The algebra of integro-differential operators on a polynomial algebra

V. V. Bavula

ABSTRACT

We prove that the algebra $I_n := K(x_1, \ldots, x_n, \frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n}, \int_1, \ldots, \int_n)$ of integro-differential operators on a polynomial algebra is a prime, central, catenary, self-dual, non-Noetherian algebra of classical Krull dimension n and of Gelfand–Kirillov dimension $2n$. Its weak homological dimension is n, and $n \leq \text{gldim}(I_n) \leq 2n$. All the ideals of I_n are found explicitly, there are only finitely many of them (at most 2^n), they commute ($ab = ba$) and are idempotent ideals ($a^2 = a$). The number of ideals of I_n is equal to the Dedekind number σ_n. An analogue of Hilbert’s Syzygy Theorem is proved for I_n. The group of units of the algebra I_n is described (it is a huge group). A canonical form is found for each integro-differential operator (by proving that the algebra I_n is a generalized Weyl algebra). All the mentioned results hold for the Jacobian algebra A_n (but $\text{GK}(A_n) = 3n$, note that $I_n \subset A_n$). It is proved that the algebras I_n and A_n are ideal equivalent.

1. Introduction

Throughout, ring means an associative ring with 1; module means a left module; $\mathbb{N} := \{0, 1, \ldots\}$ is the set of natural numbers; K is a field of characteristic zero and K^* is its group of units; $P_n := K[x_1, \ldots, x_n]$ is a polynomial algebra over K; $\partial_i := \frac{\partial}{\partial x_i}, \ldots, \partial_n := \frac{\partial}{\partial x_n}$ are the partial derivatives (K-linear derivations) of P_n; $\text{End}_K(P_n)$ is the algebra of all K-linear maps from P_n to P_n; the subalgebra $A_n := K\langle x_1, \ldots, x_n, \partial_1, \ldots, \partial_n \rangle$ of $\text{End}_K(P_n)$ is called the nth Weyl algebra.

DEFINITION [12]. The Jacobian algebra A_n is the subalgebra of $\text{End}_K(P_n)$ generated by the Weyl algebra A_n and the elements $H^{-1}_1, \ldots, H^{-1}_n \in \text{End}_K(P_n)$, where

$$H_1 := \partial_1 x_1, \ldots, H_n := \partial_n x_n.$$

Clearly, $A_n = \bigotimes_{i=1}^n A_1(i) \simeq A_1^\otimes n$, where $A_1(i) := K\langle x_1, \partial_i, H^{-1}_i \rangle \simeq A_1$. The algebra A_n contains all the integrations $\int_i : P_n \rightarrow P_n, p \mapsto \int p \, dx_i$, since

$$\int_i = x_i H_i^{-1} : x^\alpha \mapsto (\alpha_i + 1)^{-1} x_i x^\alpha.$$

In particular, the algebra A_n contains the algebra $I_n := K\langle x_1, \ldots, x_n, \partial_1, \ldots, \partial_n, \int_1, \ldots, \int_n \rangle$ of polynomial integro-differential operators. Note that $I_n = \bigotimes_{i=1}^n I_1(i) \simeq I_1^\otimes n$, where $I_1(i) := K\langle x_i, \partial_i, \int_i \rangle$.

The paper proceeds as follows. In Section 2, two sets of defining relations are given for the algebra I_n (Proposition 2.2); a canonical form is found for each element of I_n by showing that the algebra I_n is a generalized Weyl algebra (Proposition 2.2(2)); the Gelfand–Kirillov dimension of the algebra I_n is $2n$ (Theorem 2.3).

Received 13 December 2009; published online 23 February 2011.

2000 Mathematics Subject Classification 16E10, 16D25, 16S32, 16P90, 16U60, 16U70, 16W50.
In Section 3, a new equivalence relation, the ideal equivalence, on the class of algebras is introduced: two algebras \(A \) and \(B \) are ideal equivalent if there exists a bijection \(f \) from the set \(\mathcal{J}(A) \) of all the ideals of the algebra \(A \) to the set \(\mathcal{J}(B) \) of all the ideals of the algebra \(B \) such that, for all \(a, b \in \mathcal{J}(A) \),

\[
f(a + b) = f(a) + f(b), \quad f(a \cap b) = f(a) \cap f(b), \quad f(ab) = f(a)f(b).
\]

The algebras \(\mathbb{I}_n \) and \(A_n \) are ideal equivalent (Theorem 3.1). As a result, we have for free many results for the ideals of \(\mathbb{I}_n \) using similar known results for the ideals of \(A_n \) of [12]. To note just a few:

(i) The algebra \(\mathbb{I}_n \) is a prime, catenary algebra of classical Krull dimension \(n \), and there is a unique maximal ideal \(a_n \) of the algebra \(\mathbb{I}_n \).

(ii) For all \(a, b \in \mathcal{J}(\mathbb{I}_n) \), \(ab = ba \) and \(a^2 = a \).

(iii) The lattice \(\mathcal{J}(\mathbb{I}_n) \) is distributive.

(iv) Classifications of all the ideals and the prime ideals of the algebra \(\mathbb{I}_n \) are given.

(v) The set \(\mathcal{J}(\mathbb{I}_n) \) is finite. Moreover, \(|\mathcal{J}(\mathbb{I}_n)| = \mathfrak{d}_n \) where \(\mathfrak{d}_n \) is the Dedekind number, and
\[
2 - n + \sum_{i=1}^{\mathfrak{d}_n} 2^i \leq \mathfrak{d}_n \leq 2\mathfrak{d}_n.
\]

(vi) The polynomial algebra \(P_n \) is the only (up to isomorphism) faithful simple \(\mathbb{I}_n \)-module. The fact that certain rings of differential operators are catenary was proved by Brown, Goodearl and Lenagan [25].

In Section 4, it is proved that the factor algebra \(\mathbb{I}_n / a \) is Noetherian if and only if the ideal \(a \) is maximal (Proposition 4.1); and \(\text{GK}(\mathbb{I}_n / a) = 2n \) for all the ideals \(a \) of \(\mathbb{I}_n \) distinct from \(\mathbb{I}_n \) (Lemma 4.2).

In Section 5, for the algebra \(\mathbb{I}_n \) an involution \(* \) is introduced such that \(\partial_i^* = \int_i^* \), \(\int_i^* = \partial_i \), and \(H_1^* = H_1 \) (see (18)). This means that the algebra \(\mathbb{I}_n \) is 'symmetrical' with respect to derivations and integrations. For all ideals \(a \) of the algebra \(\mathbb{I}_n \) (Lemma 5.1(1)), \(a^* = a \). Each ideal of the algebra \(\mathbb{I}_n \) is an essential left and right submodule of \(\mathbb{I}_n \) (Lemma 5.2(2)). The group \(\mathbb{I}_n^* \) of units of the algebra \(\mathbb{I}_n \) is described:

\[
\mathbb{I}_n^* = K^* \times (1 + a_n)^* \supset K^* \times \Biglgl\{1 \times \ldots \times \GL_{\infty}(K)\Bigrgl\}_{2^n-1 \text{ times}}
\]

and its centre is \(K^* \) (Theorem 5.6). For \(n = 1 \), the group \(\mathbb{I}_1^* \) is found explicitly, \(\mathbb{I}_1^* \simeq K^* \times \GL_{\infty}(K) \) (Corollary 5.7). The centre of the algebra \(\mathbb{I}_n \) is \(K \) (Lemma 5.4(2)). It is proved that, for a \(K \)-algebra \(A \), the algebra \(A \otimes \mathbb{I}_n \) is prime if and only if the algebra \(A \) is prime (Corollary 5.3).

In Section 6, we prove that the weak (w.dim) dimension of the algebra \(\mathbb{I}_n \) is \(n \) (Theorem 6.2). Moreover, \(\text{wdim}(\mathbb{I}_n / p) = n \) for all the prime ideals \(p \in \text{Spec}(\mathbb{I}_n) \) (Corollary 6.4). Recall that for each Noetherian ring its weak dimension coincides with its global dimension (in general, this is wrong for non-Noetherian rings). In 1972, Roos proved that the global dimension of the Weyl algebra \(A_n \) is \(n \) (see [56]). This result was generalized by Chase [29] to the ring of differential operators on a smooth affine variety. Goodearl obtained formulae for the global dimension of certain rings of differential operators [37, 38] (see also [24, 39, 49]). Holland and Stafford [36] found the global dimension of the ring of differential operators on a rational projective curve (see also [60]).

Many classical algebras are tensor product of algebras (for example, \(P_n = P_{1n} \otimes \cdots \otimes P_{nn} \), \(A_n = A_{1n} \otimes \cdots \otimes A_{nn} \), \(\mathbb{K}_n = \mathbb{K}_{1n} \otimes \cdots \otimes \mathbb{K}_{nn} \), \(\mathbb{I}_n = \mathbb{I}_{1n} \otimes \cdots \otimes \mathbb{I}_{nn} \) and so on). In general, it is difficult to find the dimension \(d(A \otimes B) \) of the tensor product of two algebras (even to answer the question of when it is finite). In [34], it was pointed out by Eilenberg, Rosenberg and Zelinsky that 'the questions concerning the dimension of the tensor product of two algebras have turned out to be surprisingly difficult'.

An answer is known if one of the algebras is a polynomial algebra:

\textit{Hilbert’s Syzygy Theorem:} \(d(P_n \otimes B) = d(P_n) + d(B) = n + d(B) \),
where \(d = \text{wdim}, \text{gldim} \). In \([8, 9]\), an analogue of Hilbert’s Syzygy Theorem was established for certain generalized Weyl algebras \(A \) (for example, \(A = A_n \), the Weyl algebra):

\[
\text{l.gldim}(A \otimes B) = \text{l.gldim}(A) + \text{l.gldim}(B)
\]

for all left Noetherian finitely generated algebras \(B \) (\(K \) is an algebraically closed uncountable field of characteristic zero). In this paper, a similar result is proved for the algebra \(\mathbb{I}_n \) and for all its prime factor algebras but for the weak dimension (Theorem 6.5). It is shown that \(n \leq \text{gldim}(\mathbb{I}_n) \leq 2n \) (Proposition 6.7).

In Section 7, we prove that the weak dimension of the Jacobian algebra \(\mathbb{J}_n \) is \(n \) (Theorem 7.2), and \(\text{wdim}(\mathbb{J}_n/p) = n \) for all the prime ideals \(p \in \text{Spec}(\mathbb{J}_n) \) (Corollary 7.3). An analogue of Hilbert’s Syzygy Theorem is proved for the Jacobian algebra \(\mathbb{J}_n \) and its prime factor algebras (Theorem 7.4). It is shown that \(n \leq \text{gldim}(\mathbb{J}_n) \leq 2n \) (Proposition 7.5).

The algebra \(\mathbb{I}_1 = A_1(1) \) is an example of the \(\text{Rota}–\text{Baxter} \) algebra. The latter appeared in the work of Baxter \([21]\) and was further explored by Rota \([57, 58]\), Cartier \([26]\), Atkinson \([4]\) and more recently by many others: Aguiar and Moreira \([1]\); Cassidy, Guo, Keigher and Sit \([27]\), Ebrahimi and Guo \([33]\); Connes, Kreimer and Marcoli \([30, 31]\), to name just a few. From the angle of the \(\text{Rota}–\text{Baxter} \) algebras, the algebra \(\mathbb{I}_1 \) was studied by Regensburger, Rosenkranz and Middeke \([55]\).

2. Defining relations for the algebra \(\mathbb{I}_n \)

In this section defining relations are found for the algebra \(\mathbb{I}_n \) and it is proved that the algebra \(\mathbb{I}_n \) is a generalized Weyl algebra (Proposition 2.2) of Gelfand–Kirillov dimension \(2n \) (Theorem 2.3) which is neither left nor right Noetherian (Lemma 2.4).

2.1. Generalized Weyl algebras

Let \(D \) be a ring, \(\sigma = (\sigma_1, \ldots, \sigma_n) \) be an \(n \)-tuple of commuting ring endomorphisms of \(D \) and \(a = (a_1, \ldots, a_n) \) be an \(n \)-tuple of elements of \(D \). The generalized Weyl algebra \(A = D(\sigma, a) \) (briefly, GWA) of degree \(n \) is a ring generated by \(D \) and \(2n \) elements \(x_1, \ldots, x_n, y_1, \ldots, y_n \) subject to the following defining relations \([6, 7]\):

\[
y_i x_i = a_i, \quad x_i y_i = \sigma_i(a_i),
\]

\[
x_id = \sigma_i(d)x_i, \quad dy_i = y_i \sigma_i(d), \quad d \in D,
\]

\[
[x_i, x_j] = [y_i, y_j] = [x_i, y_j] = 0, \quad i \neq j,
\]

where \([x, y] = xy - yx\). We say that \(a \) and \(\sigma \) are the sets of defining elements and endomorphisms of \(A \), respectively. For a vector \(k = (k_1, \ldots, k_n) \in \mathbb{Z}^n \), let \(v_k = v_{k(1)} \ldots v_{k(n)} \), where, for \(1 \leq i \leq n \) and \(m \geq 0 \):

\[
v_m(i) = x_i^m, \quad v_{-m}(i) = y_i^m, \quad v_0(i) = 1.
\]

It follows from the definition that \(A = \bigoplus_{k \in \mathbb{Z}^n} A_k \) is a \(\mathbb{Z}^n \)-graded algebra \(A_k A_e \subseteq A_{k+e} \) for all \(k, e \in \mathbb{Z}^n \), where \(A_k = v_{k,-} Dv_{k,+} \); \(v_{k,+} := \prod_{k_j > 0} v_{k_j} \) and \(v_{k,-} = \prod_{k_j < 0} v_{k_j} \). The tensor product (over the ground field) \(A \otimes A' \) of generalized Weyl algebras of degree \(n \) and \(n' \) is a GWA of degree \(n + n' \):

\[
A \otimes A' = D \otimes D'((\tau, \tau'), (a, a')).
\]

Let \(P_n \) be a polynomial algebra \(K[H_1, \ldots, H_n] \) in \(n \) indeterminates and let \(\sigma = (\sigma_1, \ldots, \sigma_n) \) be the \(n \)-tuple of commuting automorphisms of \(P_n \) such that \(\sigma_i(H_i) = H_i - 1 \) and \(\sigma_i(H_j) = H_j \), for \(i \neq j \). The algebra homomorphism

\[
A_n \rightarrow P_n((\sigma_1, \ldots, \sigma_n), (H_1, \ldots, H_n)), \quad x_i \mapsto x_i, \quad \partial_i \mapsto y_i, \quad i = 1, \ldots, n,
\]

is an isomorphism. We identify the Weyl algebra \(A_n \) with the GWA above via this isomorphism. Note that \(H_i = \partial_i x_i = x_i \partial_i + 1 \).
It is an experimental fact that many small quantum algebras/groups are GWAs. The interested reader can find more about GWAs and their generalizations in [2, 3, 11, 15–20, 22, 23, 28, 35, 41, 43–46, 50, 52–54, 59, 61]. Suppose that A is a K-algebra that admits two elements x and y with $yx = 1$. The element $xy \in A$ is an idempotent, $(xy)^2 = xy$, and so the set $xyAx$ is a K-algebra where xy is its identity element. Consider the linear maps

$$\sigma(a) = xay, \quad \tau(a) = yax.$$

Then $\tau \sigma = \text{id}_A$ and $\sigma \tau(a) = xy \cdot a \cdot xy$, and so the map σ is an algebra monomorphism with $\sigma(1) = xy$ and

$$A = \sigma(A) \oplus \ker(\tau).$$

In more detail, $\sigma(A) \cap \ker(\tau) = 0$ since $\sigma = \text{id}_A$. Since $(\sigma \tau)^2 = \sigma \tau$, we have the equality $A = \text{im}(\sigma \tau) \oplus \text{im}(1 - \sigma \tau)$. Clearly, $\text{im}(\sigma \tau) \subseteq \text{im}(\sigma)$ and $\text{im}(1 - \sigma \tau) \subseteq \ker(\tau)$ as $\tau \sigma = \text{id}_A$. Then $A = \text{im}(\sigma) + \ker(\tau)$, that is, (3) holds. In general, the map τ is not an algebra endomorphism and its kernel is not an ideal of the algebra A. Suppose that the algebra A contains a subalgebra D such that $\sigma(D) \subseteq D$ (and so $xy = \sigma(1) \in D$), and that the algebra A is generated by D, x and y. Since $yx = 1$, we have $x^iD_0 \simeq D$ and $D_0y^i \simeq D$. It follows from the relations

$$yx = 1, \quad xy = \sigma(1),$$

$$xd = \sigma(d)x, \quad dy = y\sigma(d), \quad d \in D,$$

that $A = \sum_{i \geq 1} y^iD + \sum_{i \geq 0} Dx^i$. Suppose, in addition, that the sum is a direct one. Then the algebra A is the GWA $D(\sigma, 1)$.

Lemma 2.1 [14]. Keep the assumptions as above, that is, $A = D\langle x, y \rangle = \bigoplus_{i \geq 1} y^iD \oplus \bigoplus_{i \geq 0} Dx^i$ and $\sigma(D) \subseteq D$. Then $A = D(\sigma, 1)$. If, in addition, $\tau(D) \subseteq D$ and the element xy is central in D, then $Dx^i = x^iD$ and $Dy^i = y^iD$ for all $i \geq 1$.

Definition [13]. The algebra S_n of one-sided inverses of P_n is an algebra generated over a field K by $2n$ elements $x_1, \ldots, x_n, y_1, \ldots, y_n$ that satisfy the defining relations

$$y_1x_1 = \ldots = y_nx_n = 1, \quad [x_i, y_j] = [x_i, x_j] = [y_i, y_j] = 0 \quad \text{for all } i \neq j,$$

where $[a, b] := ab - ba$ is the algebra commutator of the elements a and b.

By the very definition of S_n, the algebra $S_n \simeq S_1^{\otimes n}$ is obtained from the polynomial algebra P_n by adding commuting, left (but not two-sided) inverses of its canonical generators. The algebra S_1 is a well-known primitive algebra [40, Example 2, p. 35]. Over the field \mathbb{C} of complex numbers, the completion of the algebra S_1 is the **Toeplitz algebra** which is the C^\ast-algebra generated by a unilateral shift on the Hilbert space $l^2(\mathbb{N})$ (note that $y_1 = x_1^\ast$). The Toeplitz algebra is the universal C^\ast-algebra generated by a proper isometry.

The Jacobian algebra A_n contains the algebra S_n where

$$y_1 := H_1^{-1}\partial_1, \ldots, y_n := H_n^{-1}\partial_n.$$

Moreover, the algebra A_n is the subalgebra of $\text{End}_K(P_n)$ generated by the algebra S_n and the $2n$ invertible elements $H_1^{\pm 1}, \ldots, H_n^{\pm 1}$ of $\text{End}_K(P_n)$.

The algebras S_n and A_n are much more better understood than the algebra I_n. We see that the three classes of algebras have much in common. In particular, they are GWAs. Moreover, we shall deduce many results for the algebra I_n from known results for the algebras S_n and A_n in [12, 13, 14].
2.2. The algebra S_n is a GWA

Clearly, $S_n = S_1(1) \otimes \ldots \otimes S_1(n) \simeq S_1^n$, where $S_1(i) := K(x, y) | y_i x_i = 1 \simeq S_1$ and $S_n = \bigoplus_{\alpha, \beta \in \mathbb{N}} K x_\alpha^\beta y^\beta$, where $x_\alpha := x_1^{\alpha_1} \ldots x_n^{\alpha_n}$, $\alpha = (\alpha_1, \ldots, \alpha_n)$, $y^\beta := y_1^{\beta_1} \ldots y_n^{\beta_n}$, $\beta = (\beta_1, \ldots, \beta_n)$. In particular, the algebra S_n contains two polynomial subalgebras P_n and $Q_n := K[y_1, \ldots, y_n]$ and is equal, as a vector space, to their tensor product $P_n \otimes Q_n$. Note that also the Weyl algebra A_n is a tensor product (as a vector space) $P_n \otimes K[\partial_1, \ldots, \partial_n]$ of its two polynomial subalgebras.

When $n = 1$, we usually drop the subscript ‘1’ if this does not lead to confusion (we do the same also for the algebras A_1, A_1 and \mathbb{Z}). So, $S_1 = K(x, y) | x y = 1 = \bigoplus_{i,j \geq 0} Kx^i y^j$. For each natural number $d \geq 1$, let $M_d(K) := \bigoplus_{i,j=0}^{d-1} K E_{i,j}$ be the algebra of d-dimensional matrices where $\{E_{i,j}\}$ are the matrix units, and

$$M_{\infty}(K) := \lim_{i,j \to \infty} M_d(K) = \bigoplus_{i,j \in \mathbb{N}} K E_{i,j}$$

be the algebra (without 1) of infinite-dimensional matrices. The algebra $M_{\infty}(K) = \bigoplus_{k \in \mathbb{Z}} M_{\infty}(K)_{k}$ is \mathbb{Z}-graded, where $M_{\infty}(K)_k := \bigoplus_{i,j=k} K E_{i,j}$ ($M_{\infty}(K)_{i} \subseteq M_{\infty}(K)_{i+1}$ for all $k, l \in \mathbb{Z}$). The algebra S_1 contains the ideal $F := \bigoplus_{i,j \in \mathbb{N}} K E_{i,j}$, where

$$E_{i,j} := x_i y^j = x^{i+1} y^{j+1}, \quad i, j \geq 0.$$

Note that $E_{i,j} = x_i E_{00} y^j$ and $E_{00} = 1 - x y$. For all natural numbers i, j, k and l, $E_{i,j} E_{k,l} = \delta_{i+k} E_{j,l}$, where δ_{i+k} is the Kronecker delta function. For all $i, j \geq 0$,

$$xE_{i,j} = E_{i+1,j}, \quad yE_{i,j} = E_{i,j-1}, \quad E_{i,j} x = E_{i,j+1}, \quad E_{i,j} y = E_{i,j+1},$$

where $E_{-1,j} := 0$ and $E_{i,-1} := 0$.

$$x E_{i,j} = E_{i+1,j+1} x, \quad E_{i,j} y = E_{i+1,j+1},$$

$$S_1 = K \oplus x K[x] \oplus y K[y] \oplus F,$$

the above is the direct sum of vector spaces. Then

$$S_1 / F \simeq K[x, x^{-1}] =: L_1, \quad x \mapsto x, \quad y \mapsto x^{-1},$$

since $x y = 1$, $x y = 1 - E_{00}$ and $E_{00} \not\in F$.

The algebra $S_n = \bigotimes_{i=1}^n S_1(i)$ contains the ideal

$$F_n := F^\otimes n = \bigoplus_{\alpha, \beta \in \mathbb{N}^n} K E_{\alpha, \beta}, \quad \text{where } E_{\alpha, \beta} := \prod_{i=1}^n E_{\alpha_i, \beta_i} \quad \text{and } \quad E_{\alpha, \beta}(i) := x^{\alpha_i} y^{\beta_i}, \quad E_{\alpha, \beta}(i) := x^{\alpha_i} y^{\beta_i}.$$

Note that $E_{\alpha, \beta} E_{\gamma} = \delta_{\beta, \gamma} E_{\alpha, \beta}$ for all elements $\alpha, \beta, \gamma, \rho \in \mathbb{N}^n$, where $\delta_{\beta, \gamma}$ is the Kronecker delta function.

Using Lemma 2.1, we can show that the algebra $S_1(i)$ is the GWA $F_{1,0}(\sigma_1, 1)$, where $F_{1,0}(\sigma_1) := K \oplus \bigoplus_{k \geq 0} K E_{kk}(\sigma_1)$ and $\sigma_1(a) = a y_i$ (moreover, $\sigma_1(1) = 1 - E_{00}(1)$ and $\sigma_1(E_{kk}(\sigma_1)) = E_{k+1,k+1}(\sigma_1)$). Therefore, $S_n = \bigotimes_{i=1}^n F_{1,0}(1)^{\sigma_1(i)} = F_{n,0}(1, \ldots, 1)$ is a GWA [14, Lemma 3.3], where $F_{n,0}(1, \ldots, 1)$ is a commutative, non-finitely generated, non-Noetherian algebra; it contains the direct sum $\bigoplus_{\alpha \in \mathbb{N}^n} K E_{\alpha, \alpha}$ of ideals, hence $F_{n,0}$ is not a prime algebra. The algebra S_n is a Z^n-graded algebra, where $S_{n, \alpha} = F_{n,0} v_{\alpha} = v_{\alpha} F_{n,0}$ for all $\alpha \in Z^n$, where

$$v_{\alpha} := \prod_{i=1}^n v_{\alpha_i}(i) \quad \text{and } \quad v_{\alpha}(i) := \begin{cases} x^i & \text{if } j \geq 0, \\ y^{-i} & \text{if } j < 0. \end{cases}$$
The map \(\tau_i : S_n \to S_n, a \mapsto y_i ax_i \), is not an algebra endomorphism, but its restriction to the subalgebra \(F_{n,0} \) of \(S_n \) is a \(K \)-algebra epimorphism, \(\tau_i(F_{n,0}) = F_{n,0} \), with \(\ker(\tau_i | F_{n,0}) = KE_{00}(i) \otimes \bigotimes_{j \neq i} F_{1,0}(j) \). For all \(j \in \mathbb{N} \) and \(d \in F_{n,0}, \quad dx_i^j = x_i^j \tau_i^j(d) \) and \(y_i^j d = \tau_i^j(d)y_i^j \).

The algebra \(I_n := K(\partial_1, \ldots, \partial_n, \int_1, \ldots, \int_n) \) of integro-differential operators with constant coefficients is canonically isomorphic to the algebra \(S_n \):

\[
S_n \to I_n, \quad x_i \mapsto \int_i, \quad y_i \mapsto \partial_i, \quad i = 1, \ldots, n. \tag{9}
\]

For \(n = 1 \) this is obvious since the above map is a well-defined epimorphism (since \(\partial \int = 1 \)), which must be an isomorphism as the algebra \(I_1 \) is non-commutative but any proper factor algebra of \(S_1 \) is commutative [13]. Then the general case follows since \(S_n \simeq S_1^{\otimes n} \) and \(I_n \simeq I_1^{\otimes n} \).

2.3. The Jacobian algebra \(A_n \) is a GWA

The Jacobian algebra \(A_n = D_n((\sigma_1, \ldots, \sigma_n), (1, \ldots, 1)) \) is a GWA [14, Lemma 3.4] where \(D_n := \bigotimes_{i=1}^n D_1(i) \),

\[
D_1(i) = L_1^-(i) \oplus L_1^+(i) \oplus F_{1,0}(i), \quad F_{1,0}(i) := \bigoplus_{s \geq 0} KE_{ss}(i),
\]

\[
L_1^-(i) := \bigoplus_{s,t \geq 1} K \frac{1}{(H_i - s)^t}, \quad (H_i - s)_1 = H_i - s + E_{s-1,s-1}(i),
\]

\[
L_1^+(i) := K[H_i^{\pm 1}, (H_i + 1)^{-1}, (H_i + 2)^{-1}, \ldots]
\]

and \(\sigma_i(a) = x_i ay_i \). In more detail, for all natural numbers \(s \geq 0 \) and \(t \geq 1 \),

\[
\sigma_i(E_{ss}(i)) = E_{s+1,s+1}(i), \quad \sigma_i((H_i - t)_1) = (H_i - t - 1)^{-1}\sigma_i(1),
\]

\[
\sigma_i(H_i) = H_i - 1 = (H_i - 1)^{-1}\sigma_i(1), \sigma_i(1).
\]

The algebra \(D_n \) is a commutative, non-finitely generated, non-Noetherian algebra; it contains the direct sum \(\bigoplus_{\alpha \in \mathbb{Z}^n} K E_{\alpha} \) of ideals (and so \(D_n \) is not a prime algebra). Note that \(H_i E_{ss}(i) = E_{ss}(i) H_i = (s + 1)E_{ss}(i) \). Clearly, \(A_n = \bigotimes_{i=1}^n A_1(i) = \bigotimes_{i=1}^n D_1(i)(\sigma_1, 1) \). The algebra \(A_n = \bigoplus_{\alpha \in \mathbb{Z}^n} A_{n,\alpha} \) is a \(\mathbb{Z}^n \)-graded algebra where \(A_{n,\alpha} = D_n v_\alpha = v_\alpha D_n, \quad v_\alpha := \prod_{i=1}^n v_{\alpha_i}(i) \) and

\[
v_j(i) := \begin{cases} x_i^j & \text{if } j \geq 0, \\ y_i^{-j} & \text{if } j < 0. \end{cases} \tag{10}
\]

The map \(\tau_i : A_n \to A_n, a \mapsto y_i ax_i \), is not an algebra endomorphism, but its restriction to the subalgebra \(D_n \) of \(A_n \) is a \(K \)-algebra epimorphism, \(\tau_i(D_n) = D_n, \ker(\tau_i | D_n) = KE_{00}(i) \otimes \bigotimes_{j \neq i} D_1(j) \). In more detail, for \(a, b \in D_1 \),

\[
\tau(a)\tau(b) = ya(1 - E_{00})bx = \tau(ab) - yaE_{00}bx = \tau(ab),
\]

since \(aE_{00}b \in KE_{00} \) and \(yE_{00} = 0 \). For all \(j \in \mathbb{N} \) and \(d \in D_n, \quad dx_i^j = x_i^j \tau_i^j(d) \) and \(y_i^j d = \tau_i^j(d)y_i^j \). Indeed, when \(n = 1, \quad x\tau(d) = (1 - E_{00})dx = dx - E_{00}dx = dx \) since \(E_{00}d \in KE_{00} \) and \(E_{00}x = 0 \).

2.4. The algebra \(I_n \) is a GWA

Since \(x_i = \int_i H_i \), the algebra \(I_n \) is generated by the elements \(\{ \partial_i, H_i, \int_i | i = 1, \ldots, n \} \), and \(I_n = \bigotimes_{i=1}^n I_1(i) \), where \(I_1(i) := K(\partial_i, H_i, \int_i) = K(\partial_i, x_i, \int_i) \simeq I_1 \). By (9), when \(n = 1 \) the following elements of the algebra \(I_1 = K(\partial, H, \int) \),

\[
e_{ij} := \int_i \partial^j - \int_i \partial^j + 1, \quad i, j \in \mathbb{N}, \tag{11}
\]
satisfy the relations \(e_{ij}e_{kl} = \delta_{jk}e_{il} \). Note that \(e_{ij} = \int^i e_{00} \partial^j \). The matrices of the linear maps \(e_{ij} \in \text{End}_K(K[x]) \) with respect to the basis \(\{x^{[s]} := x^s/s! \}_{s \in \mathbb{N}} \) of the polynomial algebra \(K[x] \) are the elementary matrices, that is,
\[
e_{ij} * x^{[s]} = \begin{cases} x^{[i]} & \text{if } j = s, \\ 0 & \text{if } j \neq s. \end{cases}
\]
It follows that
\[
e_{ij} = \frac{j!}{i!} E_{ij},
\]
where \(E_{ij} \) are the elementary matrices, that is, \(e_{ij} \) satisfy the relations (1) and from the equalities
\[
\forall \epsilon \in \mathbf{K}, e_{ij} = 1 \quad \Rightarrow \quad i = j.
\]
The matrices of the linear maps \(e_{ij} \in \text{End}_K(K[x]) \) with respect to the basis \(\{x^{[s]} := x^s/s! \}_{s \in \mathbb{N}} \) of the polynomial algebra \(K[x] \) are the elementary matrices, that is,
\[
e_{ij} * x^{[s]} = \begin{cases} x^{[i]} & \text{if } j = s, \\ 0 & \text{if } j \neq s. \end{cases}
\]
It follows that
\[
e_{ij} = \frac{j!}{i!} E_{ij},
\]
where \(E_{ij} \) are the elementary matrices, that is, \(e_{ij} \) satisfy the relations (1) and from the equalities
\[
\forall \epsilon \in \mathbf{K}, e_{ij} = 1 \quad \Rightarrow \quad i = j.
\]

Proposition 2.2. (1) The algebra \(\mathfrak{l}_n \) is generated by the elements \(\{\partial_i, \int_i, H_i \mid i = 1, \ldots, n\} \) that satisfy the defining relations
\[
\forall i : \partial_i \int_i = 1, \quad [H_i, \int_i] = \int_i [H_i, \partial_i] = -\partial_i, \quad H_i \left(1 - \int_i \partial_i\right) = \left(1 - \int_i \partial_i\right) H_i = 1 - \int_i \partial_i,
\]
\[
\forall i \neq j : a_i a_j = a_j a_i, \quad \text{where } a_i \in \left\{\partial_i, \int_i, H_i\right\}. \tag{2}
\]

(2) The algebra \(\mathfrak{l}_n = \bigotimes_{i=1}^n D_1(i)(\sigma_1, \ldots, \sigma_n) \) is a GWA (finite set of defining relations for the algebra \(\mathfrak{l}_n \) and shows that the algebra \(\mathfrak{l}_n \) is a GWA (and so we have another set of defining relations for the algebra \(\mathfrak{l}_n \)).

(3) (The canonical basis for the algebra \(\mathfrak{l}_n \)) \(\mathfrak{l}_n = \bigotimes_{\alpha \in \mathbb{Z}^n} \mathfrak{l}_{\alpha, \alpha} \) and, for all \(\alpha \in \mathbb{Z}^n \), \(\mathfrak{l}_{\alpha, \alpha} = v_{\alpha, +} D_{\alpha, v_{\alpha, -}} \simeq D_n \) \((v_{\alpha, +} d v_{\alpha, -} \leftrightarrow d) \), where \(v_{\alpha, +} := \prod_{\alpha_i > 0} v_{\alpha_i} \) and \(v_{\alpha, -} := \prod_{\alpha_i < 0} v_{\alpha_i} \). So, each element \(a \in \mathfrak{l}_n \) is a unique finite sum \(a = \sum_{\alpha \in \mathbb{Z}^n} v_{\alpha, +} a_{\alpha, v_{\alpha, -}} \) for unique elements \(a_{\alpha, v_{\alpha, -}} \) for the algebra \(\mathfrak{l}_n \).

Proof. It suffices to prove the statements for \(n = 1 \) since \(\mathfrak{l}_n = \bigotimes_{i=1}^n \mathfrak{l}_1(i) \). So, let \(n = 1 \) and \(\mathfrak{l}_1' \) be an algebra generated by symbols \(\partial, \int \) and \(H \) that satisfy the defining relations of statement (1). The algebra \(\mathfrak{l}_1 \) is generated by the elements \(\partial, \int \) and \(H \); and they satisfy the defining relations of statement (1) as we can easily verify. Therefore, there is the natural algebra epimorphism \(\mathfrak{l}_1' \to \mathfrak{l}_1 \) given by the rule: \(\partial \mapsto \partial, \int \mapsto \int, H \mapsto H \). It follows from the relations of statement (1) and from the equalities
\[
e_{ij} = \begin{cases} \int^{i-j} e_{jj} & \text{if } i \geq j, \\ e_{ii} \int^{j-i} & \text{if } i < j, \end{cases}
\]
that
\[
\mathfrak{l}_1' = \sum_{i \geq 1} D'_i \partial^i + D'_1 + \sum_{i \geq 1} \int^i D'_i = \sum_{i \geq 1} \partial^i D'_i + D'_1 + \sum_{i \geq 1} D'_i \int^i,
\]
where \(D'_1 := K[H] + \sum_{i \geq 0} K e_{ii} \). Since \(\partial \int = 1 \), the left \(D'_i \)-modules \(D'_i \) and \(D'_i \partial^i \) are isomorphic, and the right \(D'_i \)-modules \(\int^i D'_i \) and \(D'_1 \) are isomorphic. Using the \(\mathbb{Z} \)-grading of the
Jacobian algebra A_1 and the fact that $I_1 \subseteq A_1$, we have

\[
I_1 = \bigoplus_{i \geq 1} D_i \partial^i + D_1 \bigoplus_{i \geq 1} \int^i D_1 = \bigoplus_{i \geq 1} \partial^i D_1 \oplus D_1 \bigoplus_{i \geq 1} D_1 \int^i
\]

where $D_1 = K[H] \oplus \bigoplus_{i \geq 1} K e_{ii} = K[H] \oplus \bigoplus_{i \geq 1} K e_{ii}$ since $K e_{ii} = K e_{ii}$. Note that the left D_1-modules D_1 and $D_1 \partial^i$ are isomorphic and the right D_1-modules D_1 and $\int^i D_1$ are isomorphic since $\partial \int = 1$. This implies that the sum for ∂^i above is a direct one. Therefore, $I_1' \simeq I_1$ and the relations in statement (1) are defining relations for the algebra I_1 and $D_1' = D_1$. The conditions of Lemma 2.1 hold, and so $I_1 = D_1(\sigma, 1)$ with $D_1 \int^i = \int^i D_1$ and $D_1 \partial^i = \partial^i D_1$ for all $i \geq 1$. The proof of statements (1) and (2) of the proposition is complete.

Statement (3) follows from statement (2) and the fact that, for all $\alpha \in \mathbb{Z}^n$, the linear map $I_{n, \alpha} \rightarrow D_n$, $b \mapsto u_{\alpha} - b u_{\alpha, +}$, is a bijection since $u_{\alpha, -} - u_{\alpha, +} = 1$ and $v_{\alpha, -} u_{\alpha, +} = 1$, where $u_{\alpha, -} := \prod_{\alpha_i < 0} v_{-\alpha_i}(i)$ and $u_{\alpha, +} := \prod_{\alpha_i > 0} v_{-\alpha_i}(i)$.

Definition. For each element $a \in I_n$, the unique sum for a in statement (3) of Proposition 2.2 is called the canonical form of a.

The map $\tau_i : I_n \rightarrow I_n$, $a \mapsto \partial_i a \int^i$, is not an algebra endomorphism, but its restriction to the subalgebra D_n of I_n is a K-algebra epimorphism, $\tau_i(D_n) = D_n$ with $\ker(\tau_i | D_n) = Ke_{00}(i) \oplus \bigoplus_{j \neq i} D_1(j)$. In more detail, for $n = 1$ and $a, b \in D_1$,

\[
\tau(a) \tau(b) = \partial a (1 - e_{00}) b \int = \tau(ab) - \partial a e_{00} b \int = \tau(ab)
\]

since $a e_{00} b \in Ke_{00}$ and $\partial e_{00} = 0$. For all $j \in \mathbb{N}$ and $d \in D_n$, $d \int^j = \int^j \tau_j(d)$ and $\partial d = \tau_j(d) \partial^j$. Indeed, for $n = 1$, $\int \tau(d) = (1 - e_{00}) d \int = d \int - e_{00} d \int = d \int$ since $e_{00} d \in Ke_{00}$ and $e_{00} \int = 0$.

Note that

\[
\tau_i(H_j) = H_j + \delta_{ij} \quad \text{and} \quad \tau_i(e_{st}(j)) = \begin{cases} e_{s-1,t-1}(i) & \text{if } i = j, \\ e_{st}(j) & \text{if } i \neq j. \end{cases}
\]

(13)

It follows that $\bigcap_{i=1}^n \ker(\tau_i | D_n) = K \prod_{i=1}^n e_{00}(i) = Ke_{00}$ and $\bigcap_{i=1}^n \ker(\tau_i | D_n - 1) = K$.

For the definition and properties of the Gelfand–Kirillov dimension GK, the reader is referred to [48, 51].

Theorem 2.3. The Gelfand–Kirillov dimension $GK(I_n)$ of the algebra I_n is $2n$.

Proof. Since $A_n \subseteq I_n$, we have the inequality $2n = GK(A_n) \leq GK(I_n)$. To prove the reverse inequality, let us consider the standard filtration $\{I_{n,i}\}_{i \in \mathbb{N}}$ of the algebra I_n with respect to the set of generators $\{\partial_i, H_i, \int^i \mid i = 1, \ldots, n\}$ of the algebra I_n. By Proposition 2.3, $I_{n,i} \subseteq I'_{n,i} := \bigoplus_{|a| \leq i} v_a D_{n,i}$, where $D_{n,i} := \bigoplus_{j=1}^n D_1(i,j)$ and $D_{1,j} := \bigoplus_{s=0}^i KH_j^s \oplus \bigoplus_{t=0}^i Ke_{tt}(j)$. Then $\dim(I_{n,i}) \leq \dim(I'_{n,i}) \leq (2i + 1)^n (2i + 2)^n$, and so $GK(I_n) \leq 2n$, as required.

Lemma 2.4. The algebra I_n is neither left nor right Noetherian. Moreover, it contains infinite direct sums of non-zero left or right ideals.

Proof. Since $I_n \simeq I^\infty_n$, it suffices to prove the lemma for $n = 1$. The ideal $F = \bigoplus_{i,j \geq 0} Ke_{ij}$ of the algebra I_1 is the infinite direct sum $\bigoplus_{i \geq 0} (\bigoplus_{j \geq 0} Ke_{ij})$ or $\bigoplus_{i \geq 0} (\bigoplus_{j \geq 0} Ke_{ij})$ of non-zero left or right ideals, respectively, and the statements follow.
3. Ideals of the algebra \mathbb{I}_n

In this section, we prove that the restriction map (Theorem 3.1) from the set of ideals $\mathcal{J}(\mathcal{A}_n)$ of the algebra \mathcal{A}_n to the set of ideals $\mathcal{J}(\mathcal{I}_n)$ of the algebra \mathbb{I}_n is a bijection that respects the three operations on ideals: sum, intersection and product. As a consequence, we obtain many results for the ideals of the algebra \mathbb{I}_n using similar results for the ideals of the algebra \mathcal{A}_n in [12], see Corollaries 3.3 and 3.4: a classification of all the ideals of \mathbb{I}_n (there are only finitely many of them) and a classification of prime ideals of \mathbb{I}_n and so on.

Definition. Let A and B be algebras, and let $\mathcal{J}(A)$ and $\mathcal{J}(B)$ be their lattices of ideals. We say that a bijection $f : \mathcal{J}(A) \rightarrow \mathcal{J}(B)$ is an isomorphism if $f(a \ast b) = f(a) \ast f(b)$ for $\ast \in \{+,\cdot,\cap\}$, and in this case we say that the algebras A and B are ideal equivalent. The ideal equivalence is an equivalence relation on the class of algebras.

The next theorem shows that the algebras \mathcal{A}_n and \mathbb{I}_n are ideal equivalent.

Theorem 3.1. The restriction map $\mathcal{J}(\mathcal{A}_n) \rightarrow \mathcal{J}(\mathcal{I}_n)$, $a \mapsto a^r := a \cap \mathbb{I}_n$, is an isomorphism (that is, $(a_1 \ast a_2)^r = a_1^r \ast a_2^r$ for $\ast \in \{+,\cdot,\cap\}$) and its inverse is the extension map $b \mapsto b^r := \mathcal{A}_n b \mathcal{A}_n$.

Proof. The theorem follows from Theorem 3.2. \qed

Recall that $F_{n,0} \subseteq \mathbb{I}_n \subseteq \mathcal{A}_n \subseteq \text{End}_K(P_n)$. The subset of $\mathcal{J}(F_{n,0})$, $\mathcal{J}(F_{n,0})_{\sigma,\tau} := \{b \in \mathcal{J}(F_{n,0}) | \sigma_i(b) \subseteq b, \tau_i(b) \subseteq b \ \text{for all} \ i = 1, \ldots, n\}$, is closed under addition, multiplication and intersection of ideals where $\sigma_i(a) = \int_i a \partial_i$ and $\tau_i(a) = \partial_i a \int_i$ (recall that the maps $\sigma_i, \tau_i : F_{n,0} \rightarrow F_{n,0}$ are K-algebra homomorphisms; $\tau_i(1) = 1$ but $\sigma_i(1) = 1 - e_{00}(i)$).

Theorem 3.2. (1) The restriction map $\mathcal{J}(\mathbb{I}_n) \rightarrow \mathcal{J}(F_{n,0})_{\sigma,\tau}$, $a \mapsto a^r := a \cap F_{n,0}$, is an isomorphism (that is, $(a_1 \ast a_2)^r = a_1^r \ast a_2^r$ for $\ast \in \{+,\cdot,\cap\}$) and its inverse is the extension map $b \mapsto b^r := \mathbb{I}_n b \mathbb{I}_n$.

(2) The restriction map $\mathcal{J}(\mathcal{A}_n) \rightarrow \mathcal{J}(F_{n,0})_{\sigma,\tau}$, $a \mapsto a^r := a \cap F_{n,0}$, is an isomorphism (that is, $(a_1 \ast a_2)^r = a_1^r \ast a_2^r$ for $\ast \in \{+,\cdot,\cap\}$) and its inverse is the extension map $b \mapsto b^r := \mathcal{A}_n b \mathcal{A}_n$.

The proof of Theorem 3.2 is given at the end of this section. Now, we obtain some consequences of Theorem 3.1.

The next corollary shows that the ideal theory of \mathbb{I}_n is ‘very arithmetic’. Let \mathcal{B}_n be the set of all functions $f : \{1, 2, \ldots, n\} \rightarrow \{0, 1\}$. For each function $f \in \mathcal{B}_n$, $I_f := I_{f(1)} \otimes \cdots \otimes I_{f(n)}$ is the ideal of \mathbb{I}_n where $I_0 := F$ and $I_1 := I_1$. Let \mathcal{C}_n be the set of all subsets of \mathcal{B}_n, all distinct elements of which are incomparable (two distinct elements f and g of \mathcal{B}_n are incomparable if neither $f(i) \leq g(i)$ nor $f(i) \geq g(i)$ for all i). For each $C \subseteq \mathcal{C}_n$, let $I_C := \sum_{f \in C} I_f$, the ideal of \mathbb{I}_n. The number \mathcal{d}_n of elements in the set \mathcal{C}_n is called the Dedekind number. It appeared in the paper of Dedekind [32]. An asymptotic of the Dedekind numbers was found by Korshunov [17].

Corollary 3.3. (1) The algebra \mathbb{I}_n is a prime algebra.

(2) The set of height 1 prime ideals of the algebra \mathbb{I}_n is $\{p_1 := F \otimes \mathbb{I}_{n-1}, p_1 := \mathbb{I}_1 \otimes F \otimes \mathbb{I}_{n-2}, \ldots, p_n := \mathbb{I}_{n-1} \otimes F\}$.

(3) Each ideal of the algebra \mathbb{I}_n is an idempotent ideal $(a^2 = a)$.

(4) The ideals of the algebra \mathbb{I}_n commute $(ab = ba)$.
(5) The lattice $\mathcal{J}(I_n)$ of ideals of the algebra I_n is distributive.
(6) The classical Krull dimension $\text{cl.Kdim}(I_n)$ of the algebra I_n is n.
(7) For all ideals a and b of the algebra I_n, $ab = a \cap b$.
(8) The ideal $a_n := p_1 + \ldots + p_n$ is the largest (hence, the only maximal) ideal of I_n distinct from I_n, and $F_n = F_n^{\otimes n} = \bigcap_{i=1}^{n} p_i$ is the smallest non-zero ideal of I_n.
(9) (A classification of ideals of I_n) The map $C_n \to \mathcal{J}(I_n)$, $C \mapsto I_C := \sum_{f \in C} I_f$, is a bijection where $I_{\emptyset} := 0$. The number of ideals of I_n is the Dedekind number \mathfrak{d}_n. Moreover, $2 - n + \sum_{i=1}^{n} 2^{\binom{n}{i}} \leq \mathfrak{d}_n \leq 2^{2^n}$. For $n = 1$, F is the unique proper ideal of the algebra I_1.
(10) (A classification of prime ideals of I_n) Let Sub_n be the set of all subsets of $\{1, \ldots, n\}$. The map $\text{Sub}_n \to \text{Spec}(I_n)$, $I \mapsto p_I := \sum_{i \in I} p_i$, $\emptyset \mapsto 0$, is a bijection, that is, any non-zero prime ideal of I_n is a unique sum of primes of height 1; $|\text{Spec}(I_n)| = 2^n$; the height of p_I is $|I|$; and $p_I \subset p_J$ if and only if $I \subset J$.

Proof. By Theorem 3.1, the statements hold for the algebra I_n since the same statements hold for the algebra A_n, and the references below are given for their proofs in [12].

(1) Corollary 2.7(5).
(2) Corollary 3.5.
(3) Theorem 3.1(2).
(4) Corollary 3.10(3).
(5) Theorem 3.11.
(6) Corollary 3.7.
(7) Corollary 3.10(3).
(8) Corollary 2.7(4) and (7).
(9) Theorem 3.1.
(10) Corollary 3.5.
(11) Corollary 3.6.

For each ideal a of I_n, $\text{Min}(a)$ denotes the set of minimal primes over a. Two distinct prime ideals p and q are called incomparable if neither $p \subset q$ nor $p \supset q$. The algebras I_n have beautiful ideal theory as the following unique factorization properties demonstrate.

Corollary 3.4. (1) Each ideal a of I_n, such that $a \neq I_n$, is a unique product of incomparable primes, that is, if $a = q_1 \ldots q_s = r_1 \ldots r_t$ are two such products, then $s = t$ and $q_1 = r_{\sigma(1)}, \ldots, q_s = r_{\sigma(s)}$ for a permutation σ of $\{1, \ldots, n\}$.
(2) Each ideal a of I_n, such that $a \neq I_n$, is a unique intersection of incomparable primes, that is, if $a = q_1 \cap \ldots \cap q_s = r_1 \cap \ldots \cap r_t$ are two such intersections, then $s = t$ and $q_1 = r_{\sigma(1)}, \ldots, q_s = r_{\sigma(s)}$ for a permutation σ of $\{1, \ldots, n\}$.
(3) For each ideal a of I_n, such that $a \neq I_n$, the sets of incomparable primes in statements (1) and (2) are the same, and so $a = q_1 \ldots q_s = q_1 \cap \ldots \cap q_s$.
(4) The ideals q_1, \ldots, q_s in statement (3) are the minimal primes of a, and so $a = \prod_{p \in \text{Min}(a)} p = \bigcap_{p \in \text{Min}(a)} p$.

Proof. The same statements are true for the algebra A_n (see [12, Theorem 3.8]). Now, the corollary follows from Theorem 3.1.

The next corollary gives all decompositions of an ideal as a product or intersection of ideals.
Corollary 3.5. Let \(a \) be an ideal of \(\mathbb{I}_n \) and \(\mathcal{M} \) be the minimal elements with respect to inclusion of the set of minimal primes of a set of ideals \(a_1, \ldots, a_k \) of \(\mathbb{I}_n \). Then:

1. \(a = a_1 \ldots a_k \) if and only if \(\text{Min}(a) = \mathcal{M} \);
2. \(a = a_1 \cap \ldots \cap a_k \) if and only if \(\text{Min}(a) = \mathcal{M} \).

Proof. The same statements are true for the algebra \(A_n \) (see [12, Theorem 3.12]), and the corollary follows from Theorem 3.1.

This is a rare example of a non-commutative algebra of classical Krull dimension greater than 1, where one has a complete picture of decompositions of ideals. Recall that a ring \(R \) of finite classical Krull dimension is called catenary if, for each pair of prime ideals \(p \) and \(q \) with \(p \subseteq q \), all maximal chains of prime ideals, \(p_0 = p \subseteq p_1 \subseteq \ldots \subseteq p_l = q \), have the same length \(l \).

Corollary 3.6. The algebra \(\mathbb{I}_n \) is catenary.

Proof. This follows from Corollary 3.3(10) and (11).

Corollary 3.7. The same statements (with obvious modifications) of Corollaries 3.3 and 3.4 hold for the ideals \(\mathcal{J}(\mathbb{F}_{n,0})_{\sigma,\tau} \) of the algebra \(\mathbb{F}_{n,0} \) rather than \(\mathbb{I}_n \) (we leave it to the reader to formulate them).

Proposition 3.8. The polynomial algebra \(P_n \) is the only (up to isomorphism) faithful simple \(\mathbb{I}_n \)-module.

Proof. The \(\mathbb{I}_n \)-module \(P_n \) is faithful (as \(\mathbb{I}_n \subseteq \text{End}_K(P_n) \)) and simple since the \(A_n \)-module \(P_n \) is simple and \(A_n \subseteq \mathbb{I}_n \). Let \(M \) be a faithful simple \(\mathbb{I}_n \)-module. Then \(F_n M \neq 0 \), that is, \(e_0 \beta m \neq 0 \) for some elements \(\beta \in \mathbb{N}^n \) and \(m \in M \). The \(\mathbb{I}_n \)-module \(P_n \cong \mathbb{I}_n / \sum_{i=1}^n \mathbb{I}_n \partial_i \) is simple. Therefore, the \(\mathbb{I}_n \)-module epimorphism \(P_n \to M = \mathbb{I}_n e_0 \beta m = \sum_{\alpha \in \mathbb{N}^n} K e_\alpha \beta m, 1 \mapsto e_0 \beta m \), is an isomorphism. The proof of the proposition is complete.

For a ring \(R \) and its element \(r \in R \), \(\text{ad}(r) : s \mapsto [r, s] := rs - sr \) is the inner derivation of the ring \(R \) associated with the element \(r \).

Proof of Theorem 3.2. We split the proof of Theorem 3.2 into several statements (which are interesting on their own) to make the proof clearer.

The algebra \(D_n \) is the zero component of the \(\mathbb{Z}^n \)-graded algebra \(\mathbb{I}_n = D_n((\sigma_1, \ldots, \sigma_n), (1, \ldots, 1)) \), hence \(\sigma_i(D_n) \subseteq D_n \) and \(\tau_i(D_n) \subseteq D_n \) for all \(i \), where \(\sigma_i(a) = \int_a^r \partial \sigma_i \) and \(\tau_i(a) = \partial \tau_i \). Let \(\mathcal{J}(D_n)_{\sigma,\tau} := \{ b \in \mathcal{J}(D_n) \mid \sigma_i(b) \subseteq b, \tau_i(b) \subseteq b \text{ for all } i = 1, \ldots, n \} \). Similarly, the algebra \(\mathcal{D}_n \) is the zero component of the \(\mathbb{Z}^n \)-graded algebra \(\mathbb{A}_n = \mathcal{D}_n((\sigma_1, \ldots, \sigma_n), (1, \ldots, 1)) \), hence \(\sigma_i(\mathcal{D}_n) \subseteq \mathcal{D}_n \) and \(\tau_i(\mathcal{D}_n) \subseteq \mathcal{D}_n \) for all \(i \), where \(\sigma_i(a) = x_i a y_i \) and \(\tau_i(a) = y_i a x_i \). Let \(\mathcal{J}(\mathcal{D}_n)_{\sigma,\tau} := \{ b \in \mathcal{J}(\mathcal{D}_n) \mid \sigma_i(b) \subseteq b, \tau_i(b) \subseteq b \text{ for all } i = 1, \ldots, n \} \).

Theorem 3.9. (1) For each ideal \(a \) of the algebra \(\mathbb{I}_n, a = \bigoplus_{\alpha \in \mathbb{Z}^n} v_\alpha + a^r v_{\alpha, -} \), where \(a^r := a \cap D_n \in \mathcal{J}(D_n)_{\sigma,\tau} \) and, for each ideal \(b \in \mathcal{J}(D_n)_{\sigma,\tau}, b^r := \mathbb{I}_n b \mathbb{I}_n = \bigoplus_{\alpha \in \mathbb{Z}^n} v_\alpha + b v_{\alpha, -} \), where \(v_{\alpha, +} := \prod_{\alpha_i > 0} v_\alpha(i), v_{\alpha, -} := \prod_{\alpha_i < 0} v_\alpha(i), \) and \(v_j(i) \) is defined in Proposition 2.2(2).
(2) For each ideal \(a \) of the algebra \(A_n \), \(a = \bigoplus_{\alpha \in \mathbb{Z}^n} v_{\alpha+,} a^\alpha, v_{\alpha-} \), where \(a^\alpha := a \cap \mathbb{D} \in \mathcal{J}(\mathbb{D}_n)_{\sigma,\tau} \) and, for each ideal \(b \in \mathcal{J}(\mathbb{D}_n)_{\sigma,\tau} \), \(b^\alpha := A_n b A_n = \bigoplus_{\alpha \in \mathbb{Z}^n} v_{\alpha+,} b v_{\alpha-} \), where \(v_{\alpha,} \) are as above, but the elements \(v_{j}(i) \) are defined in (10).

Proof. (1) Let \(a \) be an ideal of the algebra \(A_n \). The algebra \(A_n = \bigoplus_{\alpha \in \mathbb{Z}^n} A_{\alpha,} \) is a \(\mathbb{Z}^n \)-graded algebra with \(A_{\alpha,} := \bigcap_{i=1}^n \ker(ad(H_i) - \alpha_i) \) for all \(\alpha \in \mathbb{Z}^n \). Then \(a \) is a homogeneous ideal, that is, \(a = \bigoplus_{\alpha \in \mathbb{Z}^n} A_{\alpha,} \), where \(A_{\alpha,} := a \cap A_{\alpha,} \). The ideal \(a_0 := a \cap D_n = a^\alpha \) of the algebra \(D_n \) belongs to the set \(\mathcal{J}(D_n)_{\sigma,\tau} \) since \(\sigma_i(a_0) = \sum_i a_0 \partial_i \subseteq a_0 \) and \(\tau_i(a_0) = \partial_i a_0 \sum_i \subseteq a_0 \) for all \(i = 1, \ldots, n \). By Proposition 2.2(2), \(a_0 = v_{\alpha+,} a v_{\alpha-} \) for some ideal \(b_0 \) of the algebra \(D_n \):

\[
(a_0) = D_n a_0 D_n = D_n v_{\alpha+,} a v_{\alpha-} - D_n = v_{\alpha+}, \tau_n(D_n) b_0 v_{\alpha-} - (D_n) v_{\alpha-} = v_{\alpha+}, D_n b_0 D_n v_{\alpha-}
\]

since \(\tau_\alpha(D_n) = D_n \), where \(\tau_\alpha, := \prod_{\alpha_i > 0} \tau_i \) and \(\tau_\alpha, := \prod_{\alpha_i < 0} \tau_i \). Let

\[
\begin{align*}
 u_{\alpha,-} &:= \prod_{\alpha_i > 0} v_{-\alpha}(i), & u_{\alpha,+} &:= \prod_{\alpha_i < 0} v_{-\alpha}(i).
\end{align*}
\]

The ideal \(b_0 \) is unique since \(v_{\alpha+}, b v_{\alpha-} = v_{\alpha+}, b' v_{\alpha-} \) implies

\[
b_0 = 1 \cdot b_0 - 1 = u_{\alpha-}, v_{\alpha+}, b v_{\alpha-}, - u_{\alpha-}, b' v_{\alpha-}, - u_{\alpha-} = 1 \cdot b'_0 - 1 = b'_0.
\]

Moreover, \(b_0 = a_0 \) for all \(\alpha \in \mathbb{Z}^n \) since \(a_0 \supseteq u_{\alpha+}, a_0 v_{\alpha-} = u_{\alpha+}, v_{\alpha+}, a_0 v_{\alpha-}, - u_{\alpha+}, v_{\alpha+}, a_0 v_{\alpha-}, - u_{\alpha+} = 1 \cdot b_0 - 1 = b_0 \). On the other hand, \(a_0 \supseteq v_{\alpha+}, a_0 v_{\alpha-}, \) and so \(a_0 \subseteq b_0 \).

Let \(b \in \mathcal{J}(D_n)_{\sigma,\tau} \). Then \(b^{cr} = b \) since

\[
b \subseteq b^{cr} = (\mathbb{I}_n b^{cr})^r = \sum_{\alpha \in \mathbb{Z}^n} \mathbb{I}_{\alpha,} b^{cr}_{n,\alpha}
\]

where \(\mathbb{I}_{\alpha,} := \prod_{\alpha_i > 0} \sigma_i \). Therefore, \(b^{cr} = \bigoplus_{\alpha \in \mathbb{Z}^n} v_{\alpha+,} b v_{\alpha-} \), by the first part of statement (1).

(2) Repeat the proof of statement (1) replacing \((\mathbb{I}_n, D_n) \) by \((A_n, \mathbb{D}_n) \) and making obvious modifications. \(\square \)

For each function \(f \in \mathcal{B}_n \), let

\[
\begin{align*}
 f_\alpha := f_{\alpha}(1) \otimes \cdots \otimes f_{\alpha}(n), & \quad \text{where } f_0 := F_{1,0}, \quad f_1 := F_1; \\
 \delta_f := \delta_{f}(1) \otimes \cdots \otimes \delta_{f}(n), & \quad \text{where } \delta_0 := F_{1,0}, \quad \delta_1 := D_1; \\
 \delta_f' := \delta_{f}(1) \otimes \cdots \otimes \delta_{f}(n), & \quad \text{where } \delta_0' := F_{1,0}, \quad \delta_1' := D_1.
\end{align*}
\]

Note that \(f_\alpha \in \mathcal{J}(\mathbb{F}_0)_{\sigma,\tau} \), \(\delta_f \in \mathcal{J}(D_n)_{\sigma,\tau} \) and \(\delta_f' \in \mathcal{J}(\mathbb{D}_n)_{\sigma,\tau} \).

Lemma 3.10. (1) The map \(C_n \rightarrow \mathcal{J}(\mathbb{F}_0)_{\sigma,\tau} \), \(C \mapsto f_C := \sum_{f \in C} f, \) is a bijection, where \(f_0 := 0 \).

(2) The map \(C_n \rightarrow \mathcal{J}(D_n)_{\sigma,\tau} \), \(C \mapsto \delta_C := \sum_{f \in C} \delta_f \), is a bijection, where \(\delta_0 := 0 \).

(3) The map \(C_n \rightarrow \mathcal{J}(\mathbb{D}_n)_{\sigma,\tau} \), \(C \mapsto \delta_C' := \sum_{f \in C} \delta_f' \), is a bijection, where \(\delta_0 := 0 \).

Proof. (1) It follows from \(\mathbb{F}_0 = \bigotimes_{i=1}^n (K + \sum_{j \in \mathbb{N}} K e_{ij}(i)) \), \(\sigma_i(e_{ij}(i)) = e_{j+1, i+1}(i), \)

\(\tau_i(e_{ij}(i)) = e_{j-1, i-1}(i), \) \(e_{kk}(i) e_{ij}(i) = \delta_{jk} e_{ij}(i) \) that any ideal \(b \in \mathcal{J}(\mathbb{F}_0)_{\sigma,\tau} \) is a sum \(\sum_{f \in C} f_\alpha \). Then \(b = f_C \) for a unique element \(C \in C_n \) (\(C \) is the set of all the maximal elements of \(C' \); it does not depend on \(C' \)), and so the map \(C \mapsto f_C \) is a bijection.

(2) Similarly, it follows from \(D_n = \bigotimes_{i=1}^n (K[H_i] + \sum_{j \in \mathbb{N}} K e_{ij}(i)), \) \(\tau_i(H_i) = H_i + 1 \) (hence \(K[H_i] = \bigcup_{s \geq 1} \ker(\tau_i - 1)^s \)) and the actions of the endomorphisms \(\sigma_i, \tau_i \) on the matrix units.
Recall that the Weyl algebra \mathcal{D}_n is a localization of the commutative algebra D_n at the monoid generated by the set $\{(H_i - j)_{1\leq i \leq n} | i \neq j \in \mathbb{N}\}$ of non-zero divisors and $\mathcal{D}_C = D_n \mathcal{O}_C$ for all $C \in \mathcal{C}_n$.

Corollary 3.11. (1) The restriction map $\mathcal{J}(D_n)_{\sigma,\pi} \rightarrow \mathcal{J}(\mathbb{F}_n,0)_{\sigma,\pi}$, $b \mapsto b^r := b \cap \mathbb{F}_n,0$, is an isomorphism (that is, $(b_1 \ast b_2)^r = b_1^r \ast b_2^r$ for $* \in \{+,-,\cap\}$) and its inverse is the extension map $c \mapsto c^e := D_n c$.

(2) The restriction map $\mathcal{J}(\mathbb{D}_n)_{\sigma,\pi} \rightarrow \mathcal{J}(\mathbb{F}_n,0)_{\sigma,\pi}$, $b \mapsto b^r := b \cap \mathbb{F}_n,0$, is an isomorphism (that is, $(b_1 \ast b_2)^r = b_1^r \ast b_2^r$ for $* \in \{+,-,\cap\}$) and its inverse is the extension map $c \mapsto c^e := \mathbb{D}_n c$.

Proof. (1) Statement (1) follows from Corollary 3.10(1, 2) and the fact that $\mathcal{D}_C = \mathcal{O}_C$ for all $C \in \mathcal{C}_n$.

(2) Statement (2) follows from Corollary 3.10(1, 3) and the fact that $(\mathcal{D}_C)^r = \mathcal{O}_C$ for all $C \in \mathcal{C}_n$.

Proof of Theorem 3.2 (continued). (1) By Theorem 3.9(1), the restriction map $\mathcal{J}(\mathbb{I}_n) \rightarrow \mathcal{J}(D_n)_{\sigma,\pi}$ is an isomorphism and its inverse map is the extension map. By Corollary 3.11(1), the restriction map $\mathcal{J}(D_n)_{\sigma,\pi} \rightarrow \mathcal{J}(\mathbb{F}_n,0)_{\sigma,\pi}$ is an isomorphism and its inverse map is the extension map. Now, statement (1) is obvious.

(2) Similarly, by Theorem 3.9(2), the restriction map $\mathcal{J}(\mathbb{A}_n) \rightarrow \mathcal{J}(\mathbb{D}_n)_{\sigma,\pi}$ is an isomorphism and its inverse map is the extension map. By Corollary 3.11(2), the restriction map $\mathcal{J}(\mathbb{D}_n)_{\sigma,\pi} \rightarrow \mathcal{J}(\mathbb{F}_n,0)_{\sigma,\pi}$ is an isomorphism and its inverse map is the extension map. Now, statement (2) is obvious.

Theorem 3.12. Let $\text{Id}(\mathbb{I}_n)$ be the set of all the idempotent ideals of the algebra \mathbb{I}_n. Then:

(1) the restriction map $\mathcal{I}(\mathbb{I}_n) \rightarrow \text{Id}(\mathbb{I}_n)$, $a \mapsto a^e := a \cap \mathbb{I}_n$, is a bijection such that $(a_1 \ast a_2)^r = a_1^r \ast a_2^r$ for $* \in \{+,-,\cap\}$, and its inverse is the extension map $b \mapsto b^r := \mathbb{I}_n b |_{\mathbb{I}_n}$;

(2) the restriction map $\text{Id}(\mathbb{I}_n) \rightarrow \mathcal{J}(\mathbb{F}_n,0)_{\sigma,\pi}$, $b \mapsto b^r := b \cap \mathbb{F}_n,0$, is a bijection such that $(b_1 \ast b_2)^r = b_1^r \ast b_2^r$ for $* \in \{+,-,\cap\}$, and its inverse is the extension map $c \mapsto c^e := \mathbb{I}_n \cap \mathbb{I}_n$.

Proof. (1) Statement (1) follows from Theorem 3.2(1) and statement (2).

(2) Statement (2) follows at once from a classification of the idempotent ideals of the algebra $S_n \simeq \mathbb{I}_n$ (see [13, Theorem 7.2]).

4. The Noetherian factor algebra of the algebra \mathbb{I}_n

The aim of this section is to show that the factor algebra $\mathbb{I}_n/\mathfrak{a}_n$ of the algebra \mathbb{I}_n at its maximal ideal $\mathfrak{a}_n = p_1 + \cdots + p_n$ is the only Noetherian factor algebra of the algebra \mathbb{I}_n (Proposition 4.1).

4.1. The factor algebra $\mathbb{I}_n/\mathfrak{a}_n$

Recall that the Weyl algebra A_n is the generalized Weyl algebra $\mathcal{P}_n((\sigma_1, \ldots, \sigma_n), (H_1, \ldots, H_n))$. Denote by S_n the multiplicative submonoid of \mathcal{P}_n generated by the elements $H_i + j$, where $i = 1, \ldots, n$ and $j \in \mathbb{Z}$. It follows from the above presentation of the Weyl algebra A_n as a GWA that S_n is an Ore set in A_n and, using the \mathbb{Z}^n-grading of A_n, that the (two-sided)
localization $\mathcal{A}_n := S_n^{-1}A_n$ of the Weyl algebra A_n at S_n is the skew Laurent polynomial ring
\[\mathcal{A}_n = S_n^{-1}\mathcal{P}_n[x_1^{\pm 1}, \ldots, x_n^{\pm 1}; \sigma_1, \ldots, \sigma_n] \] (15)
with coefficients in the algebra
\[\mathcal{L}_n := S_n^{-1}\mathcal{P}_n = K[H_1^{\pm 1}, (H_1 \pm 1)^{-1}, (H_1 \pm 2)^{-1}, \ldots, H_n^{\pm 1}, (H_n \pm 1)^{-1}, (H_n \pm 2)^{-1}, \ldots], \]
which is the localization of \mathcal{P}_n at S_n. We identify the Weyl algebra A_n with its image in the algebra \mathcal{A}_n via the monomorphism,
\[A_n \longrightarrow \mathcal{A}_n, \quad x_i \longmapsto x_i, \quad \partial_i \longmapsto H_1 x_i^{-1}, \quad i = 1, \ldots, n. \]
Let K be the nth Weyl skew field, that is the full ring of quotients of the nth Weyl algebra A_n (it exists by Goldie’s Theorem since A_n is a Noetherian domain). Then the algebra A_n is a K-subalgebra of K generated by the elements x_i, x_i^{-1}, H_i and H_i^{-1}, $i = 1, \ldots, n$ since, for all $j \in \mathbb{N},$
\[(H_i \mp j)^{-1} = x_i^{\mp j} H_i^{-1} x_i^{\mp j}, \quad i = 1, \ldots, n. \] (16)
Clearly, $A_n \simeq A_1 \otimes \ldots \otimes A_1 \ (n \text{ times}).$

Recall that the algebra I_n is a subalgebra of \mathcal{A}_n and the extension \mathfrak{a}_n of the maximal ideal a_n of the algebra I_n is the maximal ideal of the algebra A_n. By [12, (22)], there is the algebra isomorphism (where $\overline{a} := a + \mathfrak{a}_n^e$)
\[\mathcal{A}_n/\mathfrak{a}_n^e \longrightarrow \mathcal{A}_n, \quad x_i \longmapsto x_i, \quad \overline{\partial}_i \longmapsto H_1 x_i^{-1}, \quad \overline{H}_1 := H_1^{-1}, \quad i = 1, \ldots, n. \]
Since $\mathfrak{a}_n^e = a_n$ (Theorem 3.1), the algebra $B_n := I_n/a_n$ is a subalgebra of the algebra $\mathcal{A}_n/\mathfrak{a}_n^e$, and so there is the algebra monomorphism (where $\overline{a} := a + \mathfrak{a}_n^e$)
\[B_n \longrightarrow \mathcal{A}_n, \quad x_i \longmapsto x_i, \quad \overline{\partial}_i \longmapsto H_1 x_i^{-1}, \quad \overline{\alpha}_i \longmapsto H_1, \quad i = 1, \ldots, n. \]
It follows that there is the algebra isomorphism
\[B_n \longrightarrow \bigotimes_{i=1}^n K[H_i][\partial_i, \partial_i^{-1}, \tau_i] = \mathcal{P}_n[\partial_1^{\pm 1}, \ldots, \partial_n^{\pm 1}; \tau_1, \ldots, \tau_n], \]
the right-hand side is the skew Laurent polynomial algebra with coefficients in the polynomial algebra $\mathcal{P}_n = K[H_1, \ldots, H_n]$, where $\tau_i(H_j) = H_j + \delta_{ij}$. It is a standard fact that
\[B_n = (A_n)_{\partial_1, \ldots, \partial_n}, \] (17)
where $(A_n)_{\partial_1, \ldots, \partial_n}$ is the localization of the Weyl algebra A_n at the Ore subset of A_n, which is the submonoid of A_n generated by the elements $\partial_1, \ldots, \partial_n$. Note that $(A_n)_{\partial_1, \ldots, \partial_n} \simeq (A_n)_{x_1, \ldots, x_n}$. It is well known that the algebra B_n is a simple, Noetherian, finitely generated algebra of Gelfand–Kirillov dimension $2n$, and $\text{l.gldim}(B_n) = r.\text{gldim}(B_n) = n$.

Proposition 4.1. Let \mathfrak{a} be an ideal of the algebra I_n such that $\mathfrak{a} \neq I_n$. The following statements are equivalent:
(1) the factor algebra I_n/\mathfrak{a} is a left Noetherian algebra;
(2) the factor algebra I_n/\mathfrak{a} is a right Noetherian algebra;
(3) the factor algebra I_n/\mathfrak{a} is a Noetherian algebra;
(4) $\mathfrak{a} = a_n$.

Proof. Note that the algebra $B_n = I_n/\mathfrak{a}_n$ is a Noetherian algebra as a two-sided localization of the Noetherian algebra A_n. Suppose that $\mathfrak{a} \neq a_n$. Fix $p \in \text{Min}(\mathfrak{a})$. Then $p = p_I := \sum_{i \in I} p_i$ for a non-empty subset I of the set $\{1, \ldots, n\}$ with $m := |I| < n$ (Corollaries 3.3(10) and 3.4).
The factor algebra $\mathbb{I}_n/p \cong B_m \otimes \mathbb{I}_{n-m}$ is neither left nor right Noetherian since the algebra \mathbb{I}_{n-m} is so. The algebra \mathbb{I}_n/p is a factor algebra of the algebra \mathbb{I}_n/a. Then the algebra \mathbb{I}_n/a is neither left nor right Noetherian. Now, the proposition is obvious.

Lemma 4.2. Let a be an ideal of the algebra \mathbb{I}_n distinct from \mathbb{I}_n. Then $\text{GK} (\mathbb{I}_n/a) = 2n$.

Proof. It is well known that $\text{GK} (B_n) = 2n$. Now, $2n = \text{GK} (\mathbb{I}_n) \geq \text{GK} (\mathbb{I}_n/a) \geq \text{GK} (\mathbb{I}_n/a_n) = \text{GK} (B_n) = 2n$. Therefore, $\text{GK} (\mathbb{I}_n/a) = 2n$. \hfill \square

5. The group of units of the algebra \mathbb{I}_n and its centre

In this section, the group \mathbb{I}_n^* of units of the algebra \mathbb{I}_n is described (Theorem 5.6(1)) and its centre is found (Theorem 5.6(2)). It is proved that the algebra \mathbb{I}_n is central (Lemma 5.4(2)) and self-dual.

5.1. The involution $*$ on the algebra \mathbb{I}_n

Using the defining relations in Proposition 2.2(1), we see that the algebra \mathbb{I}_n admits the involution

$$* : \mathbb{I}_n \longrightarrow \mathbb{I}_n, \quad \partial_i \longmapsto \int_i, \quad \int_i \longmapsto \partial_i, \quad H_i \longmapsto H_i, \quad i = 1, \ldots, n,$$

(18)

that is, it is a K-algebra anti-isomorphism ($(ab)^* = b^*a^*$) such that $* \circ * = \text{id}_{\mathbb{I}_n}$. Therefore, the algebra \mathbb{I}_n is self-dual, that is, is isomorphic to its opposite algebra \mathbb{I}_n^op. As a result, the left and the right properties of the algebra \mathbb{I}_n are the same. For all elements $\alpha, \beta \in \mathbb{N}^n$,

$$e_{\alpha \beta}^* = e_{\beta \alpha}.$$

(19)

An element $a \in \mathbb{I}_n$ is called hermitian if $a^* = a$.

Lemma 5.1. (1) For all ideals a of the algebra \mathbb{I}_n, $a^* = a$.

(2) For all $\alpha \in \mathbb{Z}^n$, $(\mathbb{I}_n,\alpha)^* = \mathbb{I}_{n,-\alpha}$.

Proof. (1) By (19), $p_i^* = p_i$ for all $i = 1, \ldots, n$ (see Corollary 3.3(2)). By Corollary 3.3(4) and (9), $a^* = a$.

(2) Note that $D_{\alpha}^* = D_n$ and $v_{\alpha}^* = v_{-\alpha}$. By Proposition 2.2(2), $(\mathbb{I}_n,\alpha)^* = (v_{\alpha}D_n)^* = D_n v_{-\alpha} = \mathbb{I}_{n,-\alpha}$. \hfill \square

The involution $*$ of the algebra \mathbb{I}_n respects the maximal ideal a_n ($a_n^* = a_n$). Therefore, the factor algebra $B_n = \mathbb{I}_n/a_n$ inherits the involution $*: \partial_i^* = \partial_i^{-1}, \quad x_i^* = x_i + \partial_i^{-1}, \quad H_i^* = H_i$ for $i = 1, \ldots, n$ (since $\partial_i^* = \int_i = \partial_i^{-1}$ and $x_i^* = (\int_i H_i) = H_i \partial_i^{-1} = \partial_i x_i \partial_i^{-1} = x_i + \partial_i^{-1}$).

The involution $*$ of the algebra \mathbb{I}_n can be extended to an involution of the algebra \mathbb{K}_n by setting

$$x_i^* = H_i \partial_i, \quad \partial_i^* = \int_i, \quad (H_i^\pm 1)^* = H_i^\pm 1, \quad i = 1, \ldots, n.$$

This can be checked using the defining relations coming from the presentation of the algebra \mathbb{K}_n as a GWA. Note that $y_i^* = (H_i^{-1} \partial_i)^* = \int_i H_i^{-1} = x_i H_i^{-2}, \ A_n^* \not\subseteq A_n, \ S_n^* \not\subseteq S_n,$ but $I_n^* = I_n$, where I_n is the algebra of integro-differential operators with constant coefficients.

For a subset S of a ring R, the sets $\text{l.ann}_R (S) := \{r \in R \mid rS = 0\}$ and $\text{r.ann}_R (S) := \{r \in R \mid Sr = 0\}$ are called the left and the right annihilators of the set S in R. Using the fact that
the algebra \(I_n \) is a GWA and its \(\mathbb{Z}^n \)-grading, we see that

\[
\text{r.ann}_{I_n}(\partial_i) = \bigoplus_{k \in \mathbb{N}} K e_{0k}(i) \otimes \bigotimes_{i \neq j} I_1(j), \quad \text{r.ann}_{I_n}(\partial_i) = 0. \tag{21}
\]

Recall that a submodule of a module that intersects non-trivially each non-zero submodule of the module is called an essential submodule.

Lemma 5.2. (1) For all non-zero ideals \(a \) of the algebra \(I_n \), \(1.\text{ann}_{I_n}(a) = \text{r.ann}_{I_n}(a) = 0. \)

(2) Each non-zero ideal of the algebra \(I_n \) is an essential left and right submodule of \(I_n \).

Proof. The algebra \(I_n \) is self-dual, so it suffices to prove only, say, the left versions of the statements.

(1) Suppose that \(b := 1.\text{ann}_{I_n}(a) \neq 0 \), we seek a contradiction. By Corollary 3.8(8), the non-zero ideals \(a \) and \(b \) contain the ideal \(F_n \). Then \(0 = ba \supseteq F_n^2 = F_n \neq 0 \), which is a contradiction. Therefore, \(b = 0 \).

(2) Let \(I \) be a non-zero left ideal of the algebra \(I_n \). By statement (1), \(0 \neq F_n I \subseteq F_n \cap I \). Therefore, \(F_n \) is an essential left submodule of the algebra \(I_n \). Then so are all the non-zero ideals of the algebra \(I_n \) since \(F_n \) is the least non-zero ideal of the algebra \(I_n \). \(\square \)

Corollary 5.3. Let \(A \) be a \(K \)-algebra. Then the algebra \(I_n \otimes A \) is a prime algebra if and only if the algebra \(A \) is so.

Proof. It is obvious that if the algebra \(A \) is not prime (\(ab = 0 \) for some non-zero ideals \(a \) and \(b \) of \(A \)), then neither is the algebra \(I_n \otimes A \) (since \(I_n \otimes a \otimes I_n \otimes b = 0 \)).

It suffices to show that if the algebra \(A \) is prime, then so is the algebra \(I_n \otimes A \). Let \(c \) be a non-zero ideal of the algebra \(I_n \otimes A \). Then \(F_n c \neq 0 \), by Lemma 5.2(1). Note that \(F_n c \subseteq c \). Let \(u = E_{\alpha\beta} \otimes a + \ldots + E_{\sigma\rho} \otimes a' \) be a non-zero element of \(F_n c \), where \(E_{\alpha\beta}, \ldots, E_{\sigma\rho} \) are distinct matrix units; \(a, \ldots, a' \in A \), and \(a \neq 0 \). Then \(0 \neq E_{\alpha\beta} \otimes a = E_{\alpha\alpha} u E_{\beta\beta} \in a \), and so \(F_n \otimes AaA \subseteq c \). Let \(d \) be a non-zero ideal of the algebra \(I_n \otimes A \). Then \(F_n \otimes AbA \subseteq d \) for some non-zero element \(b \in A \). Then

\[
\emptyset \supseteq F_n \otimes AaA \cdot F_n \otimes AbA = F_n \otimes (AaA \cdot AbA) \neq 0
\]

since \(F_n^2 = F_n \) and \(AaA \cdot AbA \neq 0 \) (\(A \) is a prime algebra). Therefore, \(I_n \otimes A \) is a prime algebra. \(\square \)

5.2. **The centre of the algebra \(I_n \)**

For an algebra \(A \) and its subset \(S \), the subalgebra of \(A \), \(\text{Cen}_A(S) := \{ a \in A | as = sa \text{ for all } s \in S \} \), is called the centralizer of \(S \) in \(A \). The next lemma shows that the algebra \(I_n \) is a central algebra, that is, its centre \(Z(I_n) \) is \(K \).
LEMMA 5.4. (1) $\text{Cen}_I(F_{n,0}) = \text{Cen}_n(D_n) = D_n$.
(2) The centre of the algebra I_n is K.
(3) $\text{Cen}_I(I_n) = K$.

Proof. (1) Since $F_{n,0} \subset D_n$ and D_n is a commutative algebra, we have the inclusions $D_n \subseteq \text{Cen}_I(D_n) \subseteq \text{Cen}_n(F_{n,0})$. It remains to show that the inclusion $C := \text{Cen}_n(F_{n,0}) \subseteq D_n$ holds. Recall that the algebra $I_n = \bigoplus \alpha \in \mathbb{Z}^n \mathbb{I}_{n,\alpha}$ is a \mathbb{Z}^n-graded algebra with $F_{n,0} \subset D_n = I_{n,0}$. Therefore, C is a homogeneous subalgebra of I_n, that is, $C = \bigoplus \alpha \in \mathbb{Z}^n C_{\alpha}$, where $C_{\alpha} := C \cap \mathbb{I}_{n,\alpha}$.

We have to show that $C_{\alpha} = 0$ for all $\alpha \neq 0$. Let $c \in C_{\alpha}$ for some $\alpha \neq 0$. Then $c = v_{\alpha,+} - v_{\alpha,-}$ for some element $d \in D_n$ (the elements $v_{\alpha,+}$ and $v_{\alpha,-}$ are defined in Theorem 3.9(1)). For all elements $E_{\beta\gamma} \in F_{n,0}$, where $\beta \in \mathbb{N}^n$,

$$cE_{\beta\gamma} = v_{\alpha,+}d\tau_{\alpha,-}(E_{\beta\gamma})v_{\alpha,-} = v_{\alpha,+}dE_{\beta-\alpha,-\beta-\alpha}v_{\alpha,-},$$

$$E_{\beta\gamma}c = v_{\alpha,+}d\tau_{\alpha,+}(E_{\beta\gamma})v_{\alpha,-} = v_{\alpha,+}E_{\beta-\alpha,+\beta-\alpha}dv_{\alpha,-},$$

where $\tau_{\alpha,-} := \prod_{\alpha_i<0} \tau_i$, $\tau_{\alpha,+} := \prod_{\alpha_i>0} \tau_i$, $\alpha_- := -\sum_{\alpha_i<0} \alpha_i e_i$ and $\alpha_+ := \sum_{\alpha_i>0} \alpha_i e_i$ ($E_{st} = 0$ if either $s \notin \mathbb{N}^n$ or $t \notin \mathbb{N}^n$). Since $cE_{\beta\gamma} = E_{\beta\gamma}c$ and the map $a \mapsto v_{\alpha,+}av_{\alpha,-}$ is injective (its left inverse is the map $a \mapsto v_{\alpha,-}au_{\alpha,+}$; see (14)), we have the equality $E_{\beta-\alpha,-\beta-\alpha}d = E_{\beta-\alpha,+\beta-\alpha}d$ for each $\beta \in \mathbb{N}^n$. Since $\bigoplus \gamma \in \mathbb{N}^n K\gamma\gamma$ is the direct sum of ideals of the algebra D_n, it follows that $E_{\gamma\gamma}d = 0$ for all elements $\gamma \in \mathbb{N}^n$. Then it is not difficult to show that $d = 0$ (using the fact that each polynomial of $K[H_1, \ldots, H_n]$ is uniquely determined by its values on the set \mathbb{N}^n).

(2) By statement (1), the centre Z of the algebra I_n is a subalgebra of D_n. Let $d \in Z$. For all elements $i = 1, \ldots, n$, $0 = dx_i - x_id = x_i(\tau_i(d) - d)$. Since $I_n \subseteq \mathbb{A}_n$, we see that $0 = y_i x_i(\tau_i(d) - d) = \tau_i(d) - d$, and so $d \in \bigcap_{i=1}^n \ker D_n(\tau_i - 1) = K$. Therefore, $Z = K$.

(3) By (12), $F_{n,0} \subseteq I_n$. This implies that $C := \text{Cen}_n(I_n) \subseteq \text{Cen}_n(F_{n,0}) = D_n$, by statement (1). Let $d \in C$. Then

$$0 = \partial_i \cdot 0 = \partial_i \left(d \int_i - \int_i d \right) = \partial_i \int_i (\tau_i(d) - d) = \tau_i(d) - d \quad \text{for all } i = 1, \ldots, n,$$

where $\tau_i(a) = \partial_i a \int_i$. Hence $d \in \bigcap_{i=1}^n \ker D_n(\tau_i - 1) = K$, and so $C = K$. \hfill \Box

LEMMA 5.5. Let $C = P_n, K[\partial_1, \ldots, \partial_n], K[\int_1, \ldots, \int_n]$ or D_n. Then $\text{Cen}_n(C) = C$ and C is a maximal commutative subalgebra of the algebra I_n.

Proof. The first statement, $\text{Cen}_n(C) = C$, follows from the fact that the algebra I_n is \mathbb{Z}^n-graded and the canonical generators of the algebra C are homogeneous elements of the algebra I_n (we leave this as an exercise for the reader). Then C is a maximal commutative subalgebra of the algebra I_n since $\text{Cen}_n(C) = C$ and C is a commutative algebra. \hfill \Box

5.3. The group I_n of units of the algebra I_n and its centre

The group \mathbb{A}_1^* of units of the algebra \mathbb{A}_1 contains the following infinite discrete subgroup [12, Theorem 4.2]:

$$H := \left\{ \prod_{i \geq 0} (H + i)^{n_i} \cdot \prod_{i \geq 1} (H - i)^{n_{i-1}} \mid (n_i)_{i \in \mathbb{Z}} \right\} \cong \mathbb{Z}(\mathbb{Z}).$$

(22)
For each tensor multiple $A_1(i)$ of the algebra $A_n = \bigotimes_{i=1}^{n} A_1(i)$, let $H_1(i)$ be the corresponding group H. Their (direct) product

$$H_n := H_1(1) \ldots H_1(n) = \prod_{i=1}^{n} H_1(i)$$

(23)

is a (discrete) subgroup of the group A_n^* of units of the algebra A_n, and $H_n \simeq H^n \simeq (\mathbb{Z}^n)^{\times}$. Note that $A_n^* = K^* \times (H_n \times (1 + a_n^e)^*)$ and $Z(A_n^*) = K^*$ (see [12, Theorem 4.4]). A similar result holds for the group I_n^* of the algebra I_n (Theorem 5.6). Since a_n is an ideal of the algebra I_n, the intersection $(1 + a_n)^* := I_n^* \cap (1 + a_n)$ is a subgroup of the group I_n^* of units of the algebra I_n.

Theorem 5.6. (1) Let $F_n = \bigotimes_{i=1}^{n} (K + F(i))$. Then

$$I_n^* = K^* \times (1 + a_n)^* \quad \text{and} \quad I_n^* \supseteq (1 + F_n \cap a_n)^* \simeq \underbrace{\text{GL}_\infty(K) \times \ldots \times \text{GL}_\infty(K)}_{2^n-1 \text{ times}}.$$

(2) The centre of the group I_n^* is K^*.

Proof. (1) The commutative diagram of algebra homomorphisms

\[
\begin{array}{ccc}
I_n & \longrightarrow & A_n^* \\
\downarrow & & \downarrow \\
B_n & \longrightarrow & A_n
\end{array}
\]

yields the commutative diagram of group homomorphisms

\[
\begin{array}{ccc}
I_n^* & \longrightarrow & A_n^* \\
\downarrow & & \downarrow \\
B_n^* & \longrightarrow & A_n^*
\end{array}
\]

Since $B_n^* = \bigcup_{a \in \mathbb{Z}^n} K^* \partial^a$ and $A_n^* = K^* \times (H_n \times (1 + a_n^e)^*)$, we see that

$$K^* \times (1 + a_n)^* \subseteq I_n^* \subseteq I_n \cap A_n^* = K^* \times (I_n \cap (1 + a_n^e)^*) = K^* \times (1 + a_n^e)^* = K^* \times (1 + a_n)^*$$

since $a_n^e = a_n$ (Theorem 3.1). Therefore, $I_n^* = K^* \times (1 + a_n^e)^*$.

Since $F_n \subseteq I_n \subseteq A_n$, it is obvious that

$$I_n^* \supseteq (1 + F_n \cap a_n)^* = (1 + F_n \cap a_n^e)^* \simeq \underbrace{\text{GL}_\infty(K) \times \ldots \times \text{GL}_\infty(K)}_{2^n-1 \text{ times}}.$$

The isomorphism is established in [14, Corollary 7.3].

(2) Let S be the set of elements of the type $1 + \prod_{i \in I} e_{s(i)}$, where $I \neq \emptyset \subseteq \{1, \ldots, n\}$. Then $S \subseteq I_n^*$ and $\text{Cen}_{I_n^*}(S) = \text{Cen}_{I_n^*}(F_n, 0) = D_n$, by Lemma 5.4(1). Therefore, $\text{Cen}_{I_n^*}(S) = \text{Cen}_{I_n^*}(S) \cap I_n^* = D_n \cap I_n^* = I_n^* = F_n, 0$. We see that $\text{Cen}_{I_n^*}(S) = K$. Therefore, the centre of the group I_n^* is K^*. \hfill \square

5.4. The group of units $(1 + F)^*$ and I_1^*

Recall that the algebra (without 1) $F = \bigoplus_{i,j \in \mathbb{N}} K e_{i,j}$ is the union $M_\infty(K) := \bigcup_{d \geq 1} M_d(K) = \lim_{d \to \infty} M_d(K)$ of the matrix algebras $M_d(K) := \bigoplus_{1 \leq i,j \leq d-1} K e_{i,j}$, that is, $F = M_\infty(K)$. For each $d \geq 1$, consider the (usual) determinant $\det_d = \det : 1 + M_d(K) \to K$, $u \mapsto \det(u)$. These
determinants determine the (global) determinant
\[\det : 1 + M_\infty(K) = 1 + F \longrightarrow K, \quad u \mapsto \det(u), \]
where \(\det(u) \) is the common value of all the determinants \(\det_d(u), \ d \gg 1 \). The (global) determinant has the usual properties of the determinant. In particular, for all \(u, v \in 1 + M_\infty(K) \), \(\det(uv) = \det(u) \cdot \det(v) \). It follows from this equality and the Cramer’s formula for the inverse of a matrix that the group \(\text{GL}_\infty(K) := (1 + M_\infty(K))^* \) of units of the monoid \(1 + M_\infty(K) \) is equal to
\[\text{GL}_\infty(K) = \{ u \in 1 + M_\infty(K) | \det(u) \neq 0 \}. \]
Therefore,
\[(1 + F)^* = \{ u \in 1 + F | \det(u) \neq 0 \} = \text{GL}_\infty(K). \]

Corollary 5.7. The group \(\mathbb{I}_1^* = K^* \times (1 + F)^* = K^* \times \text{GL}_\infty(K) \), that is, \(\mathbb{I}_1^* = \{ \lambda(1 + f)/\det(1 + f) \neq 0, \lambda \in K^*, f \in F \} \). The elements \(\lambda \in K^*, 1 + \mu e_{ij}, \) where \(\mu \in K \) and \(i \neq j \), and \(1 + \gamma e_{00}, \) where \(\gamma \in K \setminus \{-1\} \) are generators for the group \(\mathbb{I}_1^* \).

6. **The weak and the global dimensions of the algebra \(I_n \)**

In this section, we prove that the weak dimension of the algebra \(I_n \) and of all its prime factor algebras is \(n \) (Theorem 6.2). An analogue of Hilbert’s Syzygy Theorem is established for the algebra \(I_n \) and for all its prime factor algebras (Theorem 6.5).

6.1. **The weak dimension of the algebra \(I_n \)**

Let \(S \) be a non-empty multiplicatively closed subset of a ring \(R \), and let \(\text{ass}(S) := \{ r \in R | sr = 0 \text{ for some } s \in S \} \). Then a left quotient ring of \(R \) with respect to \(S \) is a ring \(Q \) together with a homomorphism \(\varphi : R \rightarrow Q \) such that:
(i) for all \(s \in S \), \(\varphi(s) = 1 \) is a unit in \(Q \);
(ii) for all \(q \in Q \), \(q = \varphi(s)^{-1} \cdot \varphi(r) \) for some \(r \in R \) and \(s \in S \);
(iii) \(\text{ker}(\varphi) = \text{ass}(S) \).

If there exists a left quotient ring \(Q \) of \(R \) with respect to \(S \), then it is unique up to isomorphism, and it is denoted by \(S^{-1}R \). It is also said that the ring \(Q \) is the left localization of the ring \(R \) at \(S \).

Example 1. Let \(S := S_{\partial} := \{ \partial^i, i \geq 0 \} \) and \(R = \mathbb{I}_1 \). Then \(\text{ass}(S) = F, \mathbb{I}_1/\text{ass}(S) = B_1 \) and the conditions (i)–(iii) hold where \(Q = B_1 \). This means that the ring \(B_1 = \mathbb{I}_1/F \) is the left quotient ring of \(\mathbb{I}_1 \) at \(S_{\partial} \), that is, \(B_1 \simeq S_{\partial}^{-1} \mathbb{I}_1 \).

Example 2. Let \(S := S_{\partial_1, \ldots, \partial_n} := \{ \partial^n, \alpha \in \mathbb{N}^n \} \) and \(R = \mathbb{I}_n \). Then \(\text{ass}(S_{\partial_1, \ldots, \partial_n}) = \mathbb{a}_n \), \(\mathbb{I}_n/\mathbb{a}_n = B_n \) and
\[S_{\partial_1, \ldots, \partial_n}^{-1} \mathbb{I}_n \simeq B_n, \]
that is, \(B_n \) is the left quotient ring of \(\mathbb{I}_n \) at \(S_{\partial_1, \ldots, \partial_n} \). Note that the right localization \(\mathbb{I}_n S_{\partial_1, \ldots, \partial_n}^{-1} \) of \(\mathbb{I}_n \) at \(S_{\partial_1, \ldots, \partial_n} \) does not exist. Otherwise, we would have \(S_{\partial_1, \ldots, \partial_n}^{-1} \mathbb{I}_n \simeq \mathbb{I}_n S_{\partial_1, \ldots, \partial_n}^{-1} \), but all the elements \(\partial^n \) are left regular, and we would have a monomorphism \(\mathbb{I}_n \rightarrow S_{\partial_1, \ldots, \partial_n}^{-1} \mathbb{I}_n \simeq B_n \), which would be impossible since the elements \(\partial_1 \) of the algebra \(\mathbb{I}_n \) are not regular. By applying the involution \(* \) to (27), we see that
\[\mathbb{I}_n S_{\partial_1, \ldots, \partial_n}^{-1} \simeq B_n, \]
that is, the algebra B_n is the right localization of \mathbb{I}_n at the multiplicatively closed set $S_{j_1,\ldots,j_n} := \{ \sum^\alpha \alpha \in \mathbb{N}^n \}$. Given a ring R and modules R_M and N_R, we denote by $\text{pd}(R_M)$ and $\text{pd}(N_R)$ their projective dimensions. Let us recall a result that will be used repeatedly in proofs later.

It is obvious that $P_n \simeq A_n / \sum_{i=1}^n A_n \partial_i$. A similar result is true for the \mathbb{I}_n-module P_n (Proposition 6.1(2)). Note that $\text{pd}_{A_n}(P_n) = n$, but $\text{pd}_{\mathbb{I}_n}(P_n) = 0$ (Proposition 6.1(3)).

Proposition 6.1.

1. $I_1 = I_1 \partial \bigoplus I_1 e_{00}$ and $I_1 = \int I_1 \bigoplus e_{00} I_1$.
2. $I_n P_n \simeq I_n / \sum_{i=1}^n I_n \partial_i$.
3. The \mathbb{I}_n-module P_n is projective.
4. The ideal $F_n = F^\otimes n$ is a left and right projective \mathbb{I}_n-module.
5. The projective dimension of the left and right \mathbb{I}_n-module I_n/F_n is 1.
6. For each element $\alpha \in \mathbb{N}^n$, the \mathbb{I}_n-module $I_n/I_n \partial^\alpha$ is projective, moreover, $I_n/I_n \partial^\alpha \simeq \bigoplus_{i=1}^n (K[x_i] \otimes \bigotimes_{j \neq i} I_1(i))^{\alpha_i}$.

Proof.

1. Using the equality $\int \partial = 1 - e_{00}$, we see that $I_1 = I_1 \partial + I_1 e_{00}$. Since $\partial e_{00} = 0$ and $e_{00}^2 = e_{00}$, we have $I_1 \partial \cap I_1 e_{00} = (I_1 \partial \cap I_1 e_{00}) e_{00} \subseteq I_1 e_{00} = 0$. Therefore, $I_1 = I_1 \partial \bigoplus I_1 e_{00}$. Then applying the involution $*$ to this equality, we obtain the equality $I_1 = \int I_1 \bigoplus e_{00} I_1$.

2. Since $I_1 P_1 \simeq I_1 e_{00} = \bigoplus_{i \in \mathbb{N}^n} K e_{00}, \ 1 \rightarrow e_{00}$, we have $I_1 P_1 \simeq I_1 / I_1 \partial$, by statement (1). Therefore, $I_n P_n \simeq \bigotimes_{i=1}^n P_1(i) \simeq \bigotimes_{i=1}^n I_1(i) / I_1(i) \partial_i \simeq I_n / \sum_{i=1}^n I_n \partial_i$.

3. By statement (1),

$$I_n = \bigotimes_{i=1}^n I_1(i) = \bigotimes_{i=1}^n (I_1(i) \partial + I_1(i) e_{00}(i)) = I_n \prod_{i=1}^n e_{00}(i) + \sum_{i=1}^n I_n \partial_i \simeq P_n \oplus \sum_{i=1}^n I_n \partial_i.$$

Therefore, P_n is a projective \mathbb{I}_n-module.

4. Note that the left I_1-module $F = \bigoplus_{i \in \mathbb{N}^n} I_1 F_i \simeq \bigoplus_{i \in \mathbb{N}^n} P_1$ is projective by statement (2). Therefore, $F_n = F^\otimes n$ is a projective left \mathbb{I}_n-module. Since the ideal F_n is stable under the involution $*$, $F_n^* = F_n$, the right \mathbb{I}_n-module F_n is projective.

5. The short exact sequence of left and right \mathbb{I}_n-modules $0 \rightarrow F_n \rightarrow I_n \rightarrow I_n/F_n \rightarrow 0$ does not split since F_n is an essential left and right submodule of I_n (Lemma 5.2(2)). By statement (4), the projective dimension of the left and right \mathbb{I}_n-module I_n/F_n is 1.

6. Let $Z^n = \bigoplus_{i=1}^n \mathbb{Z} e_i$, where e_1, \ldots, e_n is the canonical free \mathbb{Z}-basis for \mathbb{Z}^n. Let $m = |\alpha|$. Fix a chain of elements of Z^n, $\beta_0 = 0, \beta_1, \ldots, \beta_m = \alpha$ such that, for all i, $\beta_1 = \beta_i + e_j$ for some index $j = j(i)$. Then all the factors of the chain of left ideals

$$I_n \partial^\alpha \simeq I_n \partial^{\beta_m} \subset I_n \partial^{\beta_{m-1}} \subset \ldots \subset I_n \partial^{\beta_1} \subset I_n$$

are projective \mathbb{I}_n-modules since $I_n \partial^{\beta_j} / I_n \partial^{\beta_{j+1}+1} \simeq I_n / I_n \partial_j \simeq K[x_j] \otimes I_n - 1$ is the projective \mathbb{I}_n-module (statement (3)). The first isomorphism is due to the fact that the element ∂_j is left regular, that is, $a \partial_j b = b \partial_j$ implies $a = b$ (by multiplying the equation on the right by \int). Therefore, the \mathbb{I}_n-module $I_n/I_n \partial^\alpha$ is projective. Moreover, $I_n/I_n \partial^\alpha \simeq \bigoplus_{i=1}^n (K[x_i] \otimes \bigotimes_{j \neq i} I_1(i))^{\alpha_i}$. \hfill \qed

Theorem 6.2. Let $I_n,m := B_n - m \otimes I_m$, where $m = 0, 1, \ldots, n$ and $I_0 = B_0 := K$. Then $\text{wdim}(I_{n,m}) = n$ for all $m = 0, 1, \ldots, n$. In particular, $\text{wdim}(I_n) = n$.

Proof. The algebra B_n is Noetherian, hence $n = 1 \cdot \text{gldim}(S_{\partial_1,\ldots,\partial_n} \otimes I_{n,m}) = \text{wdim}(B_n) \leq \text{wdim}(I_{n,m})$ (see [51, Corollary 7.4.3]). To finish the proof of the theorem, it suffices to show
that the inequality \(\text{wdim}(I_{n,m}) \leq n \) holds for all numbers \(n \) and \(m \). We use induction on \(n \). The case \(n = 0 \) is trivial. So, let \(n \geq 1 \) and we assume that the inequality holds for all \(n' < n \) and all \(m = 0, 1, \ldots, n' \). For \(n \), we use the second induction on \(m = 0, 1, \ldots, n \). When \(m = 0 \), the inequality holds since \(I_{0,0} = B_n \) and \(\text{wdim}(B_n) = n \).

Suppose that \(m > 0 \) and \(\text{wdim}(I_{n,m'}) \leq n \) for all \(m' < m \). We have to show that \(\text{wdim}(I_{n,m}) \leq n \) or, equivalently, \(\text{fd}_{I_{n,m}}(M) \leq n \) for all \(I_{n,m} \)-modules \(M \) (fd denotes the flat dimension). Changing the order of the tensor multiples, we can write \(I_{n,m} = I_1 \otimes I_{n-1,m-1} \). Then \(\text{wdim}(I_{n-1,m-1}) \leq n - 1 \), by the inductive hypothesis. Recall that \(B_1 = S_{\partial}^{-1}I_1 = I_1/F \) and every \(\partial \)-torsion \(I_{n,1} \)-module \(V \) is a direct sum of several (maybe an infinite number of) copies of the projective simple \(I_1 \)-module \(K[x] \) (Proposition 6.1(6)), hence \(V \) is projective and hence \(V = 0 \). Note that \(S_{\partial}^{-1}I_{n,m} \cong I_{n,m-1} \) and \(\text{wdim}(I_{n,m-1}) \leq n \), by the inductive hypothesis. The \(I_{n,m} \)-module \(\text{tor}_\partial(M) := \{ m \in M | \partial m = 0 \text{ for some } i \} \) is the \(\partial \)-torsion submodule of the \(I_{n,m} \)-module \(M \). There are two short exact sequences of \(I_{n,m} \)-modules

\[
0 \to \text{tor}_\partial(M) \to M \to \overline{M} \to 0, \tag{29}
\]

and

\[
0 \to \overline{M} \to S_{\partial}^{-1}M \to M' \to 0, \tag{30}
\]

where the \(I_{n,m} \)-modules \(\text{tor}_\partial(M) \) and \(M' \) are \(\partial \)-torsion, and the \(I_n \)-module \(S_{\partial}^{-1}M \) is \(\partial \)-torsion free. To prove that \(\text{fd}_{I_{n,m}}(M) \leq n \), it suffices to show that the flat dimensions of the \(I_{n,m} \)-modules \(\text{tor}_\partial(M) \), \(S_{\partial}^{-1}M \) and \(M' \) are less than or equal to \(n \). Indeed, then by (30), \(\text{fd}_{I_{n,m}}(\overline{M}) \leq \max\{\text{fd}_{I_{n,m}}(S_{\partial}^{-1}M), \text{fd}_{I_{n,m}}(M')\} \leq n \); and by (29), \(\text{fd}_{I_{n,m}}(M) \leq \max\{\text{fd}_{I_{n,m}}(\text{tor}_\partial(M)), \text{fd}_{I_{n,m}}(\overline{M})\} \leq n \).

The \(I_1 \)-module \(\text{tor}_\partial(M) \) (where \(I_{n,m} = I_1 \otimes I_{n-1,m-1} \)) is a direct sum of copies (maybe infinitely many) of the projective simple \(I_1 \)-module \(K[x] \). Note that \(\text{End}_{I_1}(K[x]) \cong \ker_{K[x]}(\partial) = K \) since \(I_1 K[x] \cong I_1/I_1\partial \). Using this fact and Proposition 6.1(6), for each finitely generated submodule \(T \) of the \(I_{n,m} \)-module \(\text{tor}_\partial(M) \) there exists a family \(\{T_i\}_{i \in I} \) of its submodules \(T_i \) where \(I, \leq \) is a well-ordered set such that if \(i, j \in I \) and \(i \leq j \), then \(T_i \subseteq T_j \), \(T = \bigcup_{i \in I} T_i \) and \(T_i/\bigcap_{j \leq i} T_j \cong K[x] \otimes T_i \) for some \(I_{n-1,m-1} \)-module \(T_i \). Note that

\[
\text{fd}_{I_{n,m}}(K[x] \otimes T_i) \leq \text{fd}_{I_{n-1,m-1}}(T_i) \leq n - 1,
\]

since the \(I_1 \)-module \(K[x] \) is projective. Therefore, \(\text{fd}_{I_{n,m}}(T) \leq n - 1 \). The module \(\text{tor}_\partial(M) = \bigcup_{\theta \in \Theta} T_\theta \) is the union of its finitely generated submodules \(T_\theta \), hence

\[
\text{fd}_{I_{n,m}}(\text{tor}_\partial(M)) = \text{fd}_{I_{n,m}}\left(\bigcup_{\theta \in \Theta} T_\theta\right) \leq \sup\{\text{fd}_{I_{n,m}}(T_\theta)\}_{\theta \in \Theta} = n - 1.
\]

Similarly, \(\text{fd}_{I_{n,m}}(\overline{M}) \leq n - 1 \) since the \(I_{n,m} \)-module \(\overline{M} \) is \(\partial \)-torsion.

It remains to show that \(\text{fd}_{I_{n,m}}(S_{\partial}^{-1}(M)) \leq n \). By (27), the left \(I_1 \)-module \(B_1 \) is flat, hence the left \(I_{n,m} \)-module \(B_1 \otimes I_{n-1,m-1} \) is flat. Then, by [51, Proposition 7.2(i)],

\[
\text{fd}_{I_{n,m}}(S_{\partial}^{-1}M) \leq \text{fd}_{B_1 \otimes I_{n-1,m-1}}(S_{\partial}^{-1}M) + \text{fd}_{I_{n,m}}(B_1 \otimes I_{n-1,m-1}) \leq \text{wdim}(I_{n,m-1}) \leq n.
\]

The proof of the theorem is complete.

Corollary 6.3. Let \(M \) be a \(\partial \)-torsion \(I_{n,m} \)-module, that is, \(S_{\partial}^{-1}M = 0 \), where \(S_{\partial}^{-1} : I_{n,m} = I_1 \otimes I_{n-1,m-1} \to B_1 \otimes I_{n-1,m-1} = I_{n,m-1} \) is the localization map and \(n, m \geq 1 \). Then there exists a family \(\{T_i\}_{i \in I} \) of \(I_{n,m} \)-submodules of \(M \) such that \(M = \bigcup_{i \in I} T_i \), \(I, \leq \) is a well-ordered set such that if \(i, j \in I \) and \(i \leq j \), then \(T_i \subseteq T_j \), and \(T_i/\bigcap_{j < i} T_j \cong K[x] \otimes T_i \) for some \(I_{n-1,m-1} \)-module \(T_i \).

Proof. The \(I_1 \)-module \(M \) is a direct sum of (maybe infinitely many) copies of the projective simple \(I_1 \)-module \(K[x] \). Note that \(\text{End}_{I_1}(K[x]) \cong \ker_{K[x]}(\partial) = K \) since \(I_1 K[x] \cong I_1/I_1\partial \). Using
this fact, for the $\mathbb{I}_{n,m}$-module M, there exists a family $\{T_i\}_{i \in I}$ of its submodules T_i where (I, \leq) is a well-ordered set such that if $i, j \in I$ and $i \leq j$, then $T_i \subseteq T_j$, $M = \bigcup_{i \in I} T_i$ and $T_i/\bigcup_{j < i} T_j \cong K[x] \otimes T_i$ for some $\mathbb{I}_{n-1,m-1}$-module T_i.

Corollary 6.4. Let A be a prime factor algebra of the algebra \mathbb{I}_{n}. Then $\mathrm{wdim}(A) = n$.

Proof. By Corollary 3.3(10), the algebra A is isomorphic to the algebra $\mathbb{I}_{n,m}$ for some m. Now, the corollary follows from Theorem 6.2.

The next theorem is an analogue of Hilbert’s Syzygy Theorem for the algebra \mathbb{I}_{n} and its prime factor algebras. The flat dimension of an A-module M is denoted by $\mathrm{fd}_A(M)$.

Theorem 6.5. Let K be an algebraically closed uncountable field of characteristic zero. Let A be a prime factor algebra of \mathbb{I}_{n} (for example, $A = \mathbb{I}_{n}$) and B be a Noetherian finitely generated algebra over K. Then $\mathrm{wdim}(A \otimes B) = \mathrm{wdim}(A) + \mathrm{wdim}(B) = n + \mathrm{wdim}(B)$.

Proof. Recall that $A \cong \mathbb{I}_{n,m}$ for some $m \in \{0, 1, \ldots, n\}$ and $\mathrm{wdim}(\mathbb{I}_{n,m}) = n$ (Theorem 6.2). Since

$$n + \mathrm{wdim}(B) = \mathrm{wdim}(\mathbb{I}_{n,m}) + \mathrm{wdim}(B) \leq \mathrm{wdim}(\mathbb{I}_{n,m} \otimes B),$$

it suffices to show that $\mathrm{wdim}(\mathbb{I}_{n,m} \otimes B) \leq n + \mathrm{wdim}(B)$ for all numbers n and m. We use induction on n. The case $n = 0$ is trivial since $A = K$. So, let $n > 1$, and we assume that the inequality holds for all $n' < n$ and all $m' = 0, 1, \ldots, n'$. For the number $n \geq 1$, we use the second induction on $m = 0, 1, \ldots, n$. The case $m = 0$, that is, $\mathbb{I}_{n,0} = B_n$, is known [8, Corollary 6.3] (this can also be deduced from [51, Proposition 9.1.12]; see also [9]).

So, let $m > 0$ and we assume that the inequality holds for all numbers $m' < m$. Let M be an $\mathbb{I}_{n,m} \otimes B$-module. We have to show that $\mathrm{fd}_{\mathbb{I}_{n,m} \otimes B}(M) \leq n + \mathrm{wdim}(B)$. We can treat M as an $\mathbb{I}_{n,m}$-module. Then we have the short exact sequences (29) and (30) which are, in fact, short exact sequences of $\mathbb{I}_{n,m} \otimes B$-modules. To prove that $\mathrm{fd}_{\mathbb{I}_{n,m} \otimes B}(M) \leq n + \mathrm{wdim}(B)$, it suffices to show that the flat dimensions of the $\mathbb{I}_{n,m} \otimes B$-modules $\mathrm{tor}_B(M)$, $S_\partial^{-1} M$ and M' are less than or equal to $n + \mathrm{wdim}(B)$, by the same reason as in the proof of Theorem 6.2. Repeating the same argument as at the end of the proof of Theorem 6.2, for each finitely generated submodule T of the $\mathbb{I}_{n,m} \otimes B$-module $\mathrm{tor}_B(M)$ (where $\mathbb{I}_{n,m} = \mathbb{I}_{1} \otimes \mathbb{I}_{n-1,m-1}$), there exists a family $\{T_i\}_{i \in I}$ of its submodules T_i where (I, \leq) is a well-ordered set such that if $i, j \in I$ and $i \leq j$, then $T_i \subseteq T_j$, $T_i \subseteq T_j$, $M = \bigcup_{i \in I} T_i$ and $T_i/\bigcup_{j < i} T_j \cong K[x] \otimes T_i$ for some $\mathbb{I}_{n-1,m-1} \otimes B$-module T_i. Note that $\mathbb{I}_{n,m} \otimes B = \mathbb{I}_{1} \otimes \mathbb{I}_{n-1,m-1} \otimes B$ and

$$\mathrm{fd}_{\mathbb{I}_{n,m} \otimes B}(K[x] \otimes T_i) \leq \mathrm{fd}_{\mathbb{I}_{n-1,m-1} \otimes B}(T_i) \leq \mathrm{wdim}(\mathbb{I}_{n-1,m-1} \otimes B) = n - 1 + \mathrm{wdim}(B),$$

since the \mathbb{I}_{1}-module $K[x]$ is projective. Therefore, $\mathrm{fd}_{\mathbb{I}_{n,m} \otimes B}(T_i) \leq n - 1 + \mathrm{wdim}(B)$. The $\mathbb{I}_{n,m} \otimes B$-module $\mathrm{tor}_B(M) = \bigcup_{\theta \in \Theta} T_\theta$ is the union of its finitely generated submodules T_θ, hence

$$\mathrm{fd}_{\mathbb{I}_{n,m} \otimes B}(\mathrm{tor}_B(M)) = \mathrm{fd}_{\mathbb{I}_{n,m} \otimes B} \left(\bigcup_{\theta \in \Theta} T_\theta \right) \leq \sup\{\mathrm{fd}_{\mathbb{I}_{n,m} \otimes B}(T_\theta)\}_{\theta \in \Theta} = n - 1 + \mathrm{wdim}(B).$$

Similarly, $\mathrm{fd}_{\mathbb{I}_{n,m} \otimes B}(M') \leq n - 1 + \mathrm{wdim}(B)$ since the \mathbb{I}_{1}-module M' is ∂-torsion.

It remains to show that $\mathrm{fd}_{\mathbb{I}_{n,m} \otimes B}(S_\partial^{-1} M) \leq n + \mathrm{wdim}(B)$. By (22), the left \mathbb{I}_{1}-module B_1 is flat, hence the left $\mathbb{I}_{n,m} \otimes B$-module $B_1 \otimes \mathbb{I}_{n-1,m-1} \otimes B$ is flat. Then, by
By (29), \(\text{pd}_{n,m}(M) \leq \text{pd}_{n,m-1}(M) + \text{pd}_{n,m}(\mathbb{I}_{n,m-1}) \leq n + m - 1 + 1 = n + m \).

By (29), \(\text{pd}_{n,m}(M) \leq \max\{\text{pd}_{n,m}(\text{tor}_\partial(M)), \text{pd}_{n,m}(\mathbb{I})\} \leq n + m \).
as required. The proof of the theorem is complete.

CONJECTURE. \(\text{gldim}(\mathbb{I}_n) = n. \)

7. The weak and the global dimensions of the Jacobian algebra \(\mathbb{A}_n \)

In this section, we prove that the weak dimension of the Jacobian algebra \(\mathbb{A}_n \) and of all its prime factor algebras is \(n \) (Theorem 7.2, Corollary 7.3). An analogue of Hilbert’s Syzygy Theorem is established for the Jacobian algebras \(\mathbb{A}_n \) and for all its prime factor algebras (Theorem 7.4).

A \(K \)-algebra \(R \) has the endomorphism property over \(K \) if, for each simple \(R \)-module \(M \), \(\text{End}_R(M) \) is algebraic over \(K \).

THEOREM 7.1 [10]. Let \(K \) be a field of characteristic zero.

1. The algebra \(\mathbb{A}_n \) is a simple, affine, Noetherian domain.
2. The Gelfand–Kirillov dimension \(\text{GK}(\mathbb{A}_n) = 3n \) (\(n \neq 2n = \text{GK}(\mathbb{A}_n) \)).
3. The \((\text{left and right}) \) global dimension \(\text{gl.dim}(\mathbb{A}_n) = n. \)
4. The \((\text{left and right}) \) Krull dimension \(\text{K.dim}(\mathbb{A}_n) = n. \)
5. Let \(d = \text{gl.dim} \) or \(d = \text{K.dim} \). Let \(R \) be a Noetherian \(K \)-algebra with \(d(R) < \infty \) such that \(R[\ell] \), the polynomial ring in a central indeterminate, has the endomorphism property over \(K \). Then \(d(\mathbb{A}_1 \otimes R) = d(R) + 1. \) If, in addition, the field \(K \) is algebraically closed and uncountable, and the algebra \(R \) is affine, then \(d(\mathbb{A}_n \otimes R) = d(R) + n. \)

The equality \(\text{GK}(\mathbb{A}_1) = 3 \) is due to Joseph [42, p. 336]; see also [48, Example 4.11, p. 45].

7.1. The Jacobian algebra \(\mathbb{A}_n \) is a localization of the algebra \(\mathbb{I}_n \)

Using the presentations of the algebras \(\mathbb{I}_n \) and \(\mathbb{A}_n \) as GWAs, it is obvious that the algebra \(\mathbb{I}_n \) is the two-sided localization,

\[
\mathbb{A}_n = S^{-1}\mathbb{I}_n = \mathbb{I}_nS^{-1},
\]

of the algebra \(\mathbb{I}_n \) at the multiplicatively closed subset \(S := \{ \prod_{i=1}^{n}(H_i + \alpha_i)^{n_i} \mid (\alpha_i) \in \mathbb{Z}^n, (n_i) \in \mathbb{N}^n \} \) of \(\mathbb{I}_n \), where

\[
(H_i + \alpha_i)^{n_i} := \begin{cases} H_i + \alpha_i & \text{if } \alpha_i \geq 0, \\ (H_i + \alpha_i)^{1} & \text{if } \alpha_i < 0, \end{cases}
\]

since, for all elements \(\beta \in \mathbb{Z}^n \),

\[
v_\beta \prod_{i=1}^{n}(H_i + \alpha_i)^{n_i} = \prod_{i=1}^{n}(H_i + \alpha_i - \beta_i)^{n_i}v_\beta.
\]

The left or right localization of the Jacobian algebra

\[
\mathbb{A}_n = K\langle y_1, \ldots, y_n, H_1^{\pm 1}, \ldots, H_n^{\pm 1}, x_1, \ldots, x_n \rangle \quad \text{(where } y_i := H_i^{-1}x_i)\]

at the multiplicatively closed set \(S_{y_1, \ldots, y_n} := \{ y^\alpha \mid \alpha \in \mathbb{N}^n \} \) or \(S_{x_1, \ldots, x_n} := \{ x^\alpha \mid \alpha \in \mathbb{N}^n \} \), respectively, is the algebra

\[
\mathbb{A}_n \simeq S_{y_1, \ldots, y_n}^{-1} \mathbb{A}_n \simeq \mathbb{A}_n S_{x_1, \ldots, x_n}^{-1}.
\]

The algebra \(\mathbb{A}_n \) has the involution \(\ast \). The algebra \(\mathbb{A}_n \simeq \mathbb{A}_n/\mathbb{A}_n^\ast \) inherits the involution \(\ast \) since \((a^\ast_n)^\ast = a_n^\ast \), and so do the algebras \(\mathbb{A}_{n,m} := \mathbb{A}_{n-m} \otimes \mathbb{A}_m \), where \(m = 0, 1, \ldots, n \) and \(\mathbb{A}_0 = \mathbb{A}_0 = K \). Therefore, the algebras \(\mathbb{A}_{n,m} \) are self-dual, and so \(\text{lgldim}(\mathbb{A}_{n,m}) = \text{rgldim}(\mathbb{A}_{n,m}) := \text{gldim}(\mathbb{A}_{n,m}). \)
Theorem 7.2. Let \(A_{n,m} := A_{n-m} \otimes A_m \), where \(m = 0, 1, \ldots, n \) and \(A_0 = A_0 := K \). Then \(\text{wdim}(A_{n,m}) = n \) for all \(m = 0, 1, \ldots, n \). In particular, \(\text{wdim}(A_n) = n \).

Proof. By Theorem 7.1(1,3) and (33),
\[
n = \text{gldim}(A_n) = \text{wdim}(A_n) = \text{l.gldim}(S^{-1} y_1, y_n A_n) \leq \text{wdim}(S^{-1} y_1, y_1, y_n A_n) = \text{wdim}(A_{n,m}) \\
\leq \text{wdim}(I_{n,m}) = n \quad \text{(by (31) and Theorem 6.2)}.
\]
Therefore, \(\text{wdim}(A_{n,m}) = n \) for all \(n \) and \(m \).

Corollary 7.3. Let \(A \) be a prime factor algebra of the algebra \(A_n \). Then \(\text{wdim}(A) = n \).

Proof. By [12, Corollary 3.5], the algebra \(A \) is isomorphic to the algebra \(A_{n,m} \) for some \(m \).

Now, the corollary follows from Theorem 7.2.

The next theorem is an analogue of Hilbert’s Syzygy Theorem for the Jacobian algebras and their prime factor algebras.

Theorem 7.4. Let \(K \) be an algebraically closed uncountable field of characteristic zero. Let \(A \) be a prime factor algebra of \(A_n \) (for example, \(A = A_n \)) and \(B \) be a Noetherian finitely generated algebra over \(K \). Then \(\text{wdim}(A \otimes B) = \text{wdim}(A) + \text{wdim}(B) = n + \text{wdim}(B) \).

Proof. Recall that \(A \simeq A_{n,m} \) for some \(m \in \{0, 1, \ldots, n\} \) and \(\text{wdim}(A_{n,m}) = n \) (Theorem 7.2). Since
\[
n + \text{wdim}(B) = \text{wdim}(A_{n,m}) + \text{wdim}(B) \leq \text{wdim}(A_{n,m} \otimes B) \\
\leq \text{wdim}(S^{-1} \mathbb{I}_n \otimes B) \leq \text{wdim}(\mathbb{I}_n \otimes B) \\
= n + \text{wdim}(B) \quad \text{(by Theorem 6.5)}.
\]
Therefore, \(\text{wdim}(A_{n,m} \otimes B) = n + 1 \text{gldim}(B) \). The proof of the theorem is complete.

Proposition 7.5. For all \(n \in \mathbb{N} \) and \(m = 0, 1, \ldots, n \), \(n \leq \text{gldim}(A_{n,m}) \leq n + m \). In particular, \(n \leq \text{gldim}(A_n) \leq 2n \).

Proof. By Theorem 7.1(3), Proposition 6.7, (31) and (33), \(n = \text{gldim}(A_n) \leq \text{gldim}(A_{n,m}) \leq \text{gldim}(\mathbb{I}_{n,m}) \leq n + m \).

Conjecture. \(\text{gldim}(A_n) = n \).

References
