For assessing clouds and their impacts, we adapt the cloud radiative kernel framework to A-Train observations and CAM5, making two main modifications. First, we evaluate present-day
cloud radiative effects instead of cloud feedbacks, given the short-term record of the A-Train satellites. Secondly, we create cloud radiative kernels that are derived from populations of observed and simulated clouds separately, in order to evaluate potential differences in the sensitivity of the top of atmosphere (TOA) radiation to cloud types in the observations and model. Using this methodology, we allow for differences in the observation-based CRK and the model-based CRK. For instance, a different distribution of clouds within a given CTP-τ bin would lead to a different value for the CRK. Differences in the resulting cloud radiative effects for the model and observations may be due to differences in cloud fraction and/or differences in the sensitivity of the TOA radiation to clouds.

a. Observations

CloudSat’s cloud profiling radar (Tanelli et al. 2008) along with CALIPSO’s optical lidar (Winker et al. 2010) provide vertically resolved measurements of hydrometeor properties (Stephens et al. 2017). In this study, we harness the synergy of CloudSat and CALIPSO (hereafter referred to as CC) to characterize liquid clouds. The lidar is particularly important for observing boundary layer clouds below 1km (Henderson, 2013) since the radar signal is affected by scattering of the pulse from the bright ocean surface. Cloud layers are obtained from the RL-GeoProf CloudSat dataset (Mace and Zhang 2014), and are defined as a vertically continuous set of 240m resolution volumes that contain hydrometeors. Profiles with only one cloud layer present are identified as single-layer clouds.

The general approach used here is adapted from the methodology outlined in Mace (2010) as modified and implemented in Berry et al. (2019). Microphysical properties for ice cloud are obtained from the 2C-ICE data product (Deng et al. 2015). The properties of low-level clouds that exist above 1 km and that are observed by the CloudSat radar are derived using a
combination of radar Z and optical depth from MODIS (day) that is then constrained by CERES solar fluxes or by combining radar Z with LWP from AMSR-E during the night (see appendices A and B of Mace, 2010). Two issues have limited the use of CloudSat in studying low level clouds. First, the detection threshold of the radar at -30 dBZ misses some fraction of non-precipitating low-level clouds. Secondly, below ~1 Km above the ocean surface, the CloudSat radar is unable to detect weaker returns associated with clouds (Marchand et al., 2008). We found that neglecting these clouds resulted in significant biases compared to CERES. Therefore, we implement a revised methodology that uses attenuated backscatter from CALIPSO, and 94 GHz microwave brightness temperature from CloudSat (Dobrowalski and Tanelli, 2019) when a nonprecipitating (layer maximum dBZ < -15) single-layer cloud is observed at temperatures above freezing. With the additional requirement that the cloudy and nearest cloud-free column brightness temperature (TB) have a difference of at least 1K, the LWP is estimated using microwave brightness temperature differences between cloudy profiles and adjacent clear profiles after Mace and Protat, (2018). We restrict the search for a nearby clear pixel to within 50km. However, given the location of our region, centered over the equatorial ocean, we wouldn’t expect large variations in the clear-sky TB. For profiles associated with continuous cloud fields for which we cannot find a clear pixel within 50Km, we revert to the Z-tau or Z-LWP retrieval. The failure to find a nearby clear pixel for TB is the sole limiting factor for 12% of liquid clouds that meet all the other criteria for the new technique. With an estimated LWP, we segregate the layers into those that are, 1.) optically thin such that the ocean surface is identifiable in the CALIOP profiles, 2.) profiles that are optically thick for which a) radar reflectivity is measured and b.) layers that have no reported radar reflectivity due to the layer
being below 1km or due to the layer having radar reflectivity below the detection threshold of CloudSat.

For type 1 optically thin layers, the visible optical depth is estimated using the difference in the calculated surface return that has been attenuated only for Rayleigh scattering and the lidar signal from the surface bin of the cloud-attenuated column. The methodology is described in Flamant et al. (2003), Josset et al. (2007) and Josset et al. (2011). With an estimate of the LWP from CloudSat TB and with an estimated layer optical depth, we are able to then estimate the layer effective radius (Stephens, 1978). With the uncertainties of the LWP and optical depth estimated to be on the order of 50%, the effective radius would be uncertain to something like 70%. While this uncertainty is large, it allows us to distinguish between layers that might be isolated drizzle from a recently evaporated cloud or a true non-precipitating cloud layer.

The properties of Type 2a layers that have radar reflectivity, TB and lidar attenuated backscatter near cloud top are reasonably straightforward to estimate using methods described in Mace and Protat (2018) and elsewhere. The properties of type 2b layers for which we have no radar reflectivity are more challenging. These layers are optically thick such that we are unable to use attenuation of surface reflectance to estimate optical depth. Therefore, we use the information provided by CALIPSO and the methodologies described by Hu et al. (2007) and Li et al. (2011) to constrain the cloud top extinction and effective radius. These, combined with water path from TB allow us to estimate the column radiative properties.

For the low-cloud results presented below, 85% use the Z-tau or Z-LWP retrieval to obtain the liquid microphysical properties. For the 15% of low clouds that use the new technique, the majority of these clouds existed below 1 km or were below the detection threshold of CloudSat. Of these, 4.1% are type 1 retrievals, 6.6% are type 2a retrievals, 0.3% are type 2b
retrievals, and 4.7% use the Tb derived LWP with an initial guess for effective radius. We would like to note that the use of CloudSat to constrain cloud properties below 1 km and below the detection threshold of the radar using the TB derived from the radar receiver noise is a unique use of CloudSat, and, while additional development of algorithms is being pursued, this initial application enables study of a new part of the cloud occurrence spectrum that has previously only been examined with reflected sunlight. By applying these new methods, we were able to significantly improve TOA solar flux comparisons with CERES on the low end of the cloud forcing spectrum.

Cloud layer statistics from CloudSat and CALIPSO for the 2006-2016 period using the Radar-Lidar Geometrical Profile Product (RL-Geoprof; Mace and Zhang, 2014) show that our East Pacific study region experiences a total cloud coverage of 66% annually, with a multi-layer cloud fraction of 19%. The study region is dominated by clouds with top heights < 2 Km making it an ideal location for studying tropical boundary layer clouds. We follow the ISCCP convention for classifying clouds as a 2D histogram, with cloud top height on one axis and thin, moderate, and thick optical depth thresholds on the orthogonal axis. The cloud type names we associate with the optical depth bins are just notional for convenience and are not necessarily meant to represent meteorological cloud types.

An example of a typical cloud scene is shown in Figure 1. Approximately two-thirds (69%) of the cloudy profiles in this scene contain Stratocumulus cloud, and nearly one-third (29%) represent Cumulus cloud. From the 2C-PRECIP-COLUMN dataset (Haynes et al., 2009), 17% of the cloud profiles are flagged as containing precipitation (6% possible, 5% probable, 5% certain).

b. Model
The model data analyzed in this study is from the National Center for Atmospheric Research (NCAR) CAM5. The model was run globally for 2005-2008 in a standard climate configuration using observed sea surface temperatures and sea ice fraction. The simulation operated with a horizontal resolution of 1.9° x 2.5° and a physics time step of 30 min. There are 30 vertical pressure levels, with the lowest 9 levels (pressure > 763 mb) corresponding to geopotential heights below 2.5 Km for our study domain.

The stratiform cloud microphysics are represented by a 2-moment scheme that predicts the mixing ratio and number concentration for four separate hydrometeor species including cloud water, cloud ice, rain and snow (Morrison and Gettelman 2008). Cloud fraction is diagnostic and the stratus liquid cloud fraction is predicted based on relative humidity. CAM5 uses a moist PBL scheme to parameterize the eddy diffusivity based on the turbulent kinetic energy (Bretherton and Park, 2009a). Precipitation is diagnostic and the autoconversion of cloud water to rain is given by Khairoutdinov and Kogan (2000), which has been shown to produce rain formation that is closer to satellite observations than other autoconversion schemes (Suzuki et al. 2015). From the shallow convection scheme (Park and Bretherton 2009), detrained condensate is added to cloud liquid using the detrained mass with an assumed mean volume radius of 8 microns.

The radiation scheme used in CAM5 is the Rapid Radiative Transfer Model for GCMs (RRTMG; Iacono et al., 2008; Mlawer et al. 1997) and the sub-grid cloud characterization in RRTMG is treated using the maximum-random cloud overlap assumption. Aerosols are a prognostic variable and their radiative effects are included in the clear sky and cloudy calculations. Rain, however, is not included in the radiation calculations (Li et al., 2014). Unlike snow, the absence of rain in the radiation calculation in GCMs does not lead to large errors (Hill et al., 2018).
When comparing satellite observations and model output, one must be aware of the inherent differences in the datasets, and take steps to account for those differences. Given that the CC observations are sun-synchronous, we sample CAM5 3-hourly instantaneous output at the time closest to the CC overpasses (0130 UTC and 1330 UTC), to capture similar aspects of the diurnal cycle of clouds and shortwave radiative effects. Since the CC microphysical retrieval includes all hydrometeors (i.e. cloud water and rain) in the profile, a more direct comparison to the model liquid water path includes filtering out CC profiles that are flagged as precipitating at the surface (Li et. al, 2008). In this study, all CC profiles containing rain are excluded from the comparison of the cloud microphysics. All hydrometeor profiles (including those with rain) are used in the observational results for cloud fraction and cloud radiative effects.

In terms of cloud detection, between CloudSat and CALIPSO, we will observe nearly all single-layer low clouds. Optically thin clouds are observed by the lidar, while optically thicker clouds above 1Km are observed by the radar. A limitation of the radar and lidar is the potential inability to measure cloud below 1Km, in scenes where the lidar has been attenuated. However, unique to this study is the use of the 94 GHz Brightness temperature, which provides an estimate of the LWP in these previously uncharacterized boundary layer clouds. Hence, the observed single-layer low cloud fraction can be directly compared to the model.

We do not expect the variability in CAM5 cloud properties to be as large as the measurements since the spatial resolution of the model (~200 Km x 200 Km) is much coarser than the CC observations (1.4 Km x 2.1 Km), and the grid box quantities represent the average conditions over a comparatively large area. Furthermore, the cloud radiative effects from CAM5 cannot readily be attributed to specific cloud types because the grid box average cloud properties
(cloud fraction, microphysics, and radiation) are the result of a mixture of clouds that are combined together. To account for this and make a more consistent comparison with CC, we apply a sampling technique to approximate the subgrid scale statistics following a method that is standard in model-measurement comparison studies. Using the maximum-random overlap assumption (Jakob and Klein 1999; Collins 2001), we divide CAM5 grid boxes into 100 subcolumns based on the model cloud fraction profile (e.g. a cloud fraction of 60% at 3km would result in 60 out of 100 subcolumns containing cloud at that level). For each height level, the microphysical properties remain homogeneous across the cloudy subcolumns. Doing this for each vertical level in the model grid box then yields 100 subcolumns with varying cloud profiles. In terms of cloud statistics, our subcolumn method produces similar results to what a satellite simulator would accomplish, as demonstrated in Berry et al. (2019).

d. Radiation

Following the method outlined in Berry et al. (2019), the retrieved (CC) and simulated (CAM5) cloud microphysical properties (water content and \(r_e \)) are, respectively, used to calculate the cloud radiative properties that then serve as inputs for the radiative transfer model. The cloud radiative properties (single-scattering albedo, extinction, and asymmetry parameter) for the CC profiles and CAM5 subcolumns are determined using the same established parameterizations for liquid cloud (Slingo 1989; Kiehl et al. 1998)) and ice cloud (Fu 1996; Fu et al. 1998).

Atmospheric profiles of temperature and specific humidity are obtained from the European Centre for Medium-Range Weather Forecasts Auxiliary (ECMWF-AUX) CloudSat data product for the CC calculations and from CAM5 thermodynamic variables for the model calculations.

The same radiative transfer model is used to obtain the radiative fluxes for the observed CC profiles and simulated CAM5 subcolumns. The shortwave and longwave radiative fluxes are
calculated with the RAPRAD (Toon et al. 1989; Kato et al. 2001; Mlawer et al. 1997), a two-stream rapid radiative transfer model that uses the k-distribution method and correlated-k assumptions. The clear-sky fluxes for each profile are calculated by setting the cloud amount to zero. The cloud radiative effect is obtained by differencing the all-sky and clear-sky fluxes.

Figure 2 shows the retrieved microphysical properties (optical depth, integrated water path, and layer-mean effective radius) and radiative fluxes for the CC case study presented in Figure 1. Shown for comparison are estimates from other observational datasets like the Moderate Resolution Imaging Spectroradiometer (MODIS; Platnick et al. 2017) and Clouds and the Earth’s Radiant Energy System (CERES; Kratz et al., 2014) The majority of the profiles (526/600) in this scene contain single-layer low cloud and the new liquid phase retrieval methodology described above is used to obtain the microphysical properties for slightly more than half (272) of the cloud profiles. We find a substantial range in cloud properties and radiative fluxes just among these low clouds, and the A-Train retrieval captures these range well based on the comparison to the radiative fluxes. Interestingly, the A-Train retrieval correlates relatively well with completely physically independent methods to derive optical depth and liquid water path. This is much less true for the effective radius, highlighting how difficult it is to get a handle on this variable with remote sensing. On average, these low cloud layers have a LWP around 100 g m$^{-2}$ and optical depth near 10, producing a shortwave CRE of -195 W m$^{-2}$ and a longwave CRE of 8 W m$^{-2}$.

To validate our approach with the model, we compare our calculated subcolumn radiative fluxes from RAPRAD, averaged within each grid box, to the internally-generated fluxes from RRTMG that are created in the model run and stored in the CAM5 output, as in Berry et al., 2019. The magnitude of the average bias between our calculated radiation for the model
subcolumns and CAM5 grid-box radiation variables, is less than 5 W m\(^{-2}\) for the clear-sky and all-sky shortwave and longwave TOA fluxes. Hence our subcolumn method is able to reproduce the mean CAM5 radiative fluxes appropriately.

3. Cloud occurrence and radiative effects results

a. Cloud Occurrence

For the period under study, the CC observations give a total cloud fraction of 77% in the East Pacific region, which agrees well with previous seasonal estimates for this region (Mace et al. 2009; Mace and Wrenn, 2013). Multi-layer clouds are present in 25% of all CC profiles, and cloud-free columns represent 23% of profiles. The total cloud fraction in CAM5 is very similar, at 74%, with 28% of all subcolumns containing multiple cloud layers, and 26% of subcolumns being cloud-free. We find that single-layer clouds are slightly less common at the time of the daytime overpass, compared to the nighttime overpass (43% vs. 57% for CC and 46% vs. 54% for CAM5).

In this study we evaluate profiles/subcolumns with single-layer clouds, such that we can assign the radiative effects to a specific cloud type. Model subcolumns containing single-layer clouds are defined as having only one cloud layer in the vertical and are identified using the cloud fraction profile (0=no cloud, 1=cloud). In addition, we evaluate the single-layer cloud fraction for cloud types defined as a function of Cloud Top Height (CTH) and cloud optical depth (\(\tau\)), similar to cloud type definitions for the International Satellite Cloud Climatology Project (ISCCP; Rossow and Schiffer, 1999). The resulting cloud fraction histograms for single-layer clouds are shown in Figure 3 (left panels) and summarized in Table 1. CC observes more (53%) single-layer clouds compared to CAM5 subcolumns (46%). In terms of CTH, the single-layer cloud fraction is dominated by low-topped clouds in both the model and observations.
terms of optical depth, cloud layers with moderate optical depth occur most frequently in both
the models and observations.

The histograms of cloud fraction reveal large differences for low cloud types. Most
notably, the model produces much fewer single-layer low clouds (29%) compared to that
observed by CC (42%). For instance, single-layer Cumulus is observed to occur 7% of the time
in the CC observations, though it is almost nonexistent (1%) in CAM5 subcolumns. In addition,
Stratocumulus are also more common in the CC observations (28%) compared to CAM5
subcolumns (17%). The relatively smaller fraction of Cumulus and Stratocumulus in the model
could be related to issues with the stratocumulus to cumulus transition (as noted in Kay et al.,
2012), such as a geographic bias of where these clouds are located.

Overall, CAM5 overestimates the most optically thick clouds, while underestimating
optically thinner clouds, producing about 70% of the observed clouds that have thin (9% for
CAM5 vs. 13% for CC) and intermediate (21% for CAM5 vs. 31% for CC) optical depths, and
nearly double the amount of clouds with the largest optical depths (16% for CAM5 vs. 9% for
CC). In particular, low clouds with thin and intermediate optical thickness (Cumulus and
Stratocumulus) are underestimated by about half (18% for CAM5 vs. 35% for CC). While the
most optically thick low cloud, Stratus, has a greater occurrence (11%) in the model compared to
observations (7%). These results agree well with those of Zhang et al. 2005, who compared
GCMs to ISCCP and CERES data, finding evidence of too few low clouds and low clouds that
are too bright.

b. Cloud Radiative Kernels

To assess the radiative effects by clouds types, we create cloud radiative kernels, which
describe the sensitivity of the TOA radiation (R) to changes in cloud fraction (CF), following
CRK=∂R/∂CF. Like CF, the cloud radiative kernel is derived for single-layers clouds as a function of CTP and \(\tau \), and it has units of W m\(^{-2} \) %\(^{-1} \). As in Berry et al., 2019, we create observation- and model-derived CRKs.

The radiative fluxes for the observed and modeled clouds are calculated in a consistent manner, using the same parameterization for radiative properties and same radiative transfer model. Our data-derived CRKs represent the average cloud radiative effects, based on all the observed/modeled single-layer clouds that occur in a given cloud type bin. Therefore, the magnitude of the observation-based and model-specific radiative kernels depends on their respective cloud microphysical properties and temporal statistics.

The net cloud radiative kernels for CC and CAM5 are presented in Figure 3 (middle panels). Not shown is the longwave (LW) kernel, since the LW effects of the mostly commonly occurring low clouds are very small, and the shortwave (SW) kernel, since it is very similar to the net CRK for low cloud. The net CRKs show cooling effects decreasing with CTH and increasing with optical depth, with the exception of Stratus, which is discussed further below. For optically thin clouds (\(\tau < 3.6 \)), we find good agreement between the model and observations, with the net CRK ranging from -0.77 cooling in Cumulus to 0.42 W m\(^{-2} \) %\(^{-1} \) warming for Cirrus. The largest differences in the net CRK occur for low clouds (CTH < 3 Km), with the model showing much stronger cooling compared to the observations. For Stratocumulus, the most commonly occurring cloud type, the cooling in the model CRK is a factor of two larger than the observation-based CRK (-1.87 W m\(^{-2} \) %\(^{-1} \) for CAM5 vs -0.91 W m\(^{-2} \) %\(^{-1} \) for CC). Overall, the differences for the most commonly occurring low cloud types tells us that the model is making clouds that are brighter than clouds in the real atmosphere.

c. Cloud Radiative Effects

Downloaded from http://journals.ametsoc.org/doi/pdf/10.1175/JCLI-D-19-0870.1 by guest on 15 June 2020
We use our CRKs to calculate the cloud radiative effects in the observations and model following, $R = CRK \times CF$, where R gives the contribution of each cloud type to the TOA radiation [W m$^{-2}$]. The calculated cloud radiative effects are therefore a function of the cloud properties and cloud occurrence. Since we are using the kernel approach, we can identify discrepancies in observed and modeled CRK and CF for individual cloud types.

From Figure 3 (right panels), the net CRE for the East Pacific, due to single-layer clouds, shows more cooling from CAM5 (-55 W m$^{-2}$) compared to the CC retrieval (-35 W m$^{-2}$). Much of this difference is due to Stratocumulus and Stratus clouds, which exhibit differences in CF and radiative cooling. Some of the differences in CF and CRK tend to compensate each other. For instance, despite the greater sensitivity to Cumulus in CAM5, Cumulus observed by CC have a stronger cooling effect in the region, given their frequency of occurrence. Overall, it is Stratocumulus clouds that produce the most cooling in this region in both the CC observations and CAM5, owing to the fact that they are the most frequent cloud type. Although the cooling due to Stratocumulus is a bit weaker in the CC retrieval (-25 Wm$^{-2}$) compared to CAM5 (-33 W m$^{-2}$).

For Cumulus and Stratocumulus, we find that the low cloud fraction is underestimated, and the sensitivity to the TOA radiation is overestimated in CAM5, compared to the CC retrieval. For the purposes of radiative balance, it would make sense that a difference in cloud fraction would need to be offset by a difference in the CRK. Our findings are further evidence of the “too few, too bright” tropical low cloud bias in models. Beyond low clouds, Cirrus are the next most common single-layer cloud type in this region, and their occurrence and radiative effects show rather good agreement between CAM5 and CC, similar to the results shown in Berry et al., 2019.
To further investigate these differences in CRE, we compare the TOA upwelling solar flux between CERES and CC and between CAM5 and CC in Figure 4. First, the upwelling solar flux retrieved from CC is compared to the upwelling solar flux measured by CERES (top panel). For this comparison, we determine the average radiative fluxes for all CloudSat profiles within each CERES footprint (from RAPRAD) and compare that to the CERES radiative fluxes. Overall, A-Train is slightly dimmer than CERES, with a mean bias of 6 W m$^{-2}$ in reflection, which is good agreement, considering that the CERES footprints represent a larger area (20 Km diameter) than the averaged A-Train profiles. The A-Train does have a larger peak in upwelling TOA SW at 80 W m$^{-2}$, associated with the reflectance of the ocean surface. This is due to the occurrence clear-sky A-Train profiles within CERES footprints that are partly cloudy. Secondly, we compare the distributions of the upwelling solar flux for single-layer clouds observed by CC and simulated by CAM5 (bottom panel). Overall, CAM5 single-layer clouds are brighter than CC observed clouds by an average of ~100 W m$^{-2}$ during the daytime. While the shape of the PDF for A-Train profiles looks similar to that of CERES (top panel), for CAM5 it does not. The distribution of reflected solar for CAM5 is fundamentally different from both observational datasets, in large part due to differences in cloud type occurrence. The CAM5 distribution is composed of relatively much more optically thick clouds with tau > 23 (35% of single-layer clouds) compared to CC (17% of single-layer clouds), as noted in Table 1. Besides first-order differences in cloud occurrence, the SW reflection for clouds in CAM5 could also be larger due to differences in cloud microphysical properties.

4. Low cloud results
 a. Day-Night Effects

Accepted for publication in *Journal of Climate*. DOI 10.1175/JCLI-D-19-0870.1.
In terms of differences in the CRKs, another possible explanation may be differences in the day-night occurrence frequencies, since our data-based CRKs represent the average radiative effects from clouds that are sampled twice daily. We investigate this by showing the distribution of TOA SW cloud forcing, with daytime and nighttime effects separated, in Figure 5. First, in terms of the day-night occurrence frequencies, we find that low clouds tend to show evidence of a diurnal cycle. As low cloud optical depth increases, occurrence at the nighttime overpass increases in both the model and observations. This agrees well with previous literature on the diurnal cycle of marine low clouds, in which Stratocumulus coverage peaks in the early morning hours before sunrise, while cumulus clouds have an increasing frequency during the day (Wood, 2012). Cumulus tend to occur more frequently during the day (76% in CC; 72% in CAM5). While Stratus tend to occur more frequently at night (85% in CC; 82% in CAM5), which explains the weaker than expected cooling for Stratus in the CRKs. The day-night frequency of Stratocumulus differs between the observations and model, with CC observing a larger nighttime fraction (61%), and CAM5 observing a smaller nighttime fraction (42%). This larger daytime fraction for CAM5 Stratocumulus contributes to a stronger cooling in the model CRK.

Putting aside differences in the day-night fraction, we can examine just the daytime mean SW cloud forcing. The mean daytime SW cloud forcing increases with increasing optical depth, from -75 W m⁻² for CC Cumulus (-107 W m⁻² for CAM5), to -265 W m⁻² for CC Stratocumulus (-333 W m⁻² for CAM5), to -400 W m⁻² for CC Stratocumulus (-485 W m⁻² for CAM5). It is striking that this daytime-only comparison reveals more reflection by each single-layer low cloud type in CAM5 compared to CC. This suggests that the population of low clouds in the model tend to be optically thicker and/or have microphysical properties that differ from the CC retrieval, such that they produce more solar reflection. While the high cloud types are not shown...
in Figure 5, it’s worth noting that the differences in the CRK for Deep Convection and Nimbostratus are mostly related to differences in the day-night cloud fractions, since the daytime SW forcing for these cloud types agree reasonably well.

b. Microphysics

In addition to time-of-day differences, differences in the CRKs could be related to differences in the cloud microphysics. In Table 2 we present a comparison of the low cloud properties (LWP, optical depth, and effective radius) between CAM5, all CC clouds, and NP CC clouds. For NP CC, approximately 30% of the CC Stratocumulus and Stratus have been screened out due to possible, probably, or certain precipitation. The LWP for all CC low clouds is 25% higher than NP CC low clouds. While the effective radius of all CC low clouds is about 17% higher than the respective cloud-only values. These differences between all CC liquid clouds and NP CC liquid clouds show good agreement with similar results for MODIS-derived cloud properties (Christensen et al., 2013).

In comparing the model low clouds to the NP CC clouds, we find that CAM5 has a slightly higher mean LWP of 115 g m\(^{-2}\), compared to a mean LWP of 110 g m\(^{-2}\) from the observations. While the low cloud mean effective radius in CAM5 tends to be smaller (9\(\mu\)m) compared to the CC NP observations (13\(\mu\)m). This observed value is a bit lower than results from Mulmendstadt et al., 2015, which report mean effective radii of 18-20 microns from MODIS for non-raining single-layer clouds in the tropics. However, the MODIS re_liq has been shown to be 1-2 microns higher for stratocumulus (Painemal and Zuidema, 2001) and 7-12 microns higher for trade wind clouds (Haney, 2013).

Another measure in Table 2 examines the LWP normalized by the cloud fraction. Using this, McCoy et al., 2016 found that GCMs generally overestimate the cloud-fraction-normalized
LWP when compared to MODIS and they found a positive correlation between the cloud-fraction-normalized LWP and SW up in the tropics. We find similar results with our dataset. The LWP normalized by NP single-layer cloud fraction is 0.34 kg m$^{-2}$ for CC and 0.44 kg m$^{-2}$ for CAM5.

Shown in Figure 6 are the distributions of cloud microphysical properties as a function of low cloud type for CAM5 and CC NP clouds. Overall, CAM5 does a fair job of representing the cloud-type microphysics (optical depth, integrated liquid water content, and liquid effective radius). Though there are some important differences.

We find that the mean of the LWP distribution for each low cloud type tends to be underestimated by CAM5. Whereas the same statement is not true for the median LWP, revealing that the CC distributions of LWP tend to be skewed. However, the LWP statistics from Table 2 reveal that for all NP low clouds types combined, the CC retrieval has a slightly smaller mean LWP, compared to CAM5. Hence when the cloud occurrence is taken into account, CAM5 produces a larger mean low-cloud LWP compared to CC. Although when we examine the mean properties of the individual cloud types, the LWPs are underestimated by the model. In this sense, comparing only the overall mean low-cloud LWP will mask compensating errors in cloud-type LWP and occurrence, giving a false impression about the models’ ability to represent the LWP for low clouds. For instance, it’s not that CAM5 tends to produce larger cloud-type LWPs, but rather that CAM5 produces less of the optically thinner cloud layers, including Cumulus which are largely missing, and more of the optically thick Stratus type (which is seen prominently in the PDFs of LWP for Stratus). Therefore, partitioning by cloud type and looking at the PDFs of LWP provides a more detailed and insightful comparison of LWP in the model.
Similar to LWP, the mean liquid effective radius \((re_{liq})\) for each low cloud type tends to be slightly lower in CAM5. The liquid effective radius estimated from CC tends to decrease as cloud optical depth increases. Meanwhile, the mean value of \(re_{liq}\) for CAM5 is consistently 8-9 microns across the low cloud types, although the model PDFs of \(re_{liq}\) are different for each low cloud type. The persistence of this mean value of \(re_{liq}\) across the cloud types may be indicative of the shallow cumulus convection scheme at work, since it detrains condensate at a prescribed size of 8 micron.

Interestingly, taken together, CAM5 microphysics produce similar statistics of cloud optical depth for each low cloud type. For the most commonly occurring low cloud type, Stratocumulus, there are some notable differences in the microphysics. CAM5 exhibits a smaller range in cloud liquid effective radius (maximum 16 microns). Also the shape of the LWP distribution for Stratocumulus is different, with LWP being skewed towards smaller values (mean=70 g m\(^{-2}\), median=80 g m\(^{-2}\)) in CAM5, compared to the CC retrieval which is skewed towards larger values (mean=104 g m\(^{-2}\), median=80 g m\(^{-2}\)).

The results for the cloud microphysics comparison should be put in context of how the model handles these clouds. Cumulus clouds (and likely some fraction of Stratocumulus, as defined in this study), are parameterized by the shallow convective scheme, while the stratiform clouds are parameterized by the microphysics scheme. Hence the clouds handled by the shallow convective scheme have a diagnosed LWP and specified effective radius. The Stratocumulus results presented here may be due to a hybrid of clouds produced with the two different parameterizations, which may explain some of the differences we find, like the shape of the LWP distribution.

c. Radiative Effects as a Function of Optical Depth
To further diagnose the connections between clouds and radiation, we examine which clouds specifically are responsible for the majority of the SW cooling effects, and are therefore radiatively most important, in the observations and model. Figure 7 shows single-layer low cloud properties and calculated radiative effects as a function of optical depth for the model subcolumns and observations. The left panels show the distributions of optical depth, which tend to be skewed towards larger values for all times (mostly at night). The mean optical depth for the distribution of CAM5 low clouds is larger (21) compared to the CC observations (14), owing to the fact that CAM5 produces fewer Cumulus and more Stratus. Additionally, the low clouds in CAM5 have a 50/50 day/night ratio, while the low clouds in the CC observations are a little more likely to occur at the nighttime overpass (40%) compared to daytime (60%).

Shown in the middle panels of Figure 7 are the TOA net CRKs, as a function of optical depth, for observed and modeled low clouds. While we see a similar pattern for changes in the CRKs as the low cloud optical depth increases, the magnitude of the sensitivity is larger in CAM5. The daytime-only CRKs show increasing cooling with increasing optical depth, up to an optical depth around 20. The overall CRK shows cooling increasing up to an optical depth around 6, and then decreasing cooling as the optical depth increases beyond about 16 in both CAM5 and CC retrieval. This occurs because the fraction of night-time clouds increases with increasing optical depth as shown in Figure 5 and Figure 7 (left panels).

When we weigh the TOA net CRK by the cloud occurrence, we obtain the net CRE as a function of low cloud optical depth (Figure 7 right panels). Single-layer low clouds in CAM5 produce a larger TOA net cooling effect (-43 W m$^{-2}$) compared to single-layer low clouds in the CC observations (-32 W m$^{-2}$). Overall, Stratocumulus is the cloud type that is most important radiatively, given their frequency of occurrence and cooling effects. In particular, we find that
Stratocumulus clouds, with an optical depth of 10-20, contribute the most to the TOA radiative cooling in both the model and observations. However, overall, the cooling in CAM5 is accomplished by more optically thick clouds that occur over a narrower range of optical depths. CAM5 low clouds produce a stronger cooling for the region (-43 W m\(^{-2}\) for CAM5 vs. -32 W m\(^{-2}\) for CC), despite the fact that the model has far fewer single-layer low clouds (29% for CAM5 vs. 42% for CC). In this sense, CAM5 overcompensates for having too few low clouds of thin and intermediate optical depths by having more optically thick low clouds (Stratus), and producing low clouds that are brighter than those observed by CC.

The daytime CRK tends to reach a minimum in forcing beyond optical depth of approximately 15 in both the model and the observations (Figure 7). As demonstrated in Oreopoulos and Platnick (2008 part 2), changes in liquid cloud radiative effects due to changes in optical depth are nonlinear, with albedo increasing up to an optical depth of 13. Hence changes in cloud liquid water path and effective radius – the bulk features that would tend to change the optical depth - would have little effect on the CRE for a given cloud coverage. Since the CAM5 clouds occupy this domain much more than the observations (42% of daytime low clouds in the model exist at optical depth greater than ~ 15 compared to 18% of the observed clouds), any feedbacks associated with these clouds could most easily be realized by changing low cloud coverage while changes to bulk cloud properties would have minimal effect on the CRE and would not be realized as an optical depth feedback (G. L. Stephens, personal communication).

5. Conclusions

Here we take advantage of the synergy of available in the A-Train for characterizing liquid clouds in the East Pacific and use that information to evaluate these clouds in CAM5.
Using the kernel technique, we have quantified the low cloud radiative effects, and how these radiative effects are achieved by liquid clouds observed in nature and by liquid clouds simulated by the model. Our goal has been to determine to what extent the model is able to replicate the observed liquid clouds properties and radiative cooling.

Overall, we find that CAM5 reasonably simulates the shapes of the distributions for cloud-type microphysics. While the model produces brighter low clouds with stronger CRE, the ranges of SW CRE and trends in SW cooling increasing with cloud-type optical depth, are reasonably represented by the model. The challenge for the model lies in reproducing small scale distributions with coarse simulations.

In terms of cloud occurrence, Cumulus and Stratocumulus are substantially underpredicted by the model (18% for CAM5 vs. 35% for CC). In particular, we find that the largest differences in cloud fraction are for the most optically thin low clouds. This is somewhat expected, given that Cumulus are going to be a function of the diagnostic shallow convection scheme, with highly uncertain radiative properties.

The cloud radiative kernels show that the model TOA radiation has a larger sensitivity to changes in low cloud fraction, with a tendency for stronger cooling by low clouds in CAM5 (Figure 3 middle panels). Differences in the day-night cloud fraction contribute to the bright bias in the model CRK for Stratocumulus. When considering the daytime-only radiative effects (Figure 5), the differences between CAM5 and CC Stratocumulus are reduced (~ 70 W m\(^{-2}\) bias).

In terms of cloud properties, we find that CAM5 have broadly realistic ranges of LWP although effective radius tends to occupy a narrower range of smaller values (Figure 6). When considering the microphysics for low clouds on the whole, the LWP-normalized-by-cloud fraction is larger for single-layer low clouds in CAM5, and suggests too large a water path for
the given cloud fraction. In addition, CAM5 low clouds have a higher mean optical depth compared to CC (Figure 7 left panels), given less Cumulus and more Stratus. Overall, the PDFs of low cloud optical depth and microphysics show less variability in the modeled low cloud types, such that the cooling in the model is produced by a narrower range of clouds compared to the observations (Figure 7 right panels).

Stratocumulus is the most commonly occurring single-layer cloud type, and the cloud type that is most important radiatively, in both CAM5 and CC. While Stratocumulus are responsible for the majority of cooling in both the observations (-25 W m\(^{-2}\)) and model (-33 W m\(^{-2}\)), there are compensating errors in CAM5 which lead to this result. For instance, the occurrence of single-layer Stratocumulus in CAM5 is just 60% of what it is in the CC observations (17% for CAM5 vs. 28% for CC). While the net cooling for Stratocumulus, per change in cloud fraction, is twice as large in the model (-1.87 W m\(^{-2}\) %\(^{-1}\)) compared to CC retrieval (-0.91 W m\(^{-2}\) %\(^{-1}\)), This factor of two difference (~ 90 W m\(^{-2}\) bias) in the CRKs for Stratocumulus has implications for the modeled cloud feedbacks, which result largely from changes in the low cloud fraction. More specifically, the state-dependent bias in the model CRK will result in an overly sensitive tropical low cloud feedback. The CRE tends to asymptote to a minimum value beyond optical depth ~ 15 – right in the middle range of the stratocumulus bin. At these higher optical depths, the model CRK is overly sensitive to changes in occurrence because changes to optical depth (water path and effective radius) are less efficient at changing the CRE.

The total CAM5 cooling exhibited by single-layer low clouds in the East Pacific region is too large (-43 Wm\(^{-2}\) for CAM5 vs. -32 Wm\(^{-2}\) for CC), produced by low clouds that are too bright (Figure 5) and much too few (29% for CAM5 vs. 42% for CC). These differences arise due
compensating effects in the model that may be due to the complex interaction of the diagnostic shallow convective parameterization in CAM5 (that has diagnostic LWP and a fixed assumption about effective radius) with the 2-moment stratiform microphysics. The discrepancies we find between the observations and CAM5 for tropical low clouds suggest that the low cloud feedbacks from this generation of models remains uncertain and is likely too large, due in part to the diurnal variations. Since the simulated clouds tend to have optical depths that are too large, the most efficient path to a changed forcing is via changes to cloud occurrence. The real world seems to be less sensitive to changes in coverage because the optical depth distribution exists more in the range where changes to optical depth can change the cloud radiative forcing. Therefore, changes to bulk microphysics in nature could play a greater role in changing the forcing as the climate warms. Since low clouds are a source of so much spread in climate sensitivity, improving the representations of these clouds could reduce the uncertainty in climate projections. CAM6 has attempted to remedy this problem with a more advanced scheme for shallow turbulence (Bogenschutz et al., 2013) which better couples shallow cumulus motions with the boundary layer and prognostic stratiform microphysics. It will be interesting to see if this improves the representation of this critical region, and has been shown to affect cloud feedbacks (Gettelman et al., 2019).
Acknowledgements

The A-Train data used in this study were obtained through the public CloudSat data archive at CIRA/CSU. The authors acknowledge the reviewers for their help with improving the manuscript. Support for this work was provided by a series of NASA Grants: NNX13AQ34G, NNX10AM42G, NNX15AK17G and 80NSSC19K1251. The National Center for Atmospheric Research is supported by the U.S. National Science Foundation.
References

Accepted for publication in *Journal of Climate*. DOI:10.1175/JCLI-D-19-0870.1.

Accepted for publication in *Journal of Climate*. DOI10.1175/JCLI-D-19-0870.1.

Haney, C. O., 2013: Cloud drop effective radius for trade wind cumuli observed during RICO by aircraft and MODIS, M.S. Thesis, Univ. of Illinois at Urbana-Champaign, 89 pp.

Accepted for publication in *Journal of Climate*. DOI10.1175/JCLI-D-19-0870.1.

Accepted for publication in *Journal of Climate*. DOI10.1175/JCLI-D-19-0870.1.

Mace, G. G. and A. Protat, 2018: Clouds over the Southern Ocean as observed from the R/V Investigator during CAPRICORN. Part II: The properties of nonprecipitating stratocumulus, *J. Appl. Meteor. and Clim.* 57, 1805-1823, DOI: 10.1175/JAMC-D-17-0195.1

Accepted for publication in *Journal of Climate*. DOI 10.1175/JCLI-D-19-0870.1.

Neale, R. B., et al., 2010: Description of the NCAR Community Atmosphere Model (CAM 5.0), NCAR Technical Note, NCAR/TN-486+STR.

Accepted for publication in *Journal of Climate*. DOI 10.1175/JCLI-D-19-0870.1.

Accepted for publication in Journal of Climate. DOI10.1175/JCLI-D-19-0870.1.

Accepted for publication in Journal of Climate. DOI10.1175/JCLI-D-19-0870.1.

Table 1. Occurrence frequencies (%) for single-layer clouds in the CloudSat-Calipso (CC) dataset and CAM5 subcolumns, using cloud type definitions based on cloud top height (CTH) and optical depth (τ).

<table>
<thead>
<tr>
<th>Cloud Type</th>
<th>CC Absolute</th>
<th>CAM5 Absolute</th>
<th>CC Relative</th>
<th>CAM5 Relative</th>
</tr>
</thead>
<tbody>
<tr>
<td>High (CTH>9.5 Km)</td>
<td>9</td>
<td>13</td>
<td>17</td>
<td>28</td>
</tr>
<tr>
<td>Middle (3<CTH<9.5 Km)</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>Low (CTH<3 Km)</td>
<td>42</td>
<td>29</td>
<td>79</td>
<td>63</td>
</tr>
<tr>
<td>Total</td>
<td>53</td>
<td>46</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 2. Mean properties for single-layer low clouds (CTH > 3 Km and τ < 166). CC- All is all CloudSat-CALIPSO observed low clouds and CC NP are non-precipitating observed low clouds.

<table>
<thead>
<tr>
<th></th>
<th>Frequency</th>
<th>LWP (gm-2)</th>
<th>CF-normalized LWP (kg m$^{-2}$)</th>
<th>Optical depth</th>
<th>Effective Radius (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC – All</td>
<td>41%</td>
<td>138.2</td>
<td>.34</td>
<td>14.5</td>
<td>15.5</td>
</tr>
<tr>
<td>CC NP</td>
<td>32%</td>
<td>109.9</td>
<td>.34</td>
<td>13.1</td>
<td>13.2</td>
</tr>
<tr>
<td>CAM5</td>
<td>26%</td>
<td>114.5</td>
<td>.44</td>
<td>22.3</td>
<td>9.0</td>
</tr>
</tbody>
</table>
Figure 1. Radar Reflectivity from Cloudsat (top), total attenuated backscatter from CALIPSO (middle) and combined Radar-Lidar cloud mask (bottom) for a typical low cloud scene in the East Pacific domain [-90 to -100, 10S to 10N]. Inset map shows the location of the A-train cloud segment within the domain.
Figure 2. Comparison of our retrieved (black) cloud properties and radiative fluxes to other datasets (red) for the case study presented in Figure 1. (a) Upwelling shortwave flux at the top of the atmosphere (TOA), (b) Outgoing longwave flux at the TOA, (c) Cloud optical depth, (d) Liquid water path and (e) Effective radius.
Figure 3. Single-layer cloud fraction histogram (CF; left), Top of atmosphere net cloud radiative kernel (CRK; middle) and Top of atmosphere net cloud radiative effect (R=CF*CRK; right) as a function of cloud optical depth and cloud top height for the observed A-Train dataset (top) and CAM5 (bottom).
Figure 4. Top of atmosphere (TOA) upwelling shortwave flux (SW up) comparisons for the study period (June-September 2007 and 2008) and domain (East Pacific). Top: Distribution of reflected solar measured from CERES footprints (Red; n=14,118) and retrieved from A-train profiles averaged to the footprints (Black). Bottom: Distribution of reflected solar for single-layers clouds, calculated from CAM subcolumns (Red; n=2.4x10⁶) and retrieved from A-train profiles (Black; n=2.5x10⁵). Noted on each panel is the mean and median values for the distribution of TOA SW up.
Figure 5. The distribution of top of atmosphere shortwave cloud radiative effect (CRE) within each low cloud-type bin at the daytime overpass for single-layer clouds in the CC dataset (black) and CAM5 (red). The mean and median CRE values (W m$^{-2}$) are noted for each curve, along with the relative frequency of daytime clouds.
Figure 6. Distributions of nonprecipitating cloud properties (Top: Optical depth, Middle: Water Path, Bottom: Effective Radius) for each low cloud type, Cumulus (left), Stratocumulus (middle) and Stratus (right) for the Cloudsat-CALIPSO dataset (black) and CAM5 (red). The area under the curves sums to the fraction of profiles/subcolumns in that particular cloud type. The frequency of occurrence, along with the mean and median values of the cloud property distributions are noted on each panel.
Figure 7. Distribution of optical depth and cloud radiative effects for single-layer low clouds (CTH <3km) in the A-train dataset (top) and in CAM5 (bottom). Daytime-only shown in blue, All in black. Left are the corresponding PDFs of cloud optical depth and noted are the mean and median tau and relative frequency of single-layer low clouds. Middle panels are the top of atmosphere (TOA) net cloud radiative kernels (CRK) as a function of tau. Right panels are the resulting TOA net cloud radiative effects (frequency x CRK) and the summed effect of all single-layer low clouds.